GEOTECHNICAL ENGINEERING REPORT
Zackuse Creek Fish Passage Project
Sammamish, Washington
Prepared for: City of Sammamish

Project No. 160277 • September 14, 2017 DRAFT
PRELIMINARY GEOTECHNICAL REPORT
Zackuse Creek Fish Passage Project
Sammamish, Washington
Prepared for: City of Sammamish

Project No. 160277 • September 14, 2017 DRAFT

Aspect Consulting, LLC

Jesse Favia, LG
Senior Staff Geologist
jfavia@aspectconsulting.com

Erik O. Andersen, PE
Senior Associate Geotechnical Engineer
eandersen@aspectconsulting.com
Contents

1 Introduction and Project Description .. 1
2 Site Conditions .. 2
 2.1 Surface Conditions ... 2
 2.2 Tectonics and Regional Geology .. 2
 2.3 Seismic Hazards ... 3
3 Subsurface Conditions ... 5
 3.1 Field Exploration Program .. 5
 3.2 Stratigraphy .. 5
 3.2.1 Roadway Embankment Fill ... 5
 3.2.2 Quaternary Alluvium ... 6
 3.2.3 Glacial Deposits of the Vashon Stade ... 6
 3.3 Groundwater ... 7
4 Conclusions and Recommendations ... 8
 4.1 Pre-Cast Concrete Box Culvert ... 8
 4.2 Culvert Wing Walls ... 10
 4.3 Temporary Excavations and Construction Dewatering 10
 4.4 Structural Fill .. 12
 4.5 Stream Re-Alignment Considerations ... 12
 4.6 Continuing Engineering Support ... 12
References .. 13
Limitations ... 14
List of Figures

1. Project Location Map
2. Site and Exploration Plan
3. Geologic Cross Section A-A’

List of Appendices

A. Subsurface Explorations
B. Laboratory Test Results
1 Introduction and Project Description

This draft geotechnical report presents the results of a site reconnaissance, subsurface explorations, and geotechnical analyses and recommendations performed by Aspect Consulting, LLC (Aspect) in support of the Zackuse Creek Fish Passage Project (Project). Our services were provided in support of engineering studies led by OTAK, Inc (Otak) for the City of Sammamish (Client).

The Project involves the replacement of an existing 30-inch-diameter concrete culvert under East Lake Sammamish Parkway (ELSP) and rerouting portions of Zackuse Creek east of ELSP. The culvert replacement is designed to provide upstream fish passage and spawning habitat for native Lake Sammamish kokanee. The project location is shown on Figure 1, Project Area Location Map.

We anticipate that design and construction of the culvert and associated roadway improvements will be in accordance with the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications (BDS; AASHTO, 2014), and selected Washington State Department of Transportation (WSDOT; WSDOT, 2016) guidance and methodologies.

This draft report summarizes the results of the completed field explorations and presents Aspect’s geotechnical engineering conclusions and design recommendations for plan, specification, and estimate (PS&E) development. This draft report is submitted following OTAK’s 60% review set of project plans. The conclusions and recommendations formally provided herein were previously provided to OTAK informally (by email and/or verbally in design meetings).
2 Site Conditions

The Project area consists of a hummocky alluvial plain and wetland to the east of ELSP and a generally southwest to northeast trending fill embankment supporting ELSP above the surrounding alluvial plain. Zackuse Creek meanders across the alluvial plain traversing generally east to west before ponding up against and travelling north along ELSP about 200 feet south of a concrete culvert. The 30-inch-diameter concrete culvert carries Zackuse Creek beneath ELSP at the elevation of the alluvial plain. Zackuse Creek passes through two additional culverts before entering Lake Sammamish about 200 feet west of ELSP.

Project area topography is a generally flat alluvial plain with incised stream channels between ELSP and a west-facing slope about 650 feet east of ELSP. The fill embankment supporting ELSP is between 5-feet and 7-feet above the surrounding alluvial plain. The sides of the embankment are typically around a 1H:1V slope. The Zackuse Creek stream channel is incised into the surrounding alluvial plain up to 5-feet east exploration HA-3. West of exploration HA-3, Zackuse Creek is typically wider than upstream and near the elevation of the ground surface. Project area topography is shown on Figure 2.

2.1 Surface Conditions

Surface conditions near the culvert replacement generally consist of relatively flat asphalt paved roadway over the existing culvert, shrubs and bushes on either side of the fill embankment, and wetland vegetation consisting of bushes, common juvenile deciduous trees, and occasional large conifers growing on the alluvial plain east of ELSP.

2.2 Tectonics and Regional Geology

The Puget Lowland is located within an area of repeated glaciations in a complex tectonic environment with active seismicity. Starting about 25 million years ago, the geologic evolution of western Washington has been dominated by the subduction of the Juan de Fuca oceanic plate beneath the North American continental plate. This convergence of plates has created the Puget Trough, which is flanked by the Olympic Mountains to the west and the Cascade Range to the east. The Project will be constructed within the Puget Trough. The Tertiary and Quaternary deposits in the Puget Trough are estimated to be up to 4 miles thick.

The Project area lies about two miles north of the Seattle fault zone, in the Seattle basin, a trough containing a thick accumulation of Quaternary and Tertiary sediments. Northward-directed compression of the Puget Trough has resulted in formation of a chain of sedimentary basins that extend from the Chehalis area of Washington northward past the Canadian border. These sedimentary basins are separated by fold-and-thrust belts that occur as broad zones of active thrust faults, strike-slip faults, folds, and uplifted and deformed bedrock and sediments.

The present-day land surface in the Project area reflects deposition of postglacial sediments that lie above glacial and nonglacial sediments that were deposited during the Quaternary Period (within the last 2.6 million years). During episodes of cooler mean global temperatures, continental ice sheets originating in Canada advanced southward covering much of the Puget Lowland with glacial ice over a mile thick in places, and up
to about 3,000 feet thick in the Project Area. Glacial ice and meltwater from the glaciers and glacially impounded Puget Lowland rivers deposited sequences of clayey and silty to sandy glaciolaquicustrine (glacial lake) deposits in glacially impounded areas, broad sheets of outwash sand and gravel, glacial tills and diamicts (poorly sorted deposits), and sandy to gravelly recessional outwash.

Lake Sammamish resulted from this subglacial meltwater scour and erosion. The slopes above the lake, including those east of Lower Coal Creek, were then modified by normal slope erosion processes including landslides and incision by ravines and drainages from the uplands. Geological mapping indicates the Project area is underlain by Quaternary Alluvium, Mass Wasting Deposits, and Vashon Stade recessional outwash; till, and advance outwash from the Vashon Stade glaciation are mapped on the slopes to the east of the Project area (Booth et. al, 2012).

Artificial fill is not mapped at the Project Area, but is present in the roadway embankment. We did not encounter mass wasting deposits in our explorations. Soil units encountered in soil boring explorations completed at the Project Area are described in more detail below in Section 3.2.

2.3 Seismic Hazards

The Project will be constructed within an area of active tectonic forces associated with the interaction of the offshore Juan de Fuca plate, the Pacific plate, and the onshore North American plate. These plate interactions result in seismic hazards to the Project. Significant hazards include regional ground shaking from subduction zone earthquakes, deep earthquakes, and shallow crustal earthquakes; liquefaction of soft ground; seismically triggered landslides; and the potential for surficial ground rupture.

The Project lies within two miles of the Seattle fault zone. This broad zone of compressional folding and faulting is known to be active, and has ruptured and triggered earthquakes several times during the last 10,000 years. The U. S. Geological Survey (USGS; USGS, 2014) estimates that it is capable of producing earthquakes of magnitude 7.3 or greater. The last large earthquake on this fault system was about 1,100 years ago, and resulted in up to 27 feet of uplift in parts of west Seattle, and surficial ground rupture at Vasa Park east of the Project Area. Faulting was likely associated with surficial ground rupture elsewhere in Bellevue, although most traces of the rupture have been obliterated by erosion and urban development.

The Project Area also lies within the zone of strong shaking from subduction zone earthquakes. The recurrence interval of these earthquakes is thought to be on the order of about 500 years. The most recent subduction zone earthquake occurred about 300 years ago. Deep intraslab earthquakes also occur in the region every decade or two, including the 2001 Nisqually earthquake. These earthquakes are generally less severe than the shallow crustal and subduction zone earthquakes, but have the potential to cause damage to older structures built before modern seismic codes were enacted, and those in areas susceptible to liquefaction.
The Project Area shallow subsurface is underlain by loose gravel, sand, and soft silts that are susceptible to liquefaction during a large earthquake. Liquefaction could result in vertical settlement and lateral displacements of the roadway fill embankment and unconsolidated alluvial sediments.

