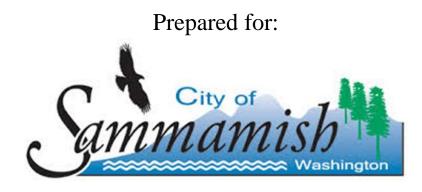


# 2017 EBRIGHT CREEK BIOLOGICAL AND WATER QUALTY MONITORING REPORT (YEAR 3)


PREPARED FOR: THE CITY OF SAMMAMISH 801 228th Ave SE Sammamish, Washington 98075



December 20, 2017

Page left intentionally blank

# EBRIGHT CREEK BIOLOGICAL AND WATER QUALITY MONITORING REPORT (YEAR 3)





909 NE Boat Street Seattle, Washington 98105



consultants 1201 3rd Ave # 330 Seattle, WA 98101

December 20, 2017

Page left intentionally blank

# TABLE OF CONTENTS

Page

# Section

| 1.         | Introduction                   |                            |     |  |  |  |  |  |  |
|------------|--------------------------------|----------------------------|-----|--|--|--|--|--|--|
|            | 1.1 Background                 |                            |     |  |  |  |  |  |  |
|            | 1.2                            | Project Description        | . 2 |  |  |  |  |  |  |
| 2.         | Met                            | nodology                   | . 3 |  |  |  |  |  |  |
|            | 2.1                            | Stream Habitat Mapping     |     |  |  |  |  |  |  |
|            | 2.2                            | Macroinvertebrate Sampling |     |  |  |  |  |  |  |
|            | 2.3                            | Water Quality Monitoring   |     |  |  |  |  |  |  |
| 3. Results |                                |                            |     |  |  |  |  |  |  |
|            | 3.1 Stream Habitat Mapping     |                            |     |  |  |  |  |  |  |
|            | 3.2 Macroinvertebrate Sampling |                            |     |  |  |  |  |  |  |
|            | 3.3                            | Water Quality              | 18  |  |  |  |  |  |  |
|            | 3.3.1                          |                            | 8   |  |  |  |  |  |  |
|            | 3.3.2                          |                            |     |  |  |  |  |  |  |
|            | 3.3.3                          | •                          |     |  |  |  |  |  |  |
| 4.         | Disc                           | ussion                     | 20  |  |  |  |  |  |  |
| 5.         | Refe                           | rences                     | 25  |  |  |  |  |  |  |

# LIST OF FIGURES

| Figure Page                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1: Reach Breaks and Macroinvertebrate Sampling Sites                                                                                                               |
| Figure 2: Ebright Creek Water Quality Monitoring Locations                                                                                                                |
| Figure 3: Width-to-Depth Ratio and Stream Channel Slope for Each Reach (2015 and 2017)                                                                                    |
| Figure 4: Stream Substrate Composition by Reach (2015 and 2017)                                                                                                           |
| Figure 5: Percent of Riparian Forest Comprised of Deciduous and Coniferous Trees along Each Reach . 12                                                                    |
| Figure 6: Number of Pools per km versus Number of Key Pieces of LWD per km (2015 and 2017) 13                                                                             |
| Figure 7: Habitat Unit Composition per Reach Compared to Slope (2015 and 2017)                                                                                            |
| Figure 8: Average Residual Pool Depth per Reach (2015 and 2017)                                                                                                           |
| Figure 9: Benthic macroinvertebrate (B-IBI) Scores for Ebright Creek (2015-2017) compared with King<br>County Ambient Monitoring Sites in the Sammamish Basin (2015-2016) |

# LIST OF PHOTOGRAPHS

| Photograph                                                         | Page |
|--------------------------------------------------------------------|------|
| Photo 1: Serber Net Set-up                                         | 7    |
| Photo 2: Typical Stream Substrates Observed in Reaches 6 and 7     | 9    |
| Photo 3: Typical Ground Cover and Riparian Habitat along Reach 0   |      |
| Photo 4: Second Growth and Native Shrubs Typical of Reaches 2 to 6 | 11   |
| Photo 5: Landslide in Reach 8 Showing an Unstable Left Bank        | 11   |
| Photo 6: Typical Wide Stream Channel Observed in Reaches 7 and 8   |      |

# LIST OF TABLES

| Table                                                                                                 | Page |
|-------------------------------------------------------------------------------------------------------|------|
| Table 1: Five Qualitative Categories of Biological Conditions                                         | 6    |
| Table 2: Water Monitoring Locations and Parameters                                                    | 7    |
| Table 3: B-IBI Scores for Ebright Creek (2017) and King County's Lake Sammamish (2016)                | 16   |
| Table 4: Monthly Precipitation Levels at the Sammamish Plateau Water and Sewer District   Headquaters | 18   |

# ACRONYMS AND ABBREVIATIONS

| 48 NORTH        | 48 North Solutions, Inc.                            |  |  |  |  |
|-----------------|-----------------------------------------------------|--|--|--|--|
| B-IBI           | Benthic Index of Biotic Integrity                   |  |  |  |  |
| cfs             | cubic feet per second                               |  |  |  |  |
| City (the)      | City of Sammamish                                   |  |  |  |  |
| cm              | centimeter                                          |  |  |  |  |
| Crossings (the) | Crossings at Pine Lakes                             |  |  |  |  |
| Ecology         | Washington Department of Ecology                    |  |  |  |  |
| EPT             | Ephemeroptera, Plecoptera, and Trichoptera          |  |  |  |  |
| Geosyntec       | Geosyntec Consultants                               |  |  |  |  |
| IBI             | Index of Biotic Integrity                           |  |  |  |  |
| km              | kilometer                                           |  |  |  |  |
| LWD             | large woody debris                                  |  |  |  |  |
| m               | meter                                               |  |  |  |  |
| PFC             | properly functioning conditions                     |  |  |  |  |
| Qpf             | Pre Vashon undifferentiated unconsolidated deposits |  |  |  |  |
| sq. ft.         | square foot                                         |  |  |  |  |
| USGC            | U.S. Geological Survey                              |  |  |  |  |
|                 |                                                     |  |  |  |  |

Page left intentionally blank

# 1. INTRODUCTION

Ebright Creek is home to kokanee salmon (*Oncorhynchus nerka*), the non-anadromous (non-migrating) and smaller form of sockeye salmon. Kokanee, unlike sockeye, do not migrate to the ocean and instead spend their entire lives in freshwater. Lake Sammamish kokanee migrate from tributaries in the spring to mature for three or four years before returning to their natal stream (e.g., Ebright Creek) to spawn in the fall and early winter (Berge and Higgins, 2003). Unfortunately, due to a number of limiting factors, kokanee numbers have been declining rapidly over the past few decades (HDR, 2009).

As a result of the decline, local and county governments (including the City of Sammamish [the City]) are working together with Federal, state, tribal, and non-governmental organizations to conserve native kokanee, and have formed the Kokanee Work Group. One important tenet of this group is conservation and restoration of key kokanee habitats within the Lake Sammamish Basin.

Ebright Creek is the primary stream for the Thompson Basin, draining east to west from the Sammamish Plateau into Lake Sammamish. The stream flows through a second-growth forest above the project site through a relatively steep ravine on the side of the plateau. The stream habitat along the lower reaches of Ebright Creek is in relatively good condition in that the stream has not been extensively ditched or channelized, native riparian vegetation and large woody debris (LWD) are present, and overall habitat complexity is relatively high for a stream in an urban environment. However, adjacent land use activities upstream have altered stream habitat conditions and the riparian corridor. Ebright Creek now passes through a mixed use area consisting of a single-family residence, and areas with both native and non-native vegetation.

With the increase in urbanization surrounding Ebright Creek, including the development of Chestnut Lanes and the Crossings at Pine Lake (the Crossings), it has been hypothesized that degradation of habitat could potentially be occurring. This degradation, through increased erosion or changes in water quality, could result in alterations to fish habitat conditions within stream channel, including changes in temperature, dissolved oxygen, overhead canopy cover, flow velocity, hydraulic diversity, macroinvertebrate abundance and diversity, substrate composition, water depth, and fish community structure.

With the potential for environmental degradation and sustainable development in the watershed, there is an increased awareness for the need to monitor and assess the long-term conditions of this valuable natural resource. Successful monitoring and assessment of biological and water quality conditions require effective tools that can be easily understood by both the constituents living in the surrounding communities and the City's managers.

The intent of this biological and water quality monitoring plan is the meet the "Mitigated Determination of Non-Significant" conditions set for both Chestnut Lanes and the Crossings, and evaluate whether the fish habitat of Ebright Creek is being degraded by increased erosion and sedimentation.

1.1 Background

Ebright Creek is located in the Thompson Sub-basin on the east side of Lake Sammamish in east King County. It is the main channel for the Thompson Basin, draining east to west from the Sammamish Plateau into Lake Sammamish. Ebright Creek is the main drainage in an approximately 3.37-square kilometer (1.3-square-mile) watershed that is composed of an area of mixed residential and commercial in the upper watershed and low intensity development in the lower, steeply-sloped areas. Approximately 32

percent of the basin is forested, with much of the forested area located in the riparian corridor adjacent to Ebright Creek (City of Sammamish, 2011). The upper wetlands and stream corridors are relatively undisturbed, and the watershed has a relatively low impervious area, estimated around 8 percent (City of Sammamish, 2011).