However, AASHTO and WSDOT standards for design of buried concrete culverts is that they do not need to be designed for seismic effects: AASHTO qualifies this policy for projects that are not along known active faults; WSDOT qualifies this policy for culverts with a span width of less than 20 feet. There are no known active faults crossing the Project Area, and the planned culvert will have a span width of about 12 feet. Therefore, the culvert will not be designed for seismic hazards.
3 Subsurface Conditions

3.1 Field Exploration Program

We completed two machine-drilled borings on December 8 and December 9, 2016. The borings, designated MW-1 and B-2, were completed on either side of the existing culvert and along the proposed replacement alignment (Figure 2). A 2-inch-diameter slotted piezometer was installed in the southwestern boring, MW-1.

The borings were sampled at 2.5 foot intervals from the surface to 20 feet below ground surface (bgs) and sample at 5 foot intervals from 20 feet bgs to the end of hole. Disturbed soil and bedrock samples were taken using Standard Penetration Testing (SPT) methods for soil density and consistency correlation.

Along the proposed creek re-alignment to the east of ELSP, we completed five shallow borings using hand tools along. These shallow borings, HA-1 to HA-5 were selectively sampled and relative soil density/ consistency measurements taken at depths determined by Aspect field staff. Locations of all borings are shown on Figure 2.

Descriptions of the soils units encountered in the borings, as well as the depths where characteristics of the geology and engineering units changed, are indicated on the exploration logs presented in Appendix A. Definitions of the terminology and symbols used on the logs are included as Appendix A-1.

Selected soil samples were submitted to a subcontracted geotechnical testing laboratory (Materials Testing and Consulting, Inc) to complete index testing consisting of moisture content, grain-size distribution, percent fines content, and organic content. Further description of the soil samples submitted, test methods, and results are presented in Appendix B.

3.2 Stratigraphy

From the roadway surface, we observed a 4-inch-thick layer of hot mix asphalt over a 3-inch-thick layer of concrete. Beneath the roadway, we observed roadway embankment fill overlying non-glacially consolidated Quaternary Alluvium and Vashon Stade Glacial Recessional Deposits. Beneath the non-glacially consolidated deposits, we encountered glacially consolidated Glacial till and Glacial outwash of the Vashon Stade. Figure 3 presents a cross-section with our interpretation of geologic conditions across the existing culvert.

3.2.1 Roadway Embankment Fill

Below pavement, both of our borings, MW-1 and B-2 encountered roadway embankment fill (fill) that extended between 5-feet and 5.5-feet bgs. This fill was moist, very gravelly, silty SAND (SM)\(^1\) or slightly silty SAND (SP-SM) and contained scattered organic

\(^1\) Soil Classification per the Unified Soil Classification System (USCS). Refer to ASTM D2488 (ASTM, 2012).
fragments. Embankment fill was not observed in the shallow hand borings to the east of ELSP.

SPT\(^2\) sampling indicates the fill has medium dense to dense relative density. The fill is expected to exhibit moderate to high shear strength and low compressibility.

3.2.2 Quaternary Alluvium

Quaternary alluvium (alluvium) was encountered below the fill to 21 feet and 25 feet bgs in borings MW-1 and B-2 respectively. Additionally, alluvium was encountered in all the shallow hand borings (HA-1 to HA-5). The alluvium typically consisted of wet, brown and gray, PEAT (PT), SILT (ML), slightly silty SAND (SP-SM), silty SAND (SM), or GRAVEL (GP). Soil units were interbedded with beds between 1 foot and 5 feet thick. The high variability of the soils in the alluvium units is indicative of a low-gradient stream frequently traversing a wetland and floodplain environment.

SPT sampling indicates the alluvium has very loose to medium dense density or soft to medium stiff consistency. The fill is expected to exhibit low shear strength and high compressibility. Under seismic shaking conditions, saturated areas of the alluvium may liquefy.

3.2.3 Glacial Deposits of the Vashon Stade

Recessional Deposits

Vashon Stade glacial recessional deposits were encountered beneath the alluvium to between 35 feet and 36 feet bgs in both borings MW-1 and B-2. Recessional glacial deposits were wet, brown and yellow-brown, SILT (ML), slightly silty SAND (SP-SM), silty SAND (SM), or slightly silty GRAVEL (GP-GM). The variations in soil types within the glacial recessional deposits indicate a variable fluvial and lacustrine environment encounter during glacial recession.

The glacial recessional deposit silt was non-plastic to low plasticity, the sand fraction was fine to coarse, and the gravel fraction was typically fine. SPT sampling indicates the glacial recessional deposits are medium dense to dense. The glacial recessional deposits are expected to exhibit moderate to high shear strength and low compressibility.

Till

Vashon Stade till was encountered beneath recessional deposits from 35 feet to 40 feet in boring MW-1 and from 36 feet to 51.5 feet (end of the boring) in B-2. Till typically consisted of very moist or wet, gray, gravelly, silty SAND (SM) and exhibited a distinctive diamict grain-size distribution and texture.

The till sand fraction was fine to coarse and the gravel fraction was typically fine. SPT sampling indicated the was very dense. The till is expected to exhibit high shear strength and little to no compressibility.

\(^2\) SPT blow count refers to standard penetration test (SPT) N-values, in accordance with ASTM D1586.
Advance Outwash
Vashon Stade advance outwash was encountered beneath till in boring MW-1 from 40 feet to 46.5 feet (end of the boring). Advance outwash consisted of wet, brown, very gravelly, slightly silty SAND (SM).

The advance outwash sand and gravel fractions were fine to coarse. SPT sampling indicated the advance outwash was very dense and is expected to exhibit high shear strength and little to no compressibility.

3.3 Groundwater
We measured groundwater at 7.5 feet bgs in both borings, MW-1 and B-2 during drilling. Groundwater was measured at 1-foot bgs in MW-1 on December 15, 2016 at the completion of the monument. Groundwater levels are expected to vary due to seasonal variations in weather, snowmelt, and the water level of Lake Sammamish.
4 Conclusions and Recommendations

4.1 Pre-Cast Concrete Box Culvert

The new culvert will be placed on the same alignment as the existing metal pipe culvert being replaced. The new culvert will be a four-sided, pre-cast concrete box, with inside dimensions of 12 feet wide by 6 feet tall. The culvert bottom will be covered with imported gravel to simulate a natural streambed. The culvert will be constructed with a six percent slope to approximately match the existing stream gradient, which is approximately 6 percent.

We understand the work would be completed with a complete temporary closure of ELSP. To minimize the roadway closure period, the Project will utilize pre-cast concrete elements to the maximum extent possible.

The current 60 percent plans show the box culvert bottom at approximate Elevation +39 mean sea level (MSL) at the southeast/inlet end, and approximate Elevation +36.5 MSL at the northwest/outlet end.

The recent alluvium encountered in our explorations MW-1 and B-2 revealed interbeds of soft peat extending below proposed culvert bottom. Peat is highly compressible when loaded, and it exhibits significant long-term settlement, or secondary compression, characteristics.

In our boring B-2 on the north side of the culvert, a loose sandy peat interbed was encountered that extended down to approximate Elevation +32 feet MSL. In boring MW-1 on the south side of the culvert, very soft to medium stiff peat with variable sand and gravel content, was encountered extending down to approximate Elevation +28 feet MSL. Below these elevations, the alluvium is granular and mostly free of peat (in B-2) or recessional outwash sand exists, which is also free of peat (in MW-1).

The base of the proposed culvert is anticipated to range from Elevation +36.5 to +39 feet MSL and bottom of peat is anticipated to range from Elevation +28 to +32 feet MSL, with between 4.5 and 9 feet of peat below the culvert.

From a constructability perspective, because the peat is very soft and compressible, it will be necessary, at a minimum, to sub-excavate at least 24 inches of peat from below the culvert and replace that with compacted gravel. To accommodate the sloping base condition, we have recommended a 36-inch-minimum thickness pad of compacted gravel be placed under the culvert.

Utilizing the results of our field and laboratory testing data, we performed three-dimensional settlement analyses to investigate the effects of leaving the peat in place below the 36-inch-thick gravel pad. We utilized the program Settle 3D (Rocscience, 2017) to model and evaluate the presence of the culvert, the gravel bearing pad, the imported streambed gravel, imported granular backfill against the culvert walls, and granular fill and pavement over the top of the culvert. These analyses considered the rigidity of the four-sided box culvert, with interlocking joints.

At the roadway centerline along the culvert, the current total stress at a depth of 36 inches below the planed box culvert (approximate Elevation +35 feet MSL, or nominally 15 feet
below the roadway), is estimated at about 1,800 pounds per square foot. With the proposed box culvert in place, assuming 12-inch-thick concrete walls, lid, and bottom, and with 24 inches of streambed gravel inside the box, the total stress at the base of the 36-inch-thick gravel pad is estimated at about 1,600 pounds per square foot. This implies a slight reduction in total weight over the subgrade soil. However, when considering the temporary excavation along the sides of the culvert, which includes removal of organic rich alluvium and replacement with imported sand and gravel backfill, there will be a slight overall increase in total stress in the subgrade soils below the culvert.