The geology of the Sammamish Plateau was mapped by the U.S. Geological Survey (USGS) and shows a geologic sequence of layered Vashon tills and outwashes with an underlying layer of Pre-Vashon undifferentiated unconsolidated deposits (Qpf; USGS 2006). The lower reach of Ebright Creek cuts through these Qpf deposits, which is also mapped as a landslide hazard area (City of Sammamish, 2011). In the lower reaches of Ebright Creek and on the west-facing slopes above Lake Sammamish, the surficial geologic deposits are mapped as mass-wastage deposits formed by erosion on the steep slopes, described as colluvium; this soil and landslide debris is typically up to 3 meters (m; 10 feet thick). The geologic setting of a stream flowing through landslide hazard areas above a geologically recent colluvium has a strong influence on the geomorphology of the channel through the lower reaches of Ebright Creek.

Lower Ebright Creek flows through a second-growth forest in a relatively steep ravine on the east side of the plateau. As the stream exits the ravine, it passes through a mixed use area consisting of a single-family residence, pasture, and areas with both native and non-native vegetation (City of Sammamish, 2011). After crossing the East Lake Sammamish Parkway, the stream continues through a narrow, shallow ravine to Lake Sammamish.

Ebright Creek is unchannelized along the lower stream reaches and exhibits an overall complex stream habitat of native riparian vegetation and LWD, especially considering its location as a stream in an urban environment. However, adjacent land use activities that have degraded stream habitat conditions in the surveyed lower reaches are primarily associated with cleared land for pasture and addition of fill material for site access. A major stream enhancement was conducted in 2012 in the stream reach on the north side of East Lake Sammamish Parkway where native trees and shrubs were planted in the riparian corridor. Native and non-native vegetation have become established in previously disturbed areas and in the restored stream reach and a fish passage improvement project reestablished natural sediment transport in this portion of Ebright Creek.

Upstream of the ravine, adjacent land use activities upstream have altered stream habitat conditions and the riparian corridor. Upper Ebright Creek now passes through a mixed use area consisting of a single-family residences and areas with both native and non-native vegetation.

1.2 Project Description

Long-term monitoring of macroinvertebrate, aquatic and riparian habitats, and water quality was initiated in 2015 in response to interest in better understanding the relationship between the ecological condition of Ebright Creek and development activities of Chestnut Lanes and the Crossings. The intent of this report is to document the stream habitat conditions in Ebright Creek as part of a 10-year monitoring and assessment of environmental conditions of the stream.

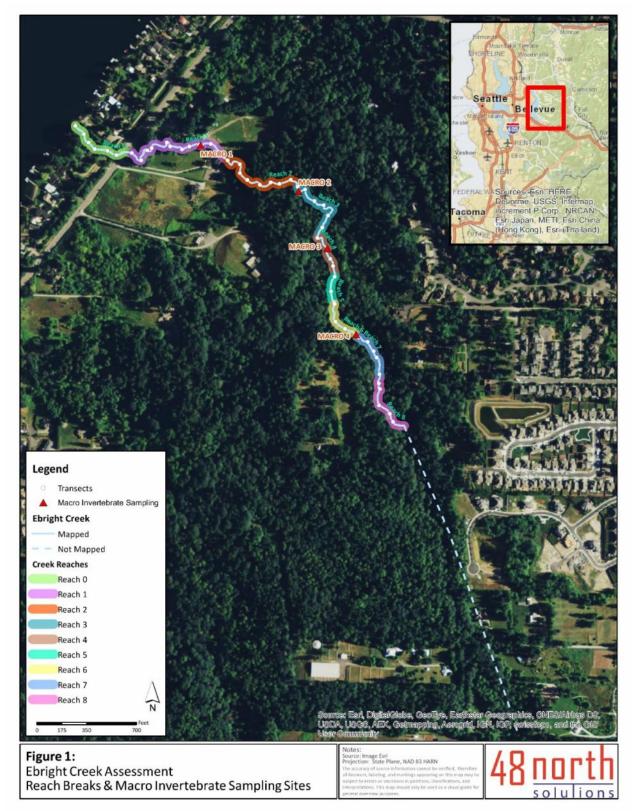
From August 3 to 13, 2015, 48 North Solutions, Inc., (48 NORTH) completed a comprehensive baseline stream habitat assessment to better understand the relationship between stormwater, hydrology, and natural conditions in Ebright Creek as a means to evaluate whether the stream habitat of Ebright Creek is being degraded by any increased erosion and sedimentation resulting from the construction of these developments. This habitat monitoring is a long-term effort. The second stream habitat data collection

occurred from September 7 to 22, 2017. In addition to mapping the stream habitat, 48 NORTH also collected macroinvertebrate samples at four established locations along Ebright Creek. This macroinvertebrate sampling is conducted annually, with previous sampling having occurred in August 2015 and September 2016.

Geosyntec Consultants (Geosyntec) teamed with 48 NORTH to monitor the stream's water temperature, flow, turbidity values, and to document if water level fluctuations in the surrounding wetland features exceed predetermined minimum or maximum limits. In November 2014, Geosyntec provided the City recommendations for instrumentation at each monitoring site and provided the basis for the equipment that was installed. Following these recommendations, in February 2015, Geosyntec installed monitoring equipment, development of rating curves, and initiation of continuous monitoring. In 2016 and 2017, water flow (via water level), water level, and temperature were monitored by instrumentation installed by Geosyntec as part of the long term monitoring project.

#### 2. METHODOLOGY

#### 2.1 Stream Habitat Mapping


Protocols used by the Washington Department of Ecology's (Ecology) stream monitoring projects were used to maintain consistency with work occurring statewide (Ecology, 2009). The purpose of this work was to specifically evaluate downstream conditions in Ebright Creek in order to evaluate whether fish habitat is or has been degraded by increased erosion and sedimentation from the Chestnut Lanes and the Crossings developments. Due to the timing of this study, pre-construction baseline cannot be conducted as both Chestnut Lanes and the Crossings have been built. However, a 10-year monitoring period would likely enable detection of what, if any, changes are occurring in water quality and habitat disturbance. Following Ecology's protocols will also allow for comparison of stream monitoring data among similar streams within the Lake Sammamish/Lake Washington drainage.

Ebright Creek is considered an "F" type stream by the Washington State Department of Natural Resources. The "F" classification is assigned to "*streams and waterbodies that are known to be used by fish, or meet the physical criteria to be potentially used by fish. Fish streams may or may not have flowing water all year; they may be perennial or seasonal*" (Washington Administrative Code 222-16-030 2001).

Ebright Creek aquatic habitat was characterized from the stream mouth at Lake Sammamish, upstream to the furthest extent of flowing water during the low flow conditions observed during the late summer/ early fall period. The second stream habitat mapping effort was conducted from September 7 to 22, 2017, during Year 3 of the Ebright Creek Stream Monitoring Project.

A total of 1,300 m (4,265 feet) of the stream was delineated. For the purposes of this project, Ebright Creek was divided into nine survey reaches representing obvious changes in the riparian zone, stream channel gradient and confinement, and human influence adjacent to the stream (Figure 1).

Habitat units (pools, riffles and other) were mapped for each stream reach. Channel cross sections were recorded at several locations within each stream reach to characterize the physical environment of the channel. Cross sectional data such as bank-full width, wetted width, sediment characteristics, large woody debris, and riparian vegetation provide insight into the function and processes occurring within each tributary and are important indicators of habitat integrity.



In addition to channel dimensions, the number of pools and pieces of LWD were counted in each sample reach. Additionally, substrate classification and riparian vegetation was described in an effort to understand the condition of the stream to support salmonids. Mapping efforts focused on identifying pool

frequency and stream complexity along Ebright Creek, the riparian condition and shade, sediment/ substrate of the stream, and relative stream bed stability.

Size composition of the substrate was visually estimated along each sampled reach using Ecology's *Wadeable Stream Protocols* (Ecology, 2009). Categories were expressed as percent bedrock, boulders (30 to 91 centimeters [cm; 12 to 36 inches] in diameter), cobble (7 to 30 cm [3 to 12 inches] in diameter), coarse gravel (2.5 to 7 cm [1 to 3 inches] in diameter), fine gravel (0.02 to 2.5 cm [0.01 to 1 inch] in diameter), and sand/fines. Substrate classification was summarized using a visual estimate of the percent of each substrate type throughout each cross section. This data was then tabulated and a general percent score for each substrate type per cross section was produced. A general percent score was then tabulated for each reach based on the number of transects per individual reach.

Similarly, the riparian community was also described by visually estimating the general percentage of ground cover (such as manicured lawn, reed canary grass [*Phalaris arundinacea*], ivy, native shrubs), and riparian cover (deciduous or coniferous) on the left and right banks. Also, any non-native vegetation, if known, was also recorded for each bank. Riparian vegetation and canopy cover were assessed at each stream transect and summed together for each individual stream reach.

All individual pieces of LWD greater than 1.8 m (6 feet) in length and 10 cm (4 inches) in diameter was counted for each reach following standard classifications (NMFS 1996; Merritt and Hartman 2012). NMFS (1996) cites a stream with greater than 80 percent forest, LWD frequency greater than 150 pieces per kilometer (km), and pool frequency greater than 35 per km as properly functioning conditions (PFC) for salmonid-bearing streams.

### 2.2 Macroinvertebrate Sampling

Resource availability and basic productivity of streams have been recognized as major controlling factors in regulating fish populations (Karr, 1998; Karr and Chu, 1999). In large part, food resources for juvenile salmonids in lotic systems consist of benthos and invertebrates in the drift. In conjunction with acting as a primary food resources for juvenile salmonids, benthic macroinvertebrates are also monitored because they are good indicators of the biological health of stream systems.

Ecological indicators, including physical and biological components, are tools that can be used to characterize the condition of a stream's health. An index of biotic integrity (IBI) can be used to integrate multiple measurements of biological attributes (or "metrics") to assess the condition at a specific location. Metrics typically measure assemblage attributes related to a species richness; tolerance to specific stressors, such as changes in water quality; trophic guilds; reproductive strategies; habitat preferences; and abundance.

In the Puget Sound region, a Benthic Index of Biotic Integrity (B-IBI) has been used extensively as an indicator of stream health by federal, state, and local agencies (Fore et al. 1996). These agencies have used it to indirectly monitor changes in water quality impairment, habitat degradation, and hydrologic alteration, and more specifically changes in channel morphology, streambed material, and water temperature. Macroinvertebrate data provides information on habitat qualities and information on the potential for survival and growth of juvenile anadromous salmonids, such as kokanee, that inhabit Lake Sammamish and its tributaries. The purpose of macroinvertebrate sampling of Ebright Creek was to assess the ecological condition of the stream using B-IBI.

The B-IBI is a quantitative method for determining and comparing the biological condition of streams. The B-IBI was developed as a multi-metric index to quantify the ecological condition of streams in the Pacific Northwest (Kleindl 1995). This index is based on 10 metrics that represent the presence of important taxa at the sampling location. These metric values include the following:

- Taxa Richness
- Ephemeroptera Richness
- Plecoptera Richness
- Trichoptera Richness
- Clinger Taxa Richness
- Long-Lived Taxa Richness
- Intolerant Richness
- Percent Dominant
- Predator Percent
- Tolerant Percent

Each metric is assigned a score between 1 and 5, and the individual metric scores are summed to calculate a score for a given site, between 10 and 50. Total scores are combined and assigned qualitative descriptions of condition (Table 1).

Since macroinvertebrates are extremely sensitive to change in water quality and/or habitat change, collecting samples each year over a 10-year period will enable identification of both short-term acute changes, as well as any long-term trends.

| CONDITION        | GENERAL DESCRIPTION                                                                                                                                                                                                           | B-IBI RANGE |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Excellent        | Excellent Comparable to least disturbed reference condition; overall high taxa diversity, particularly of mayflies, stoneflies, caddis flies, long-lived, clinger, and intolerant taxa. Relative abundance of predators high. |             |
| Good             | Slightly divergent from least disturbed condition; absence of some long-<br>lived and intolerant taxa; slight decline in richness of mayflies, stoneflies,<br>and caddis flies; proportion of tolerant taxa increases.        | 38-44       |
| Fair             | Total taxa richness reduced – particularly intolerant, long-lived, stonefly, and clinger taxa; relative abundance of predators declines; proportion of tolerant taxa continues to increase.                                   | 28-36       |
| Poor             | Overall taxa diversity depressed; proportion of predators greatly reduced as<br>is long-lived taxa richness; few stoneflies or intolerant taxa present;<br>dominance by three most abundant taxa often very high.             | 18-26       |
| Very Poor        | Overall taxa diversity very low and dominated by a few highly tolerant taxa;<br>mayfly, stonefly, caddis fly, clinger, long-lived, and intolerant taxa largely<br>absent; relative abundance of predators very low.           | 10-16       |
| Reference: Morle | ey (2000)                                                                                                                                                                                                                     | *           |

#### Table 1: Five Qualitative Categories of Biological Conditions

Four sampling locations along Ebright Creek were established in August of Year 1 (2015) (Figure 1). Samples were collected at these locations during the 2015 baseline sampling, none of which had been sampled previously. Year 2 (2016) samples were collected at the four index locations on September 2, 2016. Year 3 (2017) samples were collected at the four index locations on September 17, 2017.

Macroinvertebrates were collected during summer-low flow (August/September) conditions following the protocols of Karr and Chu (1999). Samples were collected during this time as rainfall is less frequent and intense, antecedent soil moisture is lowest, and flows are expected to be relatively stable. Taxa richness and abundance is also high at this time of year.

A 930-square cm (1-square foot [sq. ft.]) Surber net, with 500  $\mu$ m mesh, was used to collect macroinvertebrates, starting at the lowest (downstream) sample site and working upstream (Photo 1). The Surber net is a 30 cm by 30 cm (12 x 12-inch) frame that is horizontally placed into the face of the flow on gravel/cobble substrate to delineate a 930-square cm (1 sq. ft.) area. The vertical section of the frame has a net attached and captures any dislodged organisms from the sampling area. A total of 0.74 m<sup>2</sup> (8 sq. ft.) were sampled at each location following the methods of Hayslip (2007).



Photo 1: Suber Net Set-up

Macroinvertebrate samples from each of the four sampling locations were analyzed in the laboratory. King County Department of Natural Resources has also conducted macroinvertebrate sampling at a station located upstream of East Lake Sammamish Road and downstream of the four sampled sites. The Ebright Creek B-IBI results were uploaded to the Puget Sound Stream Benthos online database (http://www.pugetsoundstreambenthos.org/) and will help contribute the monitoring of health of streams within Puget Sound.

#### 2.3 Water Quality Monitoring

Using the instrumentation Geosyntec installed during 2015, the City is currently monitoring water quality and water flow at various sites along Ebright Creek, and water elevations in two wetland complexes associated with the stream. Six monitoring stations were installed to measure four parameters (see Table 2 and Figure 2).

| MONITORING LOCATIONS                      | MONITORING PARAMETERS |           |             |           |  |  |
|-------------------------------------------|-----------------------|-----------|-------------|-----------|--|--|
| MONITORING LOCATIONS                      | WATER LEVEL           | FLOW RATE | TEMPERATURE | TURBIDITY |  |  |
| Site 1: Ebright Creek Near Mouth          | No                    | Yes       | Yes         | No        |  |  |
| Site 2: Discharge from Chestnut Lane Pond | No                    | Yes       | Yes         | Yes       |  |  |
| Site 3: Wetland 61                        | Yes                   | No        | No          | No        |  |  |
| Site 4: Wetland 17                        | Yes                   | No        | No          | No        |  |  |
| Site 5: Crossings at Pine Lake – West     | No                    | Yes       | Yes         | Yes       |  |  |
| Site 6: Crossings at Pine Lake – East     | No                    | Yes       | Yes         | Yes       |  |  |

| <b>Table 2:</b> Water Monitoring Locations and Parameters |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

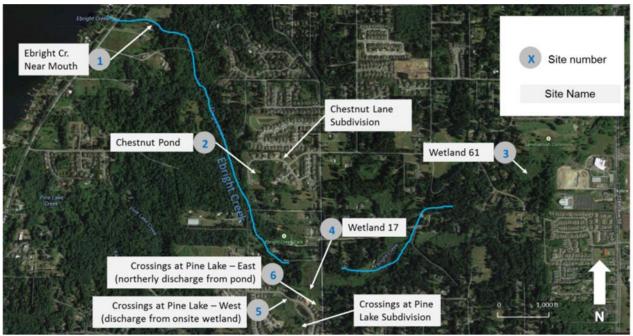



Figure 2: Ebright Creek Water Quality Monitoring Locations

# 3. Results

#### 3.1 Stream Habitat Mapping

Bankfull widths and depths were measured at each transect and grouped by reach (Figure 1). Bankfull width to depth ratios are a simple indicator used commonly in fluvial geomorphology as a metric to describe the relationship between peak flow discharge and the response of the channel to high flow events. Typically, the bankfull elevation is where water spills out of a channel and into the adjacent floodplain. Common indicators of bankfull width include fine sediment, rooted vegetation, and undisturbed soils. The bankfull width to depth ratio is a measurement between the bankfull mark on the left and right banks and the average depth between the bankfull width and surface of the active channel (wetted and not wetted) at that cross section. Width-to-depth ratios less than 10:1 are considered to be properly functioning for salmonid-bearing streams (NMFS, 1996). Channel widening due to bank instability (erosion) typically result in width-to-depth ratios that are larger than 10.1. In addition, channels that are simplified and lacking in deep pools also have a larger width to depth ratio. The larger width to depth ratio of Reach 0 may be indicative of the simple stream channel that is artificially constrained. In Ebright Creek, the larger width-to-depth ratios of the upper three reaches (Reaches 6, 7, and 8) maybe indicative of channel widening due to bank instability as a result of slide activities (Figure 3). Compared to the 2015 results, the 2017 data indicated that the width-to-depth ratios increased in Reaches 6 and 8. One possible reason for this increase in stream bed instability maybe due to landslides along these reaches.