We utilized Settle3D to analyze and approximate post-construction settlements at 12 and 24 months after construction. We assigned compressibility parameters to the peat-rich alluvium using empirical correlations to our laboratory index test results. The model considered elastic re-compression once the structure and backfill are in place, and consolidation settlement that will be induced once the structure is in place and the roadway put back into service.

The analyses predicted total settlements under the rigid box culvert of about 3 to 4 inches after 12 months, and 5 to 6 inches after 24 months, with no appreciable consolidation settlement thereafter. The rigidity of the four-sided box culvert, combined with relatively uniform subsurface conditions, are such that settlements should be relatively uniform across its width and length. However, moving away from the box culvert in the direction parallel to the roadway, the analyses predict settlement will taper over about 14 feet (the culvert width), with no appreciable settlement beyond these points.

Therefore, our model predicts a “bump in the road” could develop, with an up to 6-inch fall over 14 feet, a relatively level surface across the 14-foot wide culvert, and a 6-inch rise over 14 feet back to existing roadway grade on the other side.

For the culvert, from structural and stream flow capacity perspectives, we believe these predicted settlements will be tolerable. However, from a roadway serviceability perspective, this potential “bump in the road” might be unacceptable. Also, existing or future buried utilities that cross over the buried culvert may have serviceability issues with this magnitude and shape of settlement.

The settlement trough could be repaired with a pavement overlay, where additional asphalt is placed to re-establish a smooth roadway grade. However, the weight of additional asphalt will trigger additional consolidation settlement. Our calculations predict that if a 6-inch overlay were placed over the culvert 24 months (or later) after the culvert construction was completed, additional settlement of 1 to 2 inches could occur over the next 24 months.

If it is desired to avoid the predicted settlement trough, then additional sub-excavation of the alluvial peat from below the box culvert could be completed. This would involve removal of existing alluvium down to target Elevation +28 feet MSL, and replacement with crushed rock back up to culvert bottom elevation. The 5½ to 8-foot deeper sub-excavation will increase the size of the temporary sloped excavation, and will lengthen the project duration, but would also essentially eliminate future roadway serviceability issues and pavement overlay requirements at this crossing location.
It would be possible to complete the sub-excavation of the peat in the wet using a long-reach excavator, and to replace it in the wet with clean crushed quarry rock, which would be tamped into place with an excavator bucket. Sounding in the wet with a weighted tape or a long-handled steel soil probe would be done to confirm the peat is adequately removed and granular materials are exposed at the target subgrade Elevation +28 feet MSL. Quarry spalls, as specified in Section 9-13.1(5) of the WSDOT Standard Specifications, would be appropriate for backfilling in the wet. The quarry spalls would be capped with crushed surfacing base course, as specified in Section 9-03.9(3) of the WSDOT Standard Specifications. The CSBC would need to be placed and compacted in the dry, and thus the excavation would need to be dewatered to below the culvert bottom. The compacted CSBC, which would be placed in the dry, would be graded to match the required sloping culvert and stream profile.

If a complete peat sub-excavation and replacement with quarry spalls and crushed surfacing were completed in the manner described above, total and differential post-construction settlements are expected to be less than one inch.

Aspect will work with OTAK to estimate construction costs and schedule impacts for the sub-excavation and quarry spall replacement versus a future pavement overlay.

4.2 Culvert Wing Walls

The 60 percent plans call for pre-cast concrete cantilever wing walls extending parallel to the roadway fog lines. The lengths of the wingwalls will vary from 9 to 25 feet, and retained heights will vary from about 7 or 8 feet where they tie in to the culvert, to about 4½ feet at the opposite ends. The walls will be contractor-furnished and designed.

Our settlement analyses indicate that constructing pre-cast concrete cantilever walls over the existing peat-rich alluvium will result in differential settlement along the length of the walls. This could appear as outward wall rotation/movement, or differential in-plane rotation/movement, either of which will tend to cause gaps to form between segments. The magnitude of total and differential settlement would be in the range of 3 to 4 inches, and settlements will be highly differential given the variation in exposed heights of the walls and steps in foundation elevation moving away from the culvert.

If the City chooses to undertake complete sub-excavation and replacement of peat from below the box culvert, then much of the peat will have been removed from the taller portions of the wingwalls where they tie in to the culvert, and this will largely mitigate the potential for differential settlement at these locations. Further away from the culvert, we consider it impractical to sub-excavate and replace the peat under the wingwalls.

In our opinion, to avoid aesthetic issues with differential wall movement, we recommend the wingwall panels be structurally connected (to the culvert and individual segments to one-another) using epoxy-doweled anchors and structural steel clips. In addition, a 24-inch-thick leveling pad of compacted crushed surfacing base course should be placed under each pre-cast concrete wingwall footing. The CSBC pad should extend the full width of the footing under all of the wingwalls.

4.3 Temporary Excavations and Construction Dewatering

It is understood that a bypass of Zackuse Creek will be installed during construction. The bypass will collect and divert creek water in a temporary force main to a discharge
location downstream from the project. Our piezometer reading taken in December 2016 encountered groundwater about 1 foot below the roadway pavement. We expect groundwater at the Project area will be highly influenced by creek flow and the time of year. Stream diversion will likely bring down the water level appreciably; however, construction dewatering will still be necessary to complete this culvert replacement project.

It is understood that a full roadway closure is planned for the Project. Given this, and given the absence of any private infrastructure in proximity to the culvert location, we anticipate temporary sloped excavations will be most economical for the Project.

The existing fill and alluvium classifies as Type C Soil per Washington Administrative Code (WAC) 296-155 Part N. Temporary cuts in Type C Soil not greater than 20 feet deep, should be inclined no steeper than 1½H:1V (horizontal:vertical). Flatter slopes are required where groundwater seepage exists, if traffic or construction surcharges are present, or where less stable soils are present. It is the Contractor’s responsibility to design and construct the temporary excavation and complete the work safely and in accordance with state safety regulations.

If the Project is designed with a complete removal and replacement of the peat soil down to Elevation +28 feet MSL, and with the existing roadway at approximate Elevation 50 feet MSL then it will be prudent to execute a benched cut from the roadway pavement elevation down to Elevation 48 feet or lower, before the 1½H:1V sloped excavation is begun.

Ideally construction would be completed during the late summer or early fall months, when groundwater levels are typically at seasonally lowest levels. Aspect is not currently aware of any fish or shoreline permit construction window limitations that may further constrain the construction schedule.

For this Project, construction dewatering can be accomplished with the aid of a wellpoint eductor system. This consists of a series of small diameter slotted steel pipes that are driven or jetted into the ground along both sides of the temporary excavation, on a horizontal spacing of typically about six feet. For this project, and assuming a temporary sloped excavation, the wellpoints would be located near the crest of each of the 1½H:1V temporary cut slopes. At the surface, the well points are connected to a surface-mounted header system which is in turn attached to a large pump which applies a vacuum to the wellpoints. The practical maximum depth of drawdown with a wellpoint eductor system is typically about 20 feet.
4.4 Structural Fill

The existing Project area soils have a high percentage of organics and silt/clay and therefore they will be unsuitable for re-use as structural fills.

A variety of imported structural fills will be required/recommended for this project. Recommendations for these various materials are provided here:

- Quarry rock placed below “in the wet” or groundwater, under the box culvert should conform to the gradation requirements of Section 9-13.1(5) of the WSDOT Standard Specifications.

- Gravel pad material, that will be placed under pre-cast concrete wingwall segments, and directly under the four-sided box culvert, should consist of Crushed Surfacing Base Course, as specified in Section 9-03.9(3) of the WSDOT Standard Specifications. Crushed surfacing is also appropriate for use as base course under the restored pavement section.

- For wall backfill placed against the culvert walls or the pre-cast concrete wing wall segments, we recommend Gravel Backfill for Walls, as specified in Section 9-03.12(2) of the WSDOT Standard Specifications.

- Streambed gravel will be determined by OTAK; but Streambed Sediment is described in Section 9-03.11(1) of the WSDOT Standard Specifications. This material is not considered structural fill.

All structural fills placed as wall backfill or as a foundation/leveling pad should be placed in horizontal lifts and compacted to a dense and unyielding condition.

4.5 Stream Re-Alignment Considerations

The Project includes re-alignment of Zackuse Creek toward the north with a more favorable approach to the culvert. Our hand auger explorations encountered recent alluvium consisting mostly of silty sand and silty gravel, with occasional peat interbeds.

We recommend the new stream channels be constructed with 3H:1V permanent sideslopes. To reduce scour and erosion issues with the fine-grained alluvium, the constructed stream bottom should be armored/protected with imported gravel such as streambed sediment. The 60 percent plans have incorporated these recommendations.

We understand the stream profile will include several boulder-lined drops (boulder steps) which will facilitate grade changes and allow for flatter, more habitable, stream segments. We have no comments on this from a geotechnical engineering perspective.