Figure 3: Width-to-Depth Ratio and Stream Channel Slope for Each Reach (2015 and 2017)

Substrate composition is a useful indicator to describe how a channel stores and transports sediment. All measures of substrate were taken at transects every 25 m (82 feet) within representative reaches. The most common substrates in Reach 0 were coarse gravels, interspersed with some cobble and fine gravel typical of higher gradient streams (Figure 4). Substrate in Reach 1 was finer than Reach 0. Reaches 2, 3, 4, and 5 were located in a second growth forest where riparian vegetation provided channel stability. The stream bed in these reaches contained less fine gravels than the other reaches and the substrate coarseness increased progressively upstream (Figure 4). Reaches 6 and 7 were dominated by coarse gravels, cobbles, and boulders with fines (Photo 2). Reach 8 was



Photo 2: Typical Stream Substrates Observed in Reaches 6 and 7

dominated by fines and gravels that are typical of lower gradient reaches. An increase in finer sediment input in Reaches 5 to 7 was observed in 2017, possibly due to mobilization of substrates from upstream sources. These fine sediments in these reaches maybe the result of erosion from landslides upstream. These landslides may have increased the rate of fine sediment and gravel recruitment into these reaches, causing the stream channel to expand in a manner similar to an alluvial fan. The steep ravines of the canyon reaches are located within an erosion hazard area and are prone to landslides. The landslides then act as a feeder source for gravels and fines that are then transported downstream during high flow events.

Reaches 0 through 8 are thought to support kokanee salmon and cutthroat trout. Suitable spawning substrate for salmonids was observed in all reaches during the time of surveying, with the exception of Reaches 6 and 7. In these reaches, spawning substrate was at a premium (Figure 4). Spawning substrate was still at a premium in Reach 8 during 2017, although more spawning substrate was observed in Reach 7 during this time. Fines and gravels are ideal substrate for kokanee salmon spawning, suggesting that Reaches 1 to 5, and 8 were best suited for spawning during 2015. However, an increase in sediment input observed in 2017 improved conditions in Reaches 6 and 7, while decreasing conditions in Reach 8.

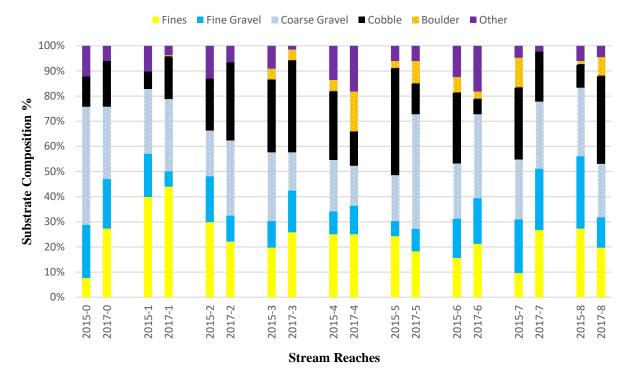



Figure 4: Stream Substrate Composition by Reach (2015 and 2017)

Overall, the riparian buffers appear to be functioning properly and the stream channel is generally stable. Riparian vegetation provides important shade for the stream, a source of recruitment for wood, and reduced rates of erosion. The riparian condition observed in Reaches 0 and 1 was mostly restored mixed deciduous forest, shrubs, and invasive species with lawns, driveways and residential areas adjacent to the narrow stream riparian corridor. Reach 0 was located in a steeper ravine with a limited number of second growth coniferous trees present in the riparian zone (Photo 3). Riparian condition from Reaches 2 to 6 consisted of second growth mixed forest of big leaf maple (Acer macrophyllum), cedar, and Douglas fir (Pseudotsuga menziesii) with a fairly closed canopy (Photo 4). Riparian conditions



**Photo 3:** Typical Ground Cover and Riparian Habitat along Reach 0

in Reaches 7 and 8 consisted of a second growth forest in a steep ravine, but the canopy was comprised of

tall shrubs and small trees (e.g., salmonberry [*Rubus spectabilis*]) due to disturbance regime caused by landslides (Photo 5).





Photo 5: Landslide in Reach 8 Showing an Unstable Left Bank

**Photo 4:** Second Growth and Native Shrubs Typical of Reaches 2 to 6

The PFCs suggest >80% forest is necessary to support salmonids (NMFS, 1996), and six of nine reaches meet this criterion. In Ebright Creek, PFC criteria (>80% forested) were not met in Reaches 0, 1, and 7, and was barely met in Reach 8. Reaches 0 and 1 had extensive residential development adjacent to the stream and are proximate to East Lake Sammamish Parkway (Figure 5). Reaches 7 and 8 were located in a slide hazard area and have extensive landslide activity that has altered the riparian vegetation and stream canopy.

While Reaches 4 and 6 exhibited good riparian condition, they lacked pool habitat (Figure 6). King County (1990) noted that the stream gradient sometimes approaches 5 percent through these canyon reaches, forming tiered, or staircase, features that result in patchy gravel areas and small volume pools that are favored by resident cutthroat trout.

Several landslides were observed adjacent to Ebright Creek along Reaches 6 to 8 (Photo 5) in 2015. There were several more landslides observed in 2017 compared to 2015 along these same reaches. These landslides contributed significant amounts of material to the stream bed. Bank stability was measured at the Reach level using the method described by Booth (1994). Reaches 0 and 1 were armored with rip-rap in many sections of these two reaches (Photo 3). Reaches 2 to 6 were stable and had vegetated and barren gravel bars interspersed within the active stream channel (Photo 4). Reaches 7 and 8 were unstable and showed imminent signs of erosion, such as sluffed banks and fallen trees (Photos 5 and 6) during 2015 baseline surveys. Riparian areas along Reaches 7 and 8 were unstable during 2017 surveys, and channel migration was observed. Also, more invasive and pioneering plant species, such as reed canary grass and Himalayan blackberry (*Rubus armeniacus*), were observed in areas impacted by landslips along Reaches 6 to 8. Channel widening along these reaches were also likely due to bank instability (erosion), typically resulting in larger width to depth ratios.

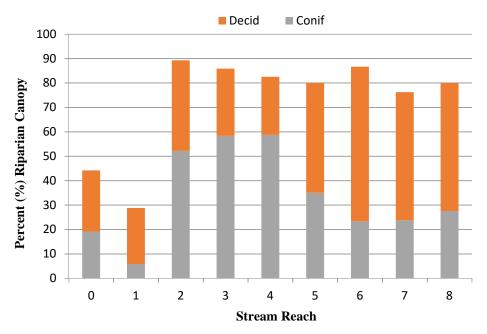



Figure 5: Percent of Riparian Forest Comprised of Deciduous and Coniferous Trees along Each Reach

Large woody debris is an important component of streams in the Pacific Northwest. During 2015, it was present in good quantities during the time of surveying and was considered to be appropriate in the majority of the Ebright Creek surveyed reaches. The majority of reaches met the PFC criteria of 150 pieces of LWD per km with only two reaches (Reaches 5 and 6) marginally lacking in LWD in 2015 (Figure 6). Reaches 2, 3, and 4 greatly exceeded the PFC criteria of 150 pieces of LWD per km during the 2015 baseline surveys. All reaches met the PFC criteria of 150 pieces of LWD per km during the 2017 surveys and the upper two reaches (Reaches 7 and 8) greatly exceeded the PFC criteria.

Pools are important habitats for stream fish and macroinvertebrates. Pools are often formed by pieces of LWD. The PFC criteria for streams supporting salmonids has a minimum criteria of 150 pierces of LWD per km (NMFS, 1996), which were met in this stream. NMFS' (1996) PFC criteria for pool frequency is greater than 35 pools per km. It was surprising that pool frequency was high and LWD is only marginal in Reach 5 during 2015, but LWD input did increase in 2017. The decrease in pool frequency in 2017 along this reach may be attributed to the steep nature of the reach and the fact that many of the pools observed were small cascade pools formed by cobble and boulders rather than LWD (Figures 7 and 8). The LWD counts increased in 2017 for Reaches 5 to 9.



Photo 6: Typical Wide Stream Channel Observed in Reaches 7 and 8

This may be attributed to the increase in the number of landslides in the upper reaches since 2015. The number of pools and LWD observed in Year 3 (2017) increased significantly in Reach 7 compared to Year 1 (2015). This increase in number of pools may be attributed to the change in stream course, gradient, and/or amount of LWD in the stream channel.

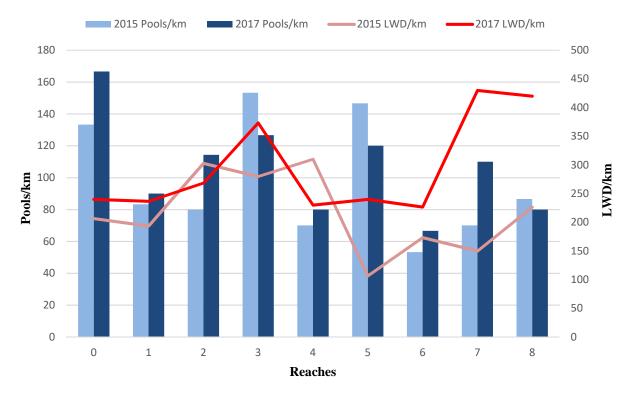



Figure 6: Number of Pools per km Versus Number of Key Pieces of LWD per km (2015 and 2017).

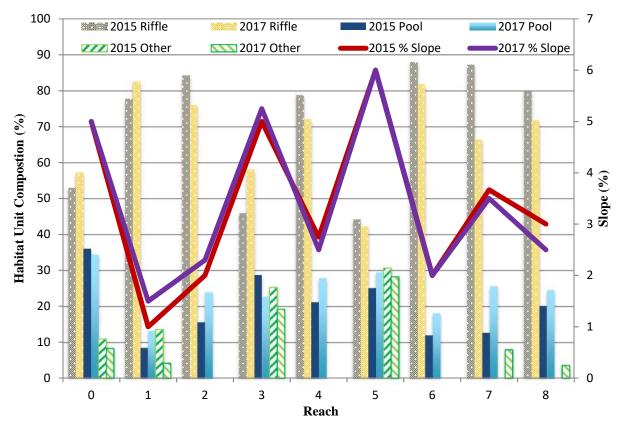
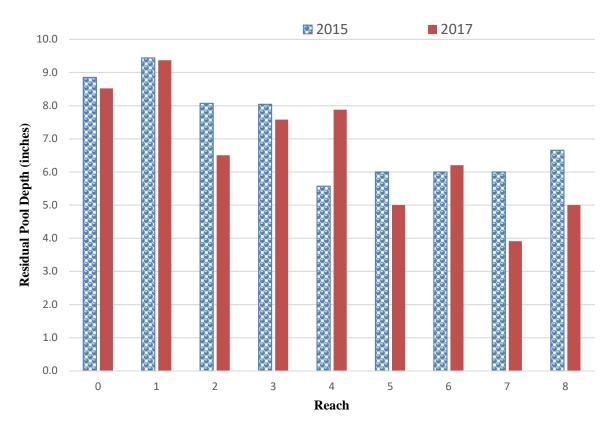



Figure 7: Habitat Unit Composition per Reach Compared to Slope (2015 and 2017)

As depicted in Figure 7, Ebright Creek habitat units are dominated by riffle habitat. The steeper reaches (Reaches 0, 3, and 5) contained less riffle habitat than the stream reaches that exhibit shallower stream channel slopes (Figures 6 and 7). The steeper reaches also had many stretches of cascade-pool sections that are depicted as "other" stream habitat. These steeper reaches contained proportionally more pools than the less steep, riffle dominated reaches. From 2015 to 2017, the upper reaches (Reaches 6 to 8) in the landslide prone area saw an increase in length of pool habitat. The greater length of pool habitat may be an artifact of channel migration in the floodplain due to slide events or increased pool formation due to augmented amounts of LWD in the stream channel due trees falling into the stream channel.

King County (1990) reported that there were numerous small pools in Ebright Creek and that the pool quality in the canyon reaches of the stream was more representative of trout habitat than salmon habitat. Limited pool sizes also reduce the quantity and quality of salmon spawning habitat, which typically consists of substrate at the downstream end of pools. Limited pool habitat would also restrict the capacity of the stream for supporting juvenile fish (both salmon and trout).

The pools in the lower reaches (Reaches 0 through 3) were significantly larger and deeper than the pools in the upper reaches (Figure 8). Many of the pools in Reaches 5 and 6 were small cascade pools formed by cobble and boulders while the larger pools in the lower reaches (Reaches 0 through 3) were usually formed by embedded channel spanning LWD that acted as a log sill. The shallower pool depth in the upper reaches above Reach 6 may be attributed to very low flow levels during the summer sampling, increased in numbers of pools, and/or the increase in total area of linear pool habitat in the upper stream section that has developed since 2015. These new pools observed in Year 3 (2017) may be a temporal feature due to stream channel migration and instability because of stream channel formation in the modified stream bed due to land slide activity. Several of these larger pools in the lower sections also contained additional features such as woody debris and undercut banks that provide complex habitat structure for aquatic organisms.

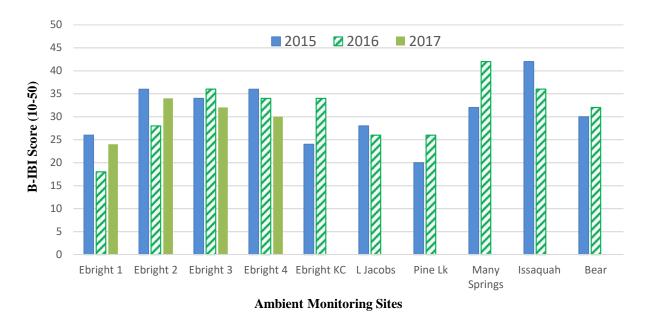

#### 3.2 Macroinvertebrate Sampling

Macroinvertebrate samples were collected in August 2015, September 2016 and September 2017. The B-IBI (10 to 50) scores ranged from 26 to 36 in 2015, 18 to 36 in 2016 and 24 to 34 in 2017 (see Table 3). These scores are considered "poor to fair" at the lower site (Site 1) and "fair to good" at the upstream sites (Sites 2 through 4), as described by Morley (2000).

A "good" score indicates that the biological conditions are slightly divergent from least disturbed condition. A "fair" score indicates that intolerant taxa richness, clinger richness and long lived species richness are decreased. A "poor" score indicates that overall taxa diversity is depressed, proportion of predators long-lived taxa richness are greatly reduced, and dominance by three most abundant taxa often very high (Table 3).

Site 1 is located in a section of Ebright Creek that was enhanced in 2012. The macroinvertebrate community may not have fully recovered from the streambed disturbance that was part of the enhancement project. Sites 2 to 4 are located in relatively undisturbed sections of Ebright Creek.

Macroinvertebrate samples were also collected in Ebright Creek by King County Ambient Monitoring Program in 2015, 2016, and 2017. However, King County's 2017 data was not available at the time of this report compilation. Their collection site was located in the same enhanced reach, but approximately




150 m (492 feet) downstream of Site 1. In 2016, King County had a similar "poor" B-IBI score (26) as Site 1.

Figure 8: Average Residual Pool Depth per Reach (2015 and 2017)

Other streams in the Lake Sammamish basin, except for Pine Lake and Laughing Jacobs Creeks, had similar "fair to good" B-IBI scores as was observed in Ebright Creek during 2015, 2016 and 2017 (Figure 9). Pine Lake Creek had "poor" B-IBI scores during 2015 and 2016, Laughing Jacobs Creek had "poor" B-IBI scores during 2016, and the King County Ebright Ambient Monitoring site had "poor" B-IBI scores during 2015 and a "fair" score during 2016.

Both Sites 1 and 2 along Ebright Creek had higher B-IBI scores in 2017 compared to 2016, but they were still lower than the baseline conditions observed in 2015. Site 1 decreased from a "fair" (2015) to "poor" (2016) and increased back up to "fair" condition (2017; Figure 9). Site 1 B-IBI scores were similar to Pine Lake Creek and Laughing Jacobs Creek B-IBI scores for 2015 and 2016. King County's 2017 Sammamish Basin B-IBI scores were not available, as such comparisons could not be made. Ebright Sites 3 and 4 did not change significantly from Year 1 (2015) to Year 3 (2017), although Year 3 values were lower than both Years 1 and 2 (Figure 9). The B-IBI scores for Ebright Creek's upstream sites (Sites 2, 3, and 4) were comparable to higher B-IBI scores observed in Many Springs, Issaquah Creek, and Big Bear Creek (Figure 9). All three upper Ebright Creek sites scored better than 2015-2016 Laughing Jacobs Creek and Pine Lake Creek sites.