4.6 Continuing Engineering Support

We have prepared this draft report to formalize our conclusions and recommendations to date and to accompany the 60 percent plan set. Aspect will collaborate with the design team and City of Sammamish to refine and finalize any outstanding geotechnical engineering issues related to the design. We will also provide PS&E support as the project moves toward 100 percent design completion.

We request any review comments or requests on this draft report, which will be addressed in our future final geotechnical engineering report.
References

Washington State Department of Transportation (WSDOT), 2016, Standard Specifications for Road, Bridge and Municipal Construction, Document M 41-10.
Limitations

Work for this Project was performed for OTAK Inc and the City of Sammamish (Client), and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed.

All reports prepared by Aspect Consulting are intended solely for the Client and apply only to the services described in the Agreement with Client. Any use or reuse by Client for purposes outside of the scope of Client’s Agreement is at the sole risk of Client and without liability to Aspect Consulting. Aspect Consulting shall not be liable for any third parties’ use of the deliverables provided by Aspect Consulting. Aspect Consulting’s original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

This report and our conclusions and interpretations should not be construed as a warranty of the subsurface conditions. Experience has shown that subsurface soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between explorations and may not be detected by a geotechnical study. Further geotechnical evaluations, analyses and recommendations may be necessary for the final design of this Project.

If there is a substantial lapse of time between the submission of this report and the start of construction, or if conditions have changed due to construction operations at or near the Site, it is recommended that this report be reviewed to determine the applicability of the conclusions and recommendations considering the changed conditions and time lapse.
Figures
Project Area and Exploration Map
Zackuse Creek Fish Passage Project
City of Sammamish
East Lake Sammamish Pkwy NE, Sammamish, WA

Elevation contours from January 27, 2011 version of the Puget Sound Supermosaic. Harvey Greenberg.
APPENDIX A

Subsurface Explorations
A.1 Field Exploration Program

A.1.1 Geotechnical Borings

Between December 8 and December 13, 2016, we performed a site reconnaissance, completed two machine drilled geotechnical soil borings, and completed five shallow borings with hand tools.

The machine drilled borings were advanced using a truck-mounted Mobile Drill B-59 rotary drill rig using 6-inch outer diameter mud-rotary methods. The borings were sampled at selected depth intervals using the Standard Penetration Test (SPT) in general accordance with ASTM method D158. The locations of the borings are shown on Figure 2 of the report.

SPT sampling involves driving a 2-inch outside diameter split-barrel sampler 18-inches into the soil with a 140-pound hammer free-falling from 30-inches (the drill rig employed on this project used an automatic-trip hammer). The number of blows for each 6-inch interval is recorded and the number of blows required to drive the sampler the final 12 inches is known as the Standard Penetration Resistance (“N”) or blow count. The resistance, or N-value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils.

The shallow borings with hand tools were advanced using a 2.5-inch outer diameter hand auger. The hand auger was advanced at 6-inch intervals and a continuous, disturbed sample of the subsurface is obtained. Grab samples are taken at intervals determined by the Aspect field representative. Relative density is tested at selected depths by using a Dynamic Cone Penetrometer (DCP). The DCP test involves driving a 1.5-inch diameter steel-tipped cone 1.75-inches using a 15-pound anvil with a 20-inch drop. The number of blows for each 1.75-inch interval is recorded. The number of blows is correlated to resistance and provides a means of estimating soil density.

An Aspect Consulting geologist was present throughout the field exploration program to observe the drilling procedure, assist in sampling, and to prepare descriptive logs of the exploration. Soils were classified in general accordance with ASTM D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The summary exploration log represents our interpretation of the contents of the field logs. The stratigraphic contacts shown on the individual summary logs represent the approximate boundaries between soil types; actual transitions may be more gradual. The subsurface conditions depicted are only for the specific date and locations reported, and therefore, are not necessarily representative of other locations and times.
Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Terms Describing Relative Density and Consistency

<table>
<thead>
<tr>
<th>Density</th>
<th>SPT (b) blows/foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0 to 4</td>
</tr>
<tr>
<td>Loose</td>
<td>4 to 10</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10 to 30</td>
</tr>
<tr>
<td>Dense</td>
<td>30 to 50</td>
</tr>
<tr>
<td>Very Dense</td>
<td>> 50</td>
</tr>
<tr>
<td>Consistency</td>
<td>SPT (b) blows/foot</td>
</tr>
<tr>
<td>Very Soft</td>
<td>0 to 2</td>
</tr>
<tr>
<td>Soft</td>
<td>2 to 4</td>
</tr>
<tr>
<td>Medium Stiff</td>
<td>4 to 8</td>
</tr>
<tr>
<td>Stiff</td>
<td>8 to 15</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>15 to 30</td>
</tr>
<tr>
<td>Hard</td>
<td>> 30</td>
</tr>
</tbody>
</table>

Test Symbols

- FC = Fines Content
- G = Grain Size
- M = Moisture Content
- A = Atterberg Limits
- C = Consolidation
- D = Dry Density
- K = Permeability
- S = Shear Strength
- Env = Environmental
- P = P/D = Photoionization Detector

Composition Definitions

<table>
<thead>
<tr>
<th>Size Range and Sieve Number</th>
<th>Descriptive Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger than 12"</td>
<td>Boulders</td>
</tr>
<tr>
<td>3" to 12"</td>
<td>Cobble</td>
</tr>
<tr>
<td>3" to 4"</td>
<td>Gravel</td>
</tr>
<tr>
<td>3/4" to 4"</td>
<td>Coarse Gravel</td>
</tr>
<tr>
<td>3/4" to 3/16"</td>
<td>Fine Gravel</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) to No. 200 (0.075 mm)</td>
<td>Sand</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) to No. 10 (2.00 mm)</td>
<td>Coarse Sand</td>
</tr>
<tr>
<td>No. 10 (2.00 mm) to No. 40 (0.425 mm)</td>
<td>Medium Sand</td>
</tr>
<tr>
<td>No. 40 (0.425 mm) to No. 200 (0.075 mm)</td>
<td>Fine Sand</td>
</tr>
<tr>
<td>Smaller than No. 200 (0.075 mm)</td>
<td>Silt and Clay</td>
</tr>
</tbody>
</table>

Estimated Percentage

<table>
<thead>
<tr>
<th>Modifier</th>
<th>by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>< 5</td>
</tr>
<tr>
<td>Slightly (sandy, silty, clayey, gravelly)</td>
<td>5 to 15</td>
</tr>
<tr>
<td>Sandy, silty, clayey, gravelly</td>
<td>15 to 30</td>
</tr>
<tr>
<td>Very (sandy, silty, clayey, gravelly)</td>
<td>30 to 49</td>
</tr>
</tbody>
</table>

Moisture Content

- Dry - Absence of moisture, dusty, dry, to touch
- Slightly Moist - Perceptible moisture
- Moist - Damp but no visible water
- Very Moist - Water visible but not free draining
- Wet - Visible free water, usually from below water table

Symbols

- Cement grout surface seal
- Bentonite chips
- Filter pack with blank casing section
- Grout seal
- Screeded casing or Hydrotip with filter pack
- End cap
- Grouted Transducer
- 2.0 OD Thin-Wall Tube Sampler (including Shelby tube)
Zackuse Creek Fish Passage - 160277

Project Address & Site Specific Location
East Lake Sammamish Parkway, Sammamish, Washington, Center of northbound travel lane.

Geotechnical Exploration Log

<table>
<thead>
<tr>
<th>Exploration Number</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates (SPN NAD83 ft)</td>
<td>E:225301.9 N:1335520 (est)</td>
</tr>
<tr>
<td>Top of Casing Elev. (NAVD88)</td>
<td>50' (est)</td>
</tr>
<tr>
<td>Depth to Water (Below GS)</td>
<td>7.5' (ATD)</td>
</tr>
</tbody>
</table>

Contractor
Holt Services

Equipment
Truck-mounted Mobile Drilling B-59

Sampling Method
Autohammer; 140 lb hammer; 30” drop

Operator
Kevin Bacon

Exploration Method(s)
6-inch OD Mud rotary

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Exploration Completion and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-inches Hot Mix Asphalt</td>
</tr>
<tr>
<td>2</td>
<td>3.5-inches Concrete</td>
</tr>
<tr>
<td>3</td>
<td>Dense, moist, gray, very gravelly, silty SAND (SM); fine to coarse sand, fine and coarse subrounded to angular gravel.</td>
</tr>
<tr>
<td>4</td>
<td>ARTIFICIAL FILL</td>
</tr>
<tr>
<td>5</td>
<td>QUATERNARY ALLUVIUM</td>
</tr>
<tr>
<td>6</td>
<td>Soft, moist, dark brown, gravelly, fine-grained PEAT (PT); trace fine sand, fine and coarse rounded gravel.</td>
</tr>
<tr>
<td>7</td>
<td>Medium stiff, wet, gray, SILT (ML); low-plasticity, fine to coarse sand, very thinly bedded silty sand.</td>
</tr>
<tr>
<td>8</td>
<td>Medium stiff, wet, brown and gray, sandy, fine-grained PEAT (PT) interbedded with SILT (ML); non-plastic, fine to coarse sand.</td>
</tr>
<tr>
<td>9</td>
<td>Medium dense, wet, gray, sandy GRAVEL (GP); trace silt, fine to coarse sand, fine subangular to angular gravel.</td>
</tr>
<tr>
<td>10</td>
<td>Loose, wet, brown and gray, gravelly, slightly silty SAND (SP-SM) interbedded with medium stiff, brown, fine-grained PEAT (PT); fine to coarse sand, fine subangular to angular gravel.</td>
</tr>
<tr>
<td>11</td>
<td>Medium dense, wet, gray, sandy GRAVEL (GP); fine to coarse sand, subrounded to rounded fine and coarse gravel.</td>
</tr>
<tr>
<td>12</td>
<td>Medium dense, wet, gray, sandy GRAVEL (GP); fine to coarse sand, interbedded with rare laminations of PEAT (PT); fine to coarse sand.</td>
</tr>
</tbody>
</table>

Ground Surface (GS) Elev. (NAVD88)

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Water Level (ATD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.5' (ATD)</td>
</tr>
</tbody>
</table>

Exploration Log B-2

Logged by: JGF
Approved by: EOA - 9/12/2017

See Exploration Log Key for explanation of symbols.
VASHON STADE RECESSIONAL OUTWASH
Dense, wet, gray and yellow-brown, slightly gravelly, silty SAND (SM); fine to coarse sand, fine subrounded to subangular gravel.

Dense, wet, gray and yellow-brown, sandy, slightly silty GRAVEL (GP-GM); fine to coarse sand, fine and coarse rounded gravel.

Dense, wet, brown and orange-brown, slightly silty SAND (SP-SM); fine to coarse sand.

Dense, wet, brown, sandy, silty GRAVEL (GM); fine sand, fine and coarse rounded gravel.

VASHON STADE TILL
Very dense, wet, gray, gravelly, silty SAND (SM); fine to medium sand, fine subrounded to subangular gravel, diamict texture.
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Material Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Very dense, wet, gray, silty SAND (SM); fine to medium sand, trace organics, iron-oxide staining.</td>
<td>Very dense, wet, gray, silty SAND (SM); fine to medium sand, trace organics, iron-oxide staining. Bottom of exploration at 51.5 ft. bgs.</td>
</tr>
<tr>
<td>52</td>
<td>Very dense, wet, gray, gravelly, slightly silty SAND (SP-SM); fine to coarse sand, fine subangular gravel.</td>
<td>Very dense, wet, gray, gravelly, slightly silty SAND (SP-SM); fine to coarse sand, fine subangular gravel. Bottom of exploration at 51.5 ft. bgs.</td>
</tr>
</tbody>
</table>

Exploration Log Key for explanation of symbols

- **Legend**
 - **No Soil Sample Recovery**
 - **Split Barrel 2" X 1.375" (SPT)**
 - **Water Level ATD**

Contractor
- Holt Services

Equipment
- Truck-mounted Mobile Drilling B-59

Sampling Method
- Autohammer; 140 lb hammer; 30" drop

Exploration Method(s)
- Autohammer; 140 lb hammer; 30" drop

Truck-mounted Mobile Drilling B-59

Operator
- Kevin Bacon

Sampling Method
- 6-inch OD Mud rotary

Work Start/Completion Dates
- 12/9/2016

Exploration Completion and Notes

Coordinates (SPN NAD83 ft)
- E:225301.9 N:1335520 (est)

Ground Surface (GS) Elev. (NAVD88)
- 50' (est)

Top of Casing Elev. (NAVD88)
- NA

Depth to Water (Below GS)
- 7.5' (ATD)

Sample Method
- Split Barrel 2" X 1.375" (SPT)

Water Level ATD

Logged by: JGF

Approved by: EOA - 9/12/2017
Exploration Log

HA-1

Geotechnical Exploration Log

Coordinates (SPN NAD83 ft)
E:225028.8 N:1335940 (est)

Exploration Number
76(est)

Ground Surface (GS) Elev. (NAVD88)
3.1' (ATD)

Top of Casing Elev. (NAVD88)
NA

Depth to Water (Below GS)
3.1’ (ATD)

Zackuse Creek Fish Passage - 160277

Project Address & Site Specific Location
East Lake Sammamish Parkway, Sammamish, Washington, -

Contractor
Aspect Consulting

Equipment
2.5-inch OD Hand Auger

Sampling Method
Grab / DCPT

Operator
JGF

Exploration Method(s)
Grab / DCPT

Work Start/Completion Dates
12/13/2016

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elev. (feet)</th>
<th>Exploration Completion and Notes</th>
<th>Sample Type/ID</th>
<th>Blows/foot</th>
<th>Water Content (%)</th>
<th>Blows/6"</th>
<th>Tests</th>
<th>Material Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | 75 | Boring backfilled with excavated soil. | HA-1 | 85 | - | - | T-probe= 14" | QUATERNARY ALLUVIUM
| 2 | 74 | - | - | DCPT= 2.3,3 | Loose, moist, dark brown, slightly gravelly, very silty SAND (SM); fine to medium sand, fine subrounded to subangular gravel, scattered organic content.
| 3 | 73 | 12/13/2016 | - | DCPT= 5.6 | Loose, moist, brown, sandy, silty GRAVEL (GM); fine to coarse sand, fine and coarse rounded to subangular gravel.
| 4 | 72 | - | - | - | Very loose, slightly moist, light brown, gravelly, silty SAND (SM); fine to medium sand, fine and coarse rounded to subangular gravel.
| 5 | 71 | - | - | - | Bottom of exploration at 4.8 ft. bgs.

Note: Refusal due to coarse gravel.
Zackuse Creek Fish Passage - 160277

Geotechnical Exploration Log

East Lake Sammamish Parkway, Sammamish, Washington, -

Coordinates (SPN NAD83 ft) E:224965.2 N:1335860 (est)

HA-2

Exploration Number

Quaternary Alluvium
Loose, very moist, dark brown, sandy, silty gravel (GM); fine to coarse sand, fine and coarse rounded to subangular gravel.

Loose, wet, dark brown, sandy, No recovery

Bottom of exploration at 3.8 ft. bgs.

Note: Hole collapsing from 1’ bgs; refusal because of collapsing walls.

Exploration Completion and Notes

12/13/2016

Boring backfilled with excavated soil.

1 66

2 65

3 64

4 63

5 62

6 61

7 60

8 59

9 58

10 57

11 56

12 55

13 54

14 53

15 52

16 51

17 50

18 49

19 48

20 47

21 46

22 45

23 44

24 43

Water Level ATD

Plastic Limit

Liquid Limit

See Exploration Log Key for explanation of symbols

Logged by: JGF

Approved by: EOA - 9/12/2017

Exploration Log

Sheet 1 of 1
Geotechnical Exploration Log

Zackuse Creek Fish Passage - 160277

Contractor: Aspect Consulting
Equipment: 2.5-inch OD Hand Auger
Sampling Method: Grab / DCPT
Operator: JGF
Work Start/Completion Dates: 12/13/2016

Exploration Log

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very loose, moist, dark brown, sandy, slightly silty GRAVEL (GP-GM); fine to coarse sand, fine and coarse rounded to subangular gravel.</td>
</tr>
<tr>
<td>2</td>
<td>Very loose, wet, brown, gravelly, silty SAND (SM); fine to coarse sand, fine rounded to subrounded gravel.</td>
</tr>
<tr>
<td>3</td>
<td>Soft, wet, dark brown, fine-grained PEAT (PT).</td>
</tr>
<tr>
<td>4</td>
<td>Loose, wet, brown, gravelly, silty SAND (SM); fine to coarse sand, fine and coarse rounded to subangular gravel.</td>
</tr>
</tbody>
</table>

Bottom of exploration at 4 ft. bgs.

Note: Refusal because of collapsing walls at 3.2' bgs.

Exploration Log Details

- **Depth to Water (Below GS):** 2.8' (ATD)
- **Water Level ATD:** 2.8' (ATD)
- **Exploration Number:** HA-3
- **Exploration Completion and Notes:** Boring backfilled with excavated soil.