**Figure 9:** Benthic Macroinvertebrate (B-IBI) Scores for Ebright Creek (2015-2017) compared with King County Ambient Monitoring Sites in the Sammamish Basin (2015-2016).

|                     | Site                   | $LK SA^2$ | EC 1 | EC 2       | EC 3 | <sup>1</sup> Scores<br><sup>2</sup> King C                                                                                                                             |        |           | Exc                   |                  |                  | Poor/                      |
|---------------------|------------------------|-----------|------|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------------------|------------------|------------------|----------------------------|
|                     | Year                   | 2016      | 2017 | 2017       | 2017 | Scores based on Wisseman (1998) 10 – 50 B-IBI<br>King County's Ebright Creek Ambient Monitoring Site (#08LAK3627) not available for 2017 at time of report compilation | Legend | Excellent | Excellent/Good - Good | Good/Fair – Fair | Fair/Poor – Poor | Poor/Very Poor - Very Poor |
|                     | Taxa Richness          | 46        | 23   | 31         | 33   | Wisse<br>Ebright                                                                                                                                                       | end    | llent     | ) – poc               | ir – Fai         | r – Poo          | r – Vei                    |
|                     | Ephemeroptera Richness | 3         | 2    | 2          | 3    | man (1<br>Creek                                                                                                                                                        |        |           | pooq                  | r                | ŗ                | y Pooi                     |
|                     | Plecoptera Richness    | 5         | 5    | י ע        | , 4  | .998) 1<br>Ambi                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Trichoptera Richness   | 4         | з    | <i>و</i> م | 9    | 10 – 50<br>ent Mo                                                                                                                                                      |        |           |                       |                  |                  |                            |
| Q                   | EPT Richness           | 12        | 10   | 13         | 16   | ) B-IB<br>onitori                                                                                                                                                      |        |           |                       |                  |                  |                            |
| QUANTITIES          | Clinger Richness       | 10        | 7    |            | 13   | I<br>ng Site                                                                                                                                                           |        |           |                       |                  |                  |                            |
| ITIE                | Long-lived Richness    | 3         | 4    | י ע        | , 4  | e (#08]                                                                                                                                                                |        |           |                       |                  |                  |                            |
| S                   | Intolerant Richness    | 4         | 2    | <b>د</b>   | 2    | LAK3                                                                                                                                                                   |        |           |                       |                  |                  |                            |
|                     | Percent (%) Dominant   | 0.36      | 71.6 | 70.0       | 45.2 | 627) n                                                                                                                                                                 |        |           |                       |                  |                  |                            |
|                     | Predator Percent (%)   | 0.35      | 16.8 | 19.0       | 17.9 | ot availa                                                                                                                                                              |        |           |                       |                  |                  |                            |
|                     | Tolerant Percent (%)   | 0.002     | 0.0  | 0.0        | 0.0  | able for 2                                                                                                                                                             |        |           |                       |                  |                  |                            |
|                     | No. of Organisms       | 500       | 500  | 500        | 496  | 2017 at t                                                                                                                                                              |        |           |                       |                  |                  |                            |
|                     | Overall Score          | 34        | 24   | 34<br>37   | 30   | ime of 1                                                                                                                                                               |        |           |                       |                  |                  |                            |
|                     | Taxa Richness          | 5         | з    | ωω         | ω    | report                                                                                                                                                                 |        |           |                       |                  |                  |                            |
|                     | Ephemeroptera Richness | _         | I    |            | -    | compi                                                                                                                                                                  |        |           |                       |                  |                  |                            |
|                     | Plecoptera Richness    | 3         | 3    | ωω         | ω    | lation.                                                                                                                                                                |        |           |                       |                  |                  |                            |
| SCORES <sup>1</sup> | Trichoptera Richness   | -         | I    | ωω         | ω    |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
| RES <sup>1</sup>    | Clinger Richness       | Ţ         | 1    | ωω         | ω (  |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Long-lived Richness    | 3         | 3    | א ט        | ω (  |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Intolerant Richness    | 5         | 1    | n v        | - ·  |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Percent (%) Dominant   | 5         | з    | ω          | S (  |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Predator Percent (%)   | 5         | з    | ω          | ω    |                                                                                                                                                                        |        |           |                       |                  |                  |                            |
|                     | Tolerant Percent (%)   | s         | 5    | r v        | S (  |                                                                                                                                                                        |        |           |                       |                  |                  |                            |

### 3.3 Water Quality

Flow (via water level), water level, and temperature were monitored at the upper end of Reach 1 by instrumentation installed by Geosyntec. This section summarizes the water quality and hydrologic monitoring activities completed from December 1, 2016 to November 30, 2017 in the Ebright Creek Watershed. Consistent with the project scope of work, this memorandum does not include analysis or interpretation of the data that have been collected. Upon collection of additional years of data, analysis and interpretation may be supported under a subsequent scope of work.

### 3.3.1 General Monitoring Activities

This monitoring project has been ongoing since early 2015. Activities completed prior to December 1, 2016, are documented in previously submitted annual reports. The following bullets describe key monitoring activities completed during this reporting period.

March 24, 2017: Geosyntec performed manual flow measurement and inspection at Site 1 (Ebright Creek). No updates to the stage-discharge rating curve were necessary.

**April 2017:** Geosyntec observed unusual turbidity readings at Site 2 (Chestnut Estates pond). The City was notified and subsequently performed maintenance of the turbidity probe. Turbidity readings recovered after maintenance.

#### 3.3.2 Rainfall Summary

The Sammamish Plateau Water and Sewer District has been monitoring precipitation at the headquarters since 1995 (Table 4). Over the reporting period, rainfall was very close to average.

|                 | REPORTING YEAR         | AVERAGE PRECIPITATION |
|-----------------|------------------------|-----------------------|
| Month           | PRECIPITATION (INCHES) | (1995-2017) (INCHES)  |
| December (2016) | 4.07                   | 6.1                   |
| January         | 3.15                   | 6.15                  |
| February        | 10.18                  | 4.38                  |
| March           | 7.25                   | 5.45                  |
| April           | 5.29                   | 3.47                  |
| May             | 3.49                   | 3.16                  |
| June            | 1.19                   | 2.33                  |
| July            | 0                      | 1.00                  |
| August          | 0.15                   | 1.18                  |
| September       | 1.33                   | 2.15                  |
| October         | 2.81                   | 4.74                  |
| November        | 8.59                   | 7.19                  |
| Total           | 47.5                   | 47.3                  |

| <b>Table 4:</b> Monthly Precipitation Levels at the Sammamish Plateau Water and Sewer District Headquarters |
|-------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|

#### 3.3.3 Site Observations

#### Site 1 – Ebright Creek near the Mouth of Lake Sammamish

Water level at this site has been continuously reported and has been stable through the monitoring periods. Water level is being converted to estimated flowrate based on a flow rating curve developed in February 2015 (Year 1). One goal of the project is to obtain another flow measurement at a higher stage to improve the reliability of this rating curve. However, after the storm event that occurred in mid-November 2015, it appears that there have been modifications to the cross section (i.e., change in rock configurations). Further modifications to the cross section were made by the land owner to repair erosion that had occurred. This established a more stable cross section for monitoring, but also changed hydrologic conditions. As such, a new rating curve was developed. A new flow measurement was obtained in late November 2015 (Year 1), and analyzed to determine if adjustments to the rating curve were accurate. A survey and flow measurement was conducted in July 2016 (Year 2) to update the rating curve. The new rating curve was propagated back to January 2016. One manual discharge measurement was taken on March 24, 2017, to continue rating curve calibration. At the time of the measurement, the gage height was at 0.39 feet, and the measured discharge was 5.28 cubic feet per second (cfs) with an error of 5.68 percent. No adjustments to the rating curve was required during Year 3. In Year 3, a peak instantaneous discharge for the reporting year was recorded on February 10, 2017, with a value of 26.6 cfs.

#### Site 2 – Discharge from Chestnut Lane Pond

Site 2 is being monitored for flow, temperature, and turbidity of the combined discharge from the Chestnut Lane subdivision. Flowrate (via a pre-calibrated Thel Mar weir) and temperature have been reported reliably over the last two years. Until early November 2015 (Year 1), turbidity reported continuously and was generally reasonable with the exception of short duration spikes that appear to be anomalous. It was at this time that the turbidity sensor reported increasingly unrealistic values. As part of field maintenance in late November 2015, it was determined that the sensor needed to be cleaned. The sensor eye had been obscured by floating debris. The sensor was cleaned and reported in an expected range.

At some point during an extreme discharge event in early 2016 (Year 2), the Thel-Mar weir was dislodged from the location where it was originally installed by, and then later recovered, by City staff in a downstream manhole. The cause of the large discharge event and the inability of the weir to resist this flowrate is unknown. Then in March 2016, the cables for the sensors at this site were severed. The cause of this issue is unknown. After the severing of the cables, the turbidity sensor required rehabilitation, which took approximately 2 months. The weir and sensors were reinstalled in June 2016 in a downstream manhole, a location preferred by the City. As a result, flowrate estimates between January and June 2016 are not reliable, while no data are available between March and June 2016. Since the equipment was rehabilitated and reinstalled in June 2016, all sensors were stable and recording continuously through until 2017 (Year 3).

In April 2017, unusual turbidity readings were observed. Subsequent maintenance was performed and turbidity readings recovered. During the summer of 2017, the site was dry and the temperature probe was exposed to open air. Temperatures recorded during those times reflected ambient air rather than water temperature.

### Site 3 (Wetland 61) and Site 4 (Wetland 17)

Sites 3 and 4 are being monitored for water level fluctuation. Water level has been stable and within expected ranges over the last three years (2015-2017).

### Site 5 – Crossings at Pine Lake (West)

Site 5 is being monitored for flow, temperature, and turbidity at the location where the onsite wetland discharges below the road in the Crossings at Pine Lake subdivision. In April 2015 (Year 1), this monitoring station experienced a power failure that was determined to be a result of a defect in the manufacturer equipment wiring. This resulted in an outage between April 10 to 30, 2015, while the manufacturer diagnosed and corrected the issue. Besides this outage, the monitoring system at this site has performed as expected. Like the turbidity sensors at Sites 2 and 6, the turbidity sensor at this site reports anomalously high readings periodically which are not believed to be real. The turbidity meter at this site has not required maintenance to date. The signals from this station have been generally stable and reliable throughout 2016 and 2017. Quarterly inspection and maintenance of the pressure transducers and turbidity probes maintains reliability.

### Site 6 – Crossings at Pine Lake (East)

Site 6 is being monitored for flow, turbidity, and temperature of the northerly discharges from the Crossings at Pine Lake subdivision to Wetland 17. In April 2015 (Year 1), the turbidity sensor at this site stopped reporting and was determined to be clogged with filamentous algae. In response to the elevated risk for algal biofouling at the original monitoring location, this monitoring station was relocated. The new station came online on June 30, 2015, and has reported reliably for flowrate (via a pre-calibrated Thel Mar weir), temperature, and turbidity since that time. Like the turbidity sensors at Site 2 and 5, the turbidity sensor at this site reports anomalously high readings periodically which are not believed to be real. The signals from this site have been generally stable and reliable throughout 2016 (Year 2) and 2017 (Year 3), a well. Quarterly inspection and maintenance of the pressure transducers and turbidity probes maintains reliability.

# 4. DISCUSSION

The effect of urbanization on stream ecosystems is a result of interrelated impacts of hydrology, water quality, and habitat (Fitzpatrick and Peppler, 2010). Urban development that occurs throughout a watershed can result in degraded habitat within a stream channel through flow alteration and sediment erosion. Urban development, such as is occurring in the headwaters of Ebright Creek, typically increases the amount of water entering a stream after a storm and decreases the time that it takes for the water to travel over altered land surfaces before entering the stream. This altered hydrology often results in deeper stream channels or an increase in the stream-channel cross-sectional area. The magnitude of these effects depends on natural environmental factors, such as the geology and soils that can influence the geomorphic characteristics of a stream and its watershed.

Efforts to reduce flooding by draining water quickly from roads and parking lots can result in increased amounts of water reaching a stream within a short period of time, which can lead to stream flashiness and altered stream channels. Additionally, rapid runoff reduces the amount of water available to infiltrate the soil and recharge the aquifers, which often results in lower sustained stream flows, especially during summer. Furthermore, when the hydrology of a stream is altered, the physical habitat of a stream often becomes degraded from channel erosion or lower summer flows that reduce spawning, feeding, and living spaces of the aquatic organisms.

With the potential for environmental degradation due to urbanization in the upper Ebright Creek watershed, there is an increased awareness to monitor and assess the long-term conditions of Ebright Creek. Stream habitat assessments are useful for measuring the physical conditions that may limit aquatic biological community health and structure. Recently, stream habitat data have been used to assess physical and geomorphic responses to watershed-scale land disturbance, such as urbanization. Physical responses include changes in channel geometry and hydraulics, substrate size, habitat complexity and cover, habitat volume, and bank/riparian conditions. These responses are caused by changes in flood characteristics and source and amount of sediment loads associated with land clearing and increased impervious surfaces (Fitzpatrick and Peppler, 2010).

To meet the "Mitigated Determination of Non-Significant" conditions for the Chestnut Lanes and the Crossings housing developments set out by the City's hearing examiner, the City is evaluating whether the stream habitat of Ebright Creek is being degraded by any increased erosion and sedimentation resulting from the construction of these developments.

A comprehensive baseline stream habitat and macroinvertebrate assessment was conducted in August 2015 (Year 1) on Ebright Creek, downstream of the Plateau. A macroinvertebrate assessment was conducted in early September 2016 (Year 2) and September 2017(Year 3) to monitor aquatic invertebrate biological community trends and richness at the four index sites. Flow (via water level), water level, and temperature were monitored in Years 1 to 3 at the upper end of Reach 1 by instrumentation installed by Geosyntec. This monitoring was initiated to better understand the relationship between stormwater, hydrology, and natural conditions in Ebright Creek as a means to evaluate whether the stream habitat and the biological community of the stream is being degraded by any increased erosion and sedimentation resulting from the construction of these developments. Effects of urbanization on instream physical, chemical, and biological characteristics, such as increased contaminants, increased streamflow flashiness, increased concentrations of chemicals, and changes in aquatic community structure toward a more tolerant community associated with organically enriched conditions, have been documented in literature (Waite et al., 2008).

There has been a considerable amount of habitat loss in the upper watershed of Ebright Creek above the study area and in the lower reaches in the study area. These losses can largely be attributed to forest loss (especially in the riparian zone) coupled with urban development resulting in altered hydrology and a reduction of channel complexity (e.g., LWD) especially in Reaches 0 and 1 and in the headwater sections of Ebright Creek, located on the Plateau. McMillan et al. (2014) found that riparian vegetation in urban streams influenced nutrient transformations, bank stability, input of woody debris, and provided direct water quality benefits (reduced stream temperature). Similarly, the presence of LWD has been shown to improve the macroinvertebrate community, as well as providing hydraulic roughness, that result in pool formation and streambed stabilization (Hilderbrand et al., 1997).

Reaches 7 and 8 were very unstable during Year 3 (2017) surveys and with significant channel migration observed. Extensive patches of invasive and pioneering plant species were observed in areas impacted by landslips in Reaches 6 to 8. Channel widening along these reaches were also likely due to bank instability (erosion). The LWD counts increased from Year 1 to Year 3 in Reaches 5 to 9. This may be attributed to the increased number of landslides in the upper reaches of Ebright Creek since Year 1 (2015). The number of pools and LWD increased significantly in Reach 7 compared to Year 1. This increase in pool numbers may be attributed to change in stream course, gradient, and/or amount of LWD in the stream channel contributing to pool formation. Reaches 6 to 8 saw an increase in length of pool habitat since

Year 1. The greater length of pool habitat may be an artifact of channel migration in the floodplain due to slide events, or to increased pool formation due to augmented amounts of LWD in the stream channel due trees falling into the stream channel.

Unlike other urbanized streams in the Puget Sound lowlands, Ebright Creek is not lacking in riparian corridor, channel bed stability, LWD, and riparian vegetation in most of the reaches surveyed. The canyon reach is still in a pristine condition with excellent base flow, LWD, and riparian cover (Sammamish 2012). A stream enhancement project conducted by King County in 2012 along Reach 1 has benefited the geomorphic conditions (width-to-depth ratio, number of pools, sediment size distribution), water quality, and biological integrity of the lower section of the stream reach. Improvement in bed and bank stability, along with a reduction in flashiness of flows, could help reduce the accretion of fine sediments and gravel throughout the streambed in the upper landslide prone sections of the canyon reaches. Despite these issues, Ebright Creek still provides excellent habitat for fish, including kokanee salmon.

Fitzpatrick and Peppler (2010) noticed that an often assumed response in how a biological community degrades with urban development is by an initial resilience to change in biological condition over low levels of development. Then, after the biological community undergoes a rapid change in condition with increasing levels of urban development, an exhaustion response occurs (a "flat line" response) when only a few tolerant species are left in the community (Waite et al., 2008; Fitzpatrick and Peppler, 2010). The USGC's National Water Quality Assessment Program scientific investigations observed a different response from this hypothetical depiction (Waite et al., 2008; Fitzpatrick and Peppler, 2010). They noticed that aquatic invertebrate communities begin to degrade with the onset of urban development, which indicates that some species are highly sensitive to physical and chemical changes associated with urban development, based on the observation that sensitive species were being lost over the initial stages of development in relatively undisturbed watersheds (Waite et al., 2008; Cuffney et al. 2010; Fitzpatrick and Peppler, 2010).

Aquatic benthic macroinvertebrates are an important link in the food chain for salmonids and are an excellent indicator of stream health. Research indicates that a loss in the numbers of aquatic insect species that occurred in the groups Ephemeroptera (i.e., mayflies), Plecoptera (i.e., stoneflies), and Trichoptera (i.e., caddisflies), collectively called "EPT", were a common response in study areas where urban development occurred in forested watersheds (Waite et al., 2008; Fitzpatrick and Peppler, 2010).

Longer-lived species typically take longer to reproduce and, along with sensitive species, are among the first to disappear when a stream ecosystem is altered by human activity such as urbanization. The number of EPT species is a biological-condition metric that is used in many biomonitoring programs across the country because it is sensitive to stressors from environmental degradation. A reduction of more than 50 percent of EPT species was observed by USGS in some study areas as the percentage of urban development increased in the watersheds from low to high levels (Waite, 2008). Waite et al. (2008) found that low urban intensity sites, such as Ebright Creek, had higher abundances of pollution sensitive diatoms, larger numbers of the sensitive macroinvertebrate EPT taxa, and fish assemblages with higher abundances of sensitive salmonids.

EPT richness was "good to fair" for all four of the Ebright Creek macroinvertebrate samples taken in Year 1 (2015) during the baseline sampling event. Ephemeroptera richness was "very poor" at all sites.

Intolerant taxa richness and clinger richness were "very poor" in the lower macroinvertebrate site (Macroinvertebrate Sampling Stations 1 and 2) and Trichoptera richness was "very poor" in lower sections of Ebright Creek (Macroinvertebrate Sampling Station 1 and the King County Ambient Monitoring site). Intolerant taxa richness, tolerant percentage and long lived species richness were "good to excellent" in the upper sites (Macroinvertebrate Sampling Stations 2 through 4). The lower sites were located in the restored stream channel. The upper sites were located in the forested, relatively undisturbed ravine section of the stream. A future decrease in these metric in the upper sampling sites may be predictive of upstream habitat changes due to urban land cover increase or other anthropomorphic changes.

The 2017 macroinvertebrate sampling was the third annual collection from Ebright Creek. This annual sampling is part of a long-term monitoring effort using B-IBI metrics to evaluate whether the stream habitat of Ebright Creek is being degraded by any increased erosion and sedimentation resulting from the construction of the two upstream urban developments. Both Sites 1 and 2 had higher B-IBI scores in Year 3 compared to Year 2, but they were still lower than Year 1. Site 1 decreased from a "fair" condition in Year 1 to "poor" in Year 2, then back to "fair" in Year 3. The lower sites (Sites 1 and 2) B-IBI scores were similar to Pine Lake Creek and Laughing Jacobs Creek B-IBI 2015 and 2016 scores. The upper two stations (Sites 3 and 4) had "fair" to "good" B-IBI scores that did not change significantly from Year 1 to Year 3, however, Year 3 values were lower than both Years 1 and 2. The B-IBI scores for Ebright Creek's upstream sites (3 and 4) were comparable to higher B-IBI scores observed in Many Springs, Issaquah Creek, and Big Bear Creek.

The findings in this study are consistent with the work of others in nearby basins where development occurred with little to no attention placed on the effects of urbanization on biological integrity of small streams (Fevold et al., 2001; Morley and Karr, 2002). Morley and Karr (2002) found that as urbanization increased, biotic integrity (B-IBI scores) decreased significantly. The B-IBI metrics may be lower in streams that are flashy due to hydrological influences resting form urbanization.

The 2015 study "*Status and Trends of Aquatic and Riparian Habitats in the Lake Washington/Cedar/ Sammamish Watershed (WRIA 8)*" noted that stream biological conditions (as measured by the B-IBI) ranged from "very poor" in heavily urbanized areas to "very good" in rural, forested areas (King County 2015). This study corroborated most other research on relationships between urbanization and benthic macroinvertebrate community condition, as measured by B-IBI. Urban land cover and population density were the strongest predictors of declining B-IBI scores. Stream habitat conditions considered important for salmon (e.g., wood volume and water temperature) were found to be below standards that are considered supportive of salmon use, even in rural areas. Specific metrics were identified that could be reliably measured over time and recommended for use in a long term trend monitoring program. These metrics included important indicators of salmon habitat condition (e.g., wood volume, pool area, sediment composition, canopy cover, and B-IBI).

In summary, macroinvertebrate, water quality, and hydrologic monitoring activities were completed in calendar years 2015, 2016 and 2017, while stream habitat monitoring was conducted only in calendar years 2015 and 2017. Because of the limited period of monitoring completed to date (2015 through 2017), this report includes only preliminary trend analysis and/or interpretation of the habitat and macroinvertebrate monitoring data that have been collected since the 2015 baseline survey.

Habitat monitoring results indicate that the upper reaches (Reaches 7 and 8) were unstable during 2017. An increase in channel migration, length of pool habitat, and channel widening was observed since the Year 1 (2015) baseline surveys. The greater length of pool habitat and channel widening may be an artifact of channel migration in the floodplain due to slide events, or to increased pool formation due to augmented amounts of LWD in the stream channel due trees falling into the stream channel. With the landslides in Reaches 6 to 8, extensive patches of invasive and pioneering plant species were also observed.

The B-IBI values in Year 3 (2017) for the lower two macroinvertebrates sampling stations (Sites 1 and 2) rebounded compared to Year 2 (2016), but did not rise to the level recorded in Year 1 (2015). The dip in Year 2 may indicate some sort of stressor may have occurred in that year near the lower two stations, but not in the upper two stations and that they recovered in Year 3. The B-IBI values where still "fair" to "good", but the values were lower in Year 3 for the upper two macroinvertebrates sampling stations (Site 3 and 4) and the trend was decreasing from 2015 to 2017. This trend is most noticeable at station 4 and may be indicative of the physical stream habitat disturbances that are occurring upstream as a result of stream habitat alterations caused by the landslides.

As indicated in the literature, it takes sampling annually for at least 10 years to reliably detect a 3 percent annual change in status or condition. Upon collection of additional years of monitoring data, analysis and interpretation of the data will be included in future reports.

#### 5. References

- Berge, H.B., and K. Higgins. 2003. The Current Status of Kokanee in the Greater Lake Washington Watershed. King County Department of Natural Resources and Parks, Water and Land Resources Division. Seattle, Washington.
- Booth, D. 1994. A Protocol for Rapid Channel Assessment. King County Water and Land Resources Division. Seattle, Washington.
- City of Sammamish. 2011. Thompson Sub-basin Plan. Prepared by Parametrix, Inc. September.
- Cuffney, T.F., R.A. Brightbill, J.T. May, and I.R. Waite. 2010, Responses of Benthic Macroinvertebrates to Environmental Changes Associated with Urbanization in Nine Metropolitan Areas. Ecological Applications 20(5):1384-1401.
- Fevold, K., C.W. May, H.B. Berge, and E. Ostergaard. 2001. Habitat Inventory and Assessment of Three Sammamish River Tributaries: North, Swamp, and Little Bear Creeks. King County Department of Natural Resources, Water and Land Resources Division. Seattle, Washington.
- Fitzpatrick, F.A., and M.C. Peppler. 2010. Relation of Urbanization to Stream Habitat and Geomorphic Characteristics in Nine Metropolitan Areas of the United States. U.S. Geological Survey Scientific Investigations Report 2010-5056.
- Fore, L.S., J.R. Karr, and R.W. Wisseman. 1996. Assessing Invertebrate Responses to Human Activities: Evaluating Alternative Approaches. Journal of North American Benthological Society 15:212-231.
- Hayslip, G. (ed). 2007. Methods for the Collection and Analysis of Benthic Macroinvertebrate Assemblages in Wadeable Streams of the Pacific Northwest. Pacific Northwest Aquatic Monitoring Partnership. Cook, Washington.
- HDR. 2009. Lake Sammamish late run kokanee synthesis report. Prepared for the Lake Sammamish Kokanee Work Group. Seattle, WA. January 21, 2009. 38p.
- Hilderbrand, R., A. Lemly, C.A. Dolloff, and K. Harpster. 1997. Effects of Large Woody Debris Placement on Stream Channels and Benthic Macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 54:931-939.
- Karr, J.R., and E.W. Chu. 1999. Sampling Protocol for the Benthic Index of Biotic Integrity (B-IBI). Restoring Life in Running Waters: Better Biological Monitoring. Island Press. Washington DC.
- Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound lowland streams, Washington, USA. M.S. thesis, University of Washington, Seattle.
- King County. 2015. Monitoring for Adaptive Management: Status and Trends of Aquatic and Riparian Habitats in the Lake Washington/Cedar/Sammamish Watershed (WRIA 8). King County Water and Land Resources Division. Seattle, Washington.

\_\_\_. 1990. East Lake Sammamish Basin Conditions Report. King County Department of Public Works, Surface Water Management Division. Seattle, Washington. September 1990.

- McMillan, S.K., Tuttle, A.K., Jennings, G.D., and A. Gardner. 2014. Influence of Restoration Age and Riparian Vegetation on Reach-scale Nutrient Retention in Restored Urban Streams. Journal of the American Water Resources Association 50(3):626-638.
- Merritt, G., and C. Hartman. 2012. Status of Puget Sound Tributaries 2009: Biology, Chemistry, and Physical Habitat. Washington Department of Ecology, Environmental Assessment Program. Olympia, Washington.
- Morley, S.A. 2000. Effects of Urbanization on the Biological Integrity of Puget Sound Lowland Streams: Restoration with a Biological Focus. M.S. thesis, University of Washington. Seattle, Washington.
- Morley, S.A., and J.R. Karr. 2002. Assessing and Restoring the Health of Urban Streams in the Puget Sound Basin. Conservation Biology 16:1498-1509.
- National Marine Fisheries Service (NMFS). 1996. Making Determinations of Effect for Individual or Grouped Actions at the Watershed Scale. Portland, Oregon.
- U.S. Geologic Survey (USGS). 2006. Geologic Map of the Issaquah 7.5' Quadrangle, King County, Washington by D.B. Booth, T.J. Walsh, K. Goetz Troost, and S.A. Shimel.
- Waite, I.R., S. Sobieszczyk, K.D. Carpenter, A.J. Arnsberg, H.M. Johnson, C.A. Hughes, M.J. Sarantou, and F.A. Rinella. 2008 Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington. U.S. Geological Survey Scientific Investigations Report 2006-5101-D.
- Washington Department of Ecology (Ecology). 2009. Status and Trends Monitoring for Watershed Health and Salmon Recovery: Field Data Collection Protocol - Wadeable Streams. (http://www.ecy.wa.gov/programs/eap/stsmf/docs/01sntwadeablemana-vv3bhfl.pdf.