Exploration Log Table

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Material Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T-probe= 12"</td>
<td>Very loose, moist, dark brown, sandy, slightly silty GRAVEL (GP-GM); fine to coarse sand, fine and coarse rounded to subangular gravel.</td>
</tr>
<tr>
<td>2</td>
<td>T-probe= 8"</td>
<td>Very loose, wet, brown, gravelly, silty SAND (SM); fine to coarse sand, fine rounded to subrounded gravel.</td>
</tr>
<tr>
<td>3</td>
<td>DCPT= 13,18,15</td>
<td>Soft, wet, dark brown, fine-grained PEAT (PT).</td>
</tr>
<tr>
<td>4</td>
<td>DCPT= 3,1,1</td>
<td>Loose, wet, brown, gravelly, silty SAND (SM); fine to coarse sand, fine and coarse rounded to subangular gravel.</td>
</tr>
</tbody>
</table>

Log Sheet Details

- **Exploration Log Key:** For explanation of symbols
- **Logged by:** JGF
- **Approved by:** EOA - 9/12/2017
Geotechnical Exploration Log

Zackuse Creek Fish Passage - 160277

Project Address & Site Specific Location
East Lake Sammamish Parkway, Sammamish, Washington, -

Contractor
Aspect Consulting

Equipment
2.5-inch OD Hand Auger

Sampling Method
Grab / DCPT

Operator
JGF

Exploration Method(s)
Hand tools

Work Start/Completion Dates
12/13/2016

Top of Casing Elev. (NAVD88)
NA

Depth to Water (Below GS)
0.5' (ATD)

Exploration Completion and Notes

Depth (feet)	**Elev. (feet)**	**Exploration Completion and Notes**	**Sample Type/ID**	**Blows/foot Water Content (%)**	**Blows/6" Tests**	**Material Type**	**Description**	**Depth (ft)**
1 | 57 | 12/13/2016 Boring backfilled with excavated soil. | | | | | | 1
2 | 56 | | | | | | | 2
3 | 55 | | | | | | | 3
4 | 54 | | | | | | | 4
5 | 53 | | | | | | | 5
6 | 52 | | | | | | | 6
7 | 51 | | | | | | | 7
8 | 50 | | | | | | | 8
9 | 49 | | | | | | | 9
10 | 48 | | | | | | | 10
11 | 47 | | | | | | | 11
12 | 46 | | | | | | | 12
13 | 45 | | | | | | | 13
14 | 44 | | | | | | | 14
15 | 43 | | | | | | | 15
16 | 42 | | | | | | | 16
17 | 41 | | | | | | | 17
18 | 40 | | | | | | | 18
19 | 39 | | | | | | | 19
20 | 38 | | | | | | | 20
21 | 37 | | | | | | | 21
22 | 36 | | | | | | | 22
23 | 35 | | | | | | | 23
24 | 34 | | | | | | | 24

Legend

Sample Method	Water Level	Water Level ATD	Plastic Limit	Liquid Limit

See Exploration Log Key for explanation of symbols

Logged by: JGF
Approved by: EOA - 9/12/2017

Exploration Log HA-4

Sheet 1 of 1
Geotechnical Exploration Log

Explorer

Project Address & Site Specific Location
East Lake Sammamish Parkway, Sammamish, Washington,

Coordinates (SPN NAD83 ft)
E:225146.4 N:1335590 (est)

Exploration Number
HA-5

Exploration Logs

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Material Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TOPSOIL</td>
<td>Very soft, wet, dark brown, slightly gravelly, sandy organic SILT (OL); low-plasticity, fine sand, fine and coarse subangular gravel.</td>
</tr>
<tr>
<td>2</td>
<td>QUATERNARY ALLUVIUM</td>
<td>Loose, wet, gray, very sandy, slightly silty GRAVEL (GP-GM); fine to coarse sand, fine and coarse subrounded to subangular gravel.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Stiff, wet, dark brown, slightly gravelly, fine-grained PEAT (PT); low-plasticity, trace fine to medium sand, fine and coarse subrounded to subangular gravel. Bottom of exploration at 3.8 ft. bgs. Note: Refusal because of collapsing walls at 2' bgs.</td>
</tr>
<tr>
<td>1.5' (ATD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Method

<table>
<thead>
<tr>
<th>Sample Type/ID</th>
<th>Water Content (%)</th>
<th>Blows/foot</th>
<th>Water Level ATD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment

<table>
<thead>
<tr>
<th>Contractor</th>
<th>2.5-inch OD Hand Auger</th>
</tr>
</thead>
</table>

Operator

JGF

<table>
<thead>
<tr>
<th>Work Start/Completion Dates</th>
<th>12/13/2016</th>
</tr>
</thead>
</table>

Notes

See Exploration Log Key for explanation of symbols.
Geotechnical Exploration Log

Zackuse Creek Fish Passage - 160277

Project Address & Site Specific Location
East Lake Sammamish Parkway, Sammamish, Washington, Fogline of southbound travel lane.

Exploration Number
MW-1

Ground Surface (GS) Elev. (NAVD88)
E:225276.7 N:1335480 (est)

Coordinates (SPN NAD83 ft)
49'(est)

Ecology Well Tag No.
BKY-345

Top of Casing Elev. (NAVD88)
NA

Depth to Water (Below GS)
1' (Static)

ARTIFICIAL FILL

- 5-inches Hot Mix Asphalt
- 4-inches Concrete

Medium dense, moist, brown, gravelly, slightly silty SAND (SP-SM); fine to coarse sand, fine and coarse subrounded to angular gravel.

QUATERNARY ALLUVIUM

- Medium dense, moist, dark brown, silty SAND (SM); fine to coarse sand, fine and coarse subrounded to angular gravel, numerous organic fragments.

- Soft, moist, dark brown, fine-grained PEAT (PT); trace fine to medium sand, trace fine subangular gravel.

- Soft, wet, gray and brown banded, very sandy SILT (ML) interbedded with fibrous PEAT (PT) and silty SAND (SM); non-plastic, fine to medium sand, frequent thin interbeds.

- Loose, wet, gray, silty SAND (SM); fine sand, scattered PEAT (PT) interbeds.

- Very loose, wet, gray, sandy SILT (ML); non-plastic, fine sand.

- Very soft, wet, dark brown, fibrous PEAT (PT).

- Becomes slightly sandy and thinly laminated.

- Medium stiff, wet, dark brown, slightly sandy, fine-grained PEAT (PT) interbedded with fibrous PEAT (PT); fine sand, trace fine subrounded gravel, 15% fibrous peat.

- Becomes gravelly.

VASHON STADE RECESSIONAL OUTWASH

Medium dense, wet, brown, slightly gravelly, silty SAND (SM) interbedded with dark gray SILT (ML); non-plastic, fine to coarse sand, fine subangular gravel.

Exploration Log

Log
MW-1

Sheet
1 of 2

Table: Exploration Completion and Notes

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Material Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ground Surface (GS) Elev. (NAVD88)</td>
<td>E:225276.7 N:1335480 (est)</td>
</tr>
</tbody>
</table>

Water Level

- ATD Logged by: JGF
- Approved by: EOA - 9/12/2017

Sample Method

- 6-inch OD Mud rotary

Exploration Completion and Notes

- 12/8/2016

Backfilled with 3/8" bentonite chips 1.5 - 8' bgs

ARTIFICIAL FILL

- 5-inches Hot Mix Asphalt
- 4-inches Concrete

Medium dense, moist, brown, gravelly, slightly silty SAND (SP-SM); fine to coarse sand, fine and coarse subrounded to angular gravel.

QUATERNARY ALLUVIUM

- Medium dense, moist, dark brown, silty SAND (SM); fine to coarse sand, fine and coarse subrounded to angular gravel, numerous organic fragments.

- Soft, moist, dark brown, fine-grained PEAT (PT); trace fine to medium sand, trace fine subangular gravel.

- Soft, wet, gray and brown banded, very sandy SILT (ML) interbedded with fibrous PEAT (PT) and silty SAND (SM); non-plastic, fine to medium sand, frequent thin interbeds.

- Loose, wet, gray, silty SAND (SM); fine sand, scattered PEAT (PT) interbeds.

- Very loose, wet, gray, sandy SILT (ML); non-plastic, fine sand.

- Very soft, wet, dark brown, fibrous PEAT (PT).

- Becomes slightly sandy and thinly laminated.

- Medium stiff, wet, dark brown, slightly sandy, fine-grained PEAT (PT) interbedded with fibrous PEAT (PT); fine sand, trace fine subrounded gravel, 15% fibrous peat.

- Becomes gravelly.

VASHON STADE RECESSIONAL OUTWASH

Medium dense, wet, brown, slightly gravelly, silty SAND (SM) interbedded with dark gray SILT (ML); non-plastic, fine to coarse sand, fine subangular gravel.
Geotechnical Exploration Log

Exploration Number: MW-1
Ecology Well Tag No.: BKY-345
Exploration Completion and Notes
Coordinates (SPN NAD83 ft) E:225276.7 N:1335480 (est)
Ground Surface (GS) Elev. (NAVD88) 49'(est)
Top of Casing Elev. (NAVD88) NA
Depth to Water (Below GS) 1' (Static)
Work Start/Completion Dates: 12/8/2016
Equipment: Truck-mounted Mobile Drilling B-59
Sampling Method: Autohammer; 140 lb hammer; 30" drop
Exploration Method(s): 6-inch OD Mud rotary
Operator: Kevin Bacon
Project Address & Site Specific Location: East Lake Sammamish Parkway, Sammamish, Washington, Fogline of southbound travel lane.

Exploration Log

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Material Type</th>
<th>Type/IDElev. (feet)</th>
<th>Blows/foot</th>
<th>Water Content (%)</th>
<th>Tests</th>
<th>Plastic Limit</th>
<th>Liquid Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>VASHON STADE TILL</td>
<td>S10</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>S11</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>VASHON STADE ADVANCE OUTWASH</td>
<td>S11</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>S11</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>S12</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>S13</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Depth to Water (Below GS)

- **1' (Static)**

Static Water Level

- **1' (Static)**

<table>
<thead>
<tr>
<th>Water Level</th>
<th>Blows/6"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>13</td>
</tr>
<tr>
<td>Water Level ATD</td>
<td>24</td>
</tr>
</tbody>
</table>

No Soil Sample Recovery

- **No Soil Sample Recovery**

Water Level

- **Water Level**
- **Water Level ATD**

Exploration Log Key for explanation of symbols

- **No Soil Sample Recovery**
- **Split Barrel 2" X 1.375" (SPT)**
- **Autohammer; 140 lb hammer; 30" drop**

Coordinates (SPN NAD83 ft)

- **E:225276.7 N:1335480 (est)**

Exploration Completion and Notes

- **Log: MW-1**
- **Sheet 2 of 2**
- **Logged by: JGF**
- **Approved by: EOA - 9/12/2017**

Stiff, wet, brown to yellow-brown, slightly sandy SILT (ML); low-plasticity, fine sand.

Gravelly drilling. No recovery

Bottom of exploration at 46.5 ft. bgs.
APPENDIX B

Geotechnical Laboratory Test Results
B.1 Geotechnical Laboratory Testing

Geotechnical laboratory tests were conducted on selected soil and rock samples collected during the field exploration program. Eight samples were dispatched to Materials Testing and Consulting, Inc. for determination of moisture content, grain size distribution, percent material passing a 200# sieve (fines content), or organic content:

- Moisture content was determined by ASTM D2216, *Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass*.

- Percent material passing a 200# sieve (fines content) was conducted in accordance with C117 *Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing*.

- Organic content was conducted in accordance with ASTM D2974 *Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils*.

The results of the tests are provided in the attached data sheets.
1. Eleven samples were submitted for analysis.
2. Three samples were submitted for Percent Finer Than the No. 200 sieve according to ASTM C117.
3. Three samples were submitted for loss on ignition determination according to ASTM D2974. Per client request, gravel was separated prior to analysis.
4. Five samples were submitted for grain size determination according to ASTM C136 and C117.
5. The samples are reported in summary tables and plots.
6. There were no other noted anomalies in this project.
Amount of Materials Finer Than #200 Sieve - ASTM C117

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Tare</th>
<th>Before Wash + Tare</th>
<th>After Wash + Tare</th>
<th>Amount of Loss</th>
<th>% -#200</th>
</tr>
</thead>
<tbody>
<tr>
<td>T16-2378</td>
<td>B-1 S4 10</td>
<td>10.2</td>
<td>176.4</td>
<td>78.0</td>
<td>98.4</td>
<td>59.2%</td>
</tr>
<tr>
<td>T16-2382</td>
<td>B-1 S3 7.5</td>
<td>10.7</td>
<td>141.8</td>
<td>67.3</td>
<td>74.5</td>
<td>56.8%</td>
</tr>
<tr>
<td>T16-2385</td>
<td>B-1 S14 50</td>
<td>10.7</td>
<td>264.0</td>
<td>214.6</td>
<td>49.4</td>
<td>19.5%</td>
</tr>
</tbody>
</table>

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.
Moisture Content - ASTM D2216

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Tare</th>
<th>Wet + Tare</th>
<th>Dry + Tare</th>
<th>Wgt. Of Moisture</th>
<th>Wgt. Of Soil</th>
<th>% Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T16-2377</td>
<td>B-1 S2.5</td>
<td>101.77</td>
<td>225.09</td>
<td>181.04</td>
<td>44.05</td>
<td>79.27</td>
<td>55.6%</td>
</tr>
<tr>
<td>T16-2379</td>
<td>B-1 S5b 13.5</td>
<td>103.49</td>
<td>220.16</td>
<td>141.44</td>
<td>78.72</td>
<td>37.95</td>
<td>207.4%</td>
</tr>
<tr>
<td>T16-2383</td>
<td>B-2 S7 17.5</td>
<td>102.20</td>
<td>237.84</td>
<td>199.50</td>
<td>38.34</td>
<td>97.30</td>
<td>39.4%</td>
</tr>
</tbody>
</table>

Organic Content - ASTM D2974

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Tare</th>
<th>Soil + Tare, Pre-Ignition</th>
<th>Soil + Tare, Post Ignition</th>
<th>% Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>T16-2377</td>
<td>B-1 S2.5</td>
<td>101.77</td>
<td>181.04</td>
<td>174.76</td>
<td>7.9%</td>
</tr>
<tr>
<td>T16-2379</td>
<td>B-1 S5b 13.5</td>
<td>103.49</td>
<td>141.44</td>
<td>130.08</td>
<td>29.9%</td>
</tr>
<tr>
<td>T16-2383</td>
<td>B-2 S7 17.5</td>
<td>102.20</td>
<td>199.50</td>
<td>195.17</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: [Signature]
Sieve Report

Project: Zackuse Creek Fish Passage
Client: Aspect Consulting
Source: B-1 S12 40
Sample #: T16-2380
Date Received: 21-Dec-16
Sample #: T16-2380
Date Tested: 28-Dec-16

Specifications

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>% Passing</th>
<th>Max</th>
<th>Min</th>
<th>Interpolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>6.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>4.00*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3.00*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.50*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.00*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.75*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.50*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.25*</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.00*</td>
<td>89%</td>
<td>88%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.80*</td>
<td>87%</td>
<td>86%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.60</td>
<td>70%</td>
<td>69%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.40</td>
<td>62%</td>
<td>61%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.20</td>
<td>58%</td>
<td>57%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.16</td>
<td>58%</td>
<td>57%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.12</td>
<td>46%</td>
<td>45%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.10</td>
<td>46%</td>
<td>45%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.08</td>
<td>46%</td>
<td>45%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.06</td>
<td>37%</td>
<td>36%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.04</td>
<td>37%</td>
<td>36%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.02</td>
<td>31%</td>
<td>30%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.01</td>
<td>27%</td>
<td>26%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.005</td>
<td>20%</td>
<td>19%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.0025</td>
<td>17%</td>
<td>16%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.001</td>
<td>14%</td>
<td>13%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.0005</td>
<td>12%</td>
<td>11%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.0001</td>
<td>10%</td>
<td>9%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.00005</td>
<td>8.3%</td>
<td>8.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

ASTM D-2216, ASTM D-2419, ASTM D-4318, ASTM D-5821

- **D(5) =** 0.045 mm
- **% Gravel =** 42.4%
- **Coeff. of Curvature, Cc =** 0.47

- **D(10) =** 0.110 mm
- **% Sand =** 49.4%
- **Coeff. of Uniformity, Cc =** 51.79

- **D(20) =** 0.205 mm
- **% Silt & Clay =** 8.3%
- **Fineness Modulus =** 4.35

- **D(50) =** 2.978 mm
- **% Silt & Clay =** 8.3%
- **Fineness Modulus =** 4.35

- **D(60) =** 5.678 mm
- **% Silt & Clay =** 8.3%
- **Fineness Modulus =** 4.35

No Specs

- **D(100) =** 25.668 mm

Sample Color:

- **Material:** SP-SM, Poorly graded Sand with Silt and Gravel
- **Sample Color:** Gray

Comments:

Reviewed by: [Signature]

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Visit our website: www.mtc-inc.net
Sieve Report

Project: Zackuse Creek Fish Passage
Project #: 16TO23-06
Client: Aspect Consulting
Source: B-2 St 2.5
Sample #: T16-2381
Date Received: 21-Dec-16
Sampled By: Others
Date Tested: 28-Dec-16
Tested By: K. O'Connell

<table>
<thead>
<tr>
<th>Sieve Size (US)</th>
<th>Sieve Size (Metric)</th>
<th>12.00"</th>
<th>10.00"*</th>
<th>8.00"</th>
<th>6.00"*</th>
<th>4.00"</th>
<th>3.00"</th>
<th>2.50"</th>
<th>2.00"</th>
<th>1.75"</th>
<th>1.50"</th>
<th>1.25"</th>
<th>1.00"</th>
<th>¾"</th>
<th>5/8"</th>
<th>¼"</th>
<th>#4</th>
<th>#8</th>
<th>#10</th>
<th>#20</th>
<th>#40</th>
<th>#80</th>
<th>#100</th>
<th>#140</th>
<th>#170</th>
<th>#200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Passing</td>
<td>Cumulative Percent Passing</td>
<td>Interpolated Percent Passing</td>
<td>Specs Max</td>
<td>Specs Min</td>
</tr>
<tr>
<td>12.00"</td>
<td>300.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>10.00"*</td>
<td>250.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>8.00"</td>
<td>200.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>6.00"*</td>
<td>150.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>4.00"</td>
<td>100.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>3.00"</td>
<td>75.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>2.50"</td>
<td>63.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>2.00"</td>
<td>50.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>1.75"</td>
<td>45.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>1.50"</td>
<td>37.50</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>1.25"</td>
<td>31.50</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>1.00"</td>
<td>25.00</td>
<td>100%</td>
<td>100%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>¾"</td>
<td>19.00</td>
<td>84%</td>
<td>84%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>16.00</td>
<td>79%</td>
<td>79%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>¼"</td>
<td>12.50</td>
<td>73%</td>
<td>73%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>9.50</td>
<td>70%</td>
<td>70%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>6.30</td>
<td>65%</td>
<td>65%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>4.75</td>
<td>62%</td>
<td>62%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#16</td>
<td>2.00</td>
<td>54%</td>
<td>54%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>2.00</td>
<td>54%</td>
<td>54%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>0.850</td>
<td>47%</td>
<td>47%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>0.425</td>
<td>39%</td>
<td>39%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#80</td>
<td>0.180</td>
<td>25%</td>
<td>25%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>0.150</td>
<td>23%</td>
<td>23%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#140</td>
<td>0.106</td>
<td>20%</td>
<td>20%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#170</td>
<td>0.090</td>
<td>18%</td>
<td>18%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>0.075</td>
<td>17.0%</td>
<td>17.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>

Specifications

- **D(5) = 0.022 mm**
- **% Gravel = 37.5%**
- **Coeff. of Curvature, CC = 0.41**
- **D(10) = 0.044 mm**
- **% Sand = 45.4%**
- **Coeff. of Uniformity, CU = 90.29**
- **D(15) = 0.066 mm**
- **% Silt & Clay = 17.0%**
- **Fineness Modulus = 3.82**
- **D(20) = 0.267 mm**
- **Liquid Limit = n/a**
- **Plastic Limit = n/a**
- **D(25) = 1.332 mm**
- **Plasticity Index = n/a**
- **Moisture % as sampled = 12.7%**
- **D(30) = 0.267 mm**
- **Sand Equivalent = n/a**
- **Req'd Sand Equivalent =**
- **D(50) = 1.332 mm**
- **Fracture %, 1 Face = n/a**
- **Req'd Fracture %, 1 Face =**
- **D(60) = 3.972 mm**
- **Fracture %, 2+ Faces = n/a**
- **Req'd Fracture %, 2+ Faces =**

ASTM D-2216, ASTM D-2419, ASTM D-4318, ASTM D-5821

Sample Color: Gray

Sample Meets Specs? N/A

Comments:

Reviewed by:
Sieve Report

Project: Zackuse Creek Fish Passage
Date Received: 21-Dec-16
Sampled By: Others
Client: Aspect Consulting
Date Tested: 28-Dec-16
Sampled By: T-16-2384
Sample: T16-2384

ASTM D-2487 Unified Soil Classification System
GM, Silty Gravel with Sand
Sample Color: Gray

Specifications

<table>
<thead>
<tr>
<th>sieve size</th>
<th>actual cumulative percent passing</th>
<th>interpolated cumulative percent passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>US metric</td>
<td>% passing</td>
<td>% passing</td>
</tr>
<tr>
<td>0.000</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>10.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>8.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>6.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>4.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>3.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2.50*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1.75*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1.50*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1.25*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1.00*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.80*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.60*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.40*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.30*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.20*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.10*</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.08*</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sample Meets Specs? N/A

ASTM C-136, ASTM D-6913

Grain Size Distribution

Comments:

Reviewed by:

Materials Testing & Consulting, Inc.
Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Corporate – 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices:
Olympia – 360.534.9777
Bellingham – 360.647.6111
Silverdale – 360.698.6787
Tukwila – 206.241.1974

Visit our website: www.mtc-inc.net
Sieve Report

Project: Zackuse Creek Fish Passage
Project #: 16T023-06
Client: Aspect Consulting
Source: HA-3 S1.5
Sample #: T16-2386
Date Received: 21-Dec-16
Date Tested: 28-Dec-16
Sampled By: K. O’Connell
Sampled: T16-2386

Specifications

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>% Passing</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.00*</td>
<td>100%</td>
<td>No Specs</td>
</tr>
<tr>
<td>10.00*</td>
<td>100%</td>
<td>Sample Meets Specs ? N/A</td>
</tr>
<tr>
<td>8.00*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>6.00*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>4.00*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>3.00*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2.50*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2.00*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>1.50*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>1.25*</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>1.00*</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>¾”</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>⁵/₈”</td>
<td>79%</td>
<td></td>
</tr>
<tr>
<td>⁷/₈”</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>³/₄”</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>¹/₂”</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>¹/₄”</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>¹/₈”</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>¹/₁₆”</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>¹/₃₂”</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>¹/₆₄”</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>¹/₁₂₈”</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>¹/₂₅₆”</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>¹/₅₁₂”</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>¹/₁₀₂₄”</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>¹/₂₀₄₈”</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>¹/₄₀₉₆”</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>¹/₈₁₉₂”</td>
<td>9.4%</td>
<td></td>
</tr>
</tbody>
</table>

Grain Size Distribution

- **D(5) = 0.040 mm**
- **D(10) = 0.086 mm**
- **D(15) = 0.186 mm**
- **D(20) = 0.629 mm**
- **D(25) = 0.456 mm**
- **D(30) = 0.840 mm**
- **D(40) = 2.157 mm**
- **D(50) = 4.456 mm**
- **D(60) = 8.040 mm**
- **D(90) = 21.574 mm**

Comments:

Reviewed by: [Signature]

ASTM D-2216, ASTM D-2419, ASTM D-4318, ASTM D-5821

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>% Passing</th>
<th>Coeff. of Curvature, Cc</th>
<th>Coeff. of Uniformity, CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.040</td>
<td>49.0%</td>
<td>0.57</td>
<td>93.27</td>
</tr>
</tbody>
</table>

Sample Color: Gray

ASTM C-136, ASTM D-6913

- **Dust Ratio:** 35/96
- **Fracture %, 1 Face:** n/a
- **Fracture %, 2+ Faces:** n/a
- **Fracture %, 2+ Faces:** n/a

Copyright Spears Engineering & Technical Services PS, 1996-98

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices:
- Olympia ~ 360.534.9777
- Bellingham ~ 360.647.6111
- Silverdale ~ 360.669.6787
- Tukwila ~ 206.241.1974
- Visit our website: www.mtc-inc.net
Sieve Report

ASTM D-2487 Unified Soil Classification System

- GP-GM, Poorly graded Gravel with Silt and Sand
- Sample Color: Gray

Specifications

- No Specs
- Sample Meets Specs? N/A

Particle Size (mm) and Cumulative Percent Passing

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Actual Cumulative Percent Passing</th>
<th>Interpolated Cumulative Percent Passing</th>
<th>Specs Max</th>
<th>Specs Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.00"</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>8.00"</td>
<td>200.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>6.00"</td>
<td>150.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>4.00"</td>
<td>100.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3.00"</td>
<td>75.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.50"</td>
<td>63.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.00"</td>
<td>50.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.75"</td>
<td>45.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.50"</td>
<td>37.50</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.25"</td>
<td>31.50</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.00"</td>
<td>25.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.75"</td>
<td>19.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.50"</td>
<td>16.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.35"</td>
<td>12.50</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.25"</td>
<td>9.50</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.18"</td>
<td>6.30</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.15"</td>
<td>4.75</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.12"</td>
<td>2.56</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.10"</td>
<td>2.00</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.16"</td>
<td>1.18</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.20"</td>
<td>0.850</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.060"</td>
<td>0.600</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.044"</td>
<td>0.425</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.030"</td>
<td>0.300</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.025"</td>
<td>0.250</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.018"</td>
<td>0.180</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.100"</td>
<td>0.150</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.070"</td>
<td>0.106</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.050"</td>
<td>0.090</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.035"</td>
<td>0.075</td>
<td>100%</td>
<td>100%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Cumulative Percent Passing

- Max Specs: 100%
- Min Specs: 0.0%

Grain Size Distribution

- Moisture %, as sampled: 17.8%
- Sand Equivalent: n/a

Fracture %, 1 Face: n/a

Fracture %, 1 Face: n/a

Plasticity Index: n/a

Moisture %, as sampled: 17.8%

Sand Equivalent: n/a

Fracture %, 1 Face: n/a

Plasticity Index: n/a

Moisture %, as sampled: 17.8%

Sample Meets Specs?: N/A

Sample Color: Gray

Project: Zackuse Creek Fish Passage

Date Received: 21-Dec-16

Project #: 16T023-06

Sample #: T16-2387

Date Tested: 28-Dec-16

Sampled By: K. O'Connell

Client: Aspect Consulting

Source: HA-5 S1 1.5

Tested By: K. O'Connell

Sample'd By: Others

Comments:

Reviewed by:
