From:	ELST Master Plan <elst@kingcounty.gov></elst@kingcounty.gov>
Sent:	Thursday, January 26, 2017 10:29 AM
То:	reddy@benefits-consulting.com
Cc:	Lindsey Ozbolt; MikeSch@msn.com
Subject:	170126 ELST South Samm B - Reddy - ROW
Attachments:	170126 ELST South Samm B - Reddy - ROW.pdf

Dear Ms. Reddy,

Thank you for your interest in the East Lake Sammamish Trail Project. Please see the attached regarding your email from January 22, 2017. Please let me know if you have any questions.

Regards,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: <u>1-888-668-4886</u>

mamishtro

January 26, 2017

Dear Ms. Reddy,

Thank you for your interest in the East Lake Sammamish Trail. Please see your comment, as well as the King County response below. Let me know if you have any questions.

Comment: Dear Ms. Kelly Donahue and Ms. Lindsey Ozbolt: I had an opportunity today to review King County's "tree preservation plan" (page 12 of 28) and the 135-page 60% review plan (page 52). I'm truly mortified and deeply distressed that according to the County's "plan" the County plans to move the trail off the current "as built" trail further west to align from the true trail centerline which is virtually on the current split rail fence. This action is completely unnecessary and would take over and destroy literally thousands of dollars of landscaping and wildlife habitat for birds, eagles, animals, deer, ducks, bees, and much more! Come see the eagles in our neighborhood! This property has been maintained by me since 1997 – for 20 years, Twenty years! Some of the Rhododendrons and Azaleas were here before I purchased my home in August, 1997 and they are very grand and old. The plans indicate that the County is going to replace my landscaping and the fragile and rare wildlife habitat with "clearing and grubbing" based on the County's survey notes. What does this term mean? It is puzzling to me that the County would intentionally and deliberately destroy the beautiful landscaping and wildlife habitat that exists now when the County can easily stay on the currently "as built" current location or meander to the other side rather than swerving unnecessarily onto my 20-year old landscaping only to swerve back to the existing "as built" trail. This is an extremely wasteful move of property, landscaping, and the wildlife habitat. Can you consider another plan - like staying on the current "as built" location. I am otherwise fully supportive of the surfaced trail.

Further, I see that the County's plan is to put up a chain link fence. This is also alarming. There is nothing uglier and awful to look at then such a fence.

I am copying Mike Schmidt who is planning to discuss with you other concerns of our neighbors. Unfortunately, I am travelling and cannot meet to explain my concerns personally with you. Please help us and please consider the logic of keeping the trail in the "as built" location, the savings in expense to both the County and to me by avoiding destroying property and moving my utilities and attempting to relocate 20-year-old vegetation, and the saving of the wildlife habitat that I've spent 20 years nurturing! Thank you!

Respectfully, A very distressed Sammamish Homeowner! Peggy Reddy

King County Response: Thank you for your email and thank you for taking the time to meet for a clarification session on Tuesday, January 24. I believe we discussed the concerns you raised in this email during our meeting, and we provided you with additional plan information to supplement any additional comments you might make on the project plans to the City of Sammamish. Additionally, we provided you with the contact for the U.S. Army Corps of Engineers (USACE) staff person leading the review of the

Parks and Recreation Division Department of Natural Resources and Parks

50mm amigh tro

wetland delineations along the trail. Please let us know if you have any additional questions or concerns. As a reminder, all comments need to be sent to Lindsey Ozbolt at the City of Sammamish by 5pm on January 27.

Lindsey can be reached at:

425.295.0527 LOzbolt@sammamish.us

If you have any other questions or concerns regarding this trail, please feel free to contact the project hotline at 1-888-668-4886 or <u>ELST@kingcounty.gov</u>. You may also visit the project <u>website</u>, King County Park's <u>blog</u>, and our <u>Twitter</u> page for up-to-date information on this and other projects.

Sincerely,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: 1-888-668-4886

From:	ELST Master Plan <elst@kingcounty.gov></elst@kingcounty.gov>
Sent:	Thursday, January 26, 2017 9:06 AM
То:	arul_menezes@hotmail.com
Cc:	Lindsey Ozbolt
Subject:	170126 ELST South Samm B - Menezes - Trees
Attachments:	170126 ELST South Samm B - Menezes - Trees.pdf

Dear Mr. Menezes,

Thank you for your interest in the East Lake Sammamish Trail Project. Please see the attached regarding your comment. Please let me know if you have any questions.

Regards,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: <u>1-888-668-4886</u>

January 26, 2017

Dear Mr. Menezes,

Thank you for your interest in the East Lake Sammamish Trail. Please see your comments, as well as the King County response below. Let me know if you have any questions.

Comment: You commented that you have a 50-year-old dogwood tree at Station 295 that is significant and does not show up on our plans.

King County Response: Thank you for your email. Any comments that you would like to make sure are submitted as part of the permit process should be submitted by 5:00 pm on January 27 to:

Lindsey Ozbolt, Associate Planner P: 425-295-0527 E: lozbolt@sammamish.us. Address: City of Sammamish City Hall 801 228th Avenue S.E. Sammamish, Washington 98075

In the future, please contact the hotline if you have any questions or concerns instead of contacting the project team directly. You can reach the project team at 1-888-668-4886 or <u>FLST@kingcounty.gov</u>. You may also visit the project <u>website</u>. King County Park's <u>blog</u>, and our <u>Twitter</u> page for up-to-date information on this and other projects.

Sincerely,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: 1-888-668-4886

ELST Master Plan <elst@kingcounty.gov></elst@kingcounty.gov>
Thursday, January 26, 2017 8:56 AM
daynesampson@hotmail.com
Lindsey Ozbolt
170126 ELST South Samm B - Sampson - Comments
170126 ELST South Samm B - Sampson - Comments.pdf

Dear Mr. Sampson,

Thank you for your interest in the East Lake Sammamish Trail Project. Please see the attached regarding your call to the project hotline on January 25, 2017. Please let me know if you have any questions.

Regards,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: <u>1-888-668-4886</u>

Parks and Recreation Division Department of Natural Resources and Parks

"mamigh tro

January 26, 2017

Dear Mr. Sampson,

Thank you for your interest in the East Lake Sammamish Trail. Please see your comments, as well as the King County response below. Let me know if you have any questions.

Comment: You requested information on where you can submit comments to the City before the deadline.

King County Response: Thank you for your call. Any comments, questions, or concerns that you have regarding the South Sammamish B construction project should be directed to Lindsey Ozbolt with the City of Sammamish by 5:00 pm on January 27. Lindsey can be reached at:

425.295.0527 LOzbolt@sammamish.us

If you have any other questions or concerns regarding this trail, please feel free to contact the project hotline at 1-888-668-4886 or <u>ELST@kingcounty.gov</u>. You may also visit the project <u>website</u>, King County Park's <u>blog</u>, and our <u>Twitter</u> page for up-to-date information on this and other projects.

Sincerely,

Kelly Donahue Community Engagement

King County Department of Natural Resources 201 South Jackson Street, Suite 700 Seattle, WA 98104-3854 Project Hotline: 1-888-668-4886

Auto Response: RE: Please Approve the Permit for Segment 2B of the ELST

Sean Ardussi <sardussi@yahoo.com>

Fri 1/27/2017 10:32 AM

To:Lindsey Ozbolt <LOzbolt@sammamish.us>;

I'm changing from my Yahoo mail to using my new one. I will no longer be checking this email after the beginning of the year. Please update my contact information. Thank you. ardussis at gmail dot com

From:Lindsey OzboltSent:Friday, January 27, 2017 10:32 AMTo:'sardussi@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sean,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Sean Ardussi [mailto:sardussi@yahoo.com] Sent: Thursday, January 26, 2017 12:51 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I grew up in Issaquah and have been riding a bicycle through this corridor for many years. Completion of this trail is an important investment in the future for not only residents from Sammamish, but Issaquah, Redmond, and communities throughout King County. A completed paved path for bikes and pedestrians helps to open access to the lake for all, while providing a safe transportation corridor that is separate from the parkway.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely, Sean Ardussi

Sean Ardussi 2621 B Marine Ave SW Seattle, WA 98116 2063977155

From:	Jenny Devlin <jenadevlin@gmail.com></jenadevlin@gmail.com>
Sent:	Friday, January 27, 2017 1:45 PM
То:	Lindsey Ozbolt
Subject:	Re: Please Approve the Permit for Segment 2B of the ELST

Of course my letter includes autocorrect typos from my phone. :/

Bummmmer. Since I've never typed Sammamish on my phone, evidently: Adam Amish = Sammamish

Poop de doop.

> On Jan 27, 2017, at 10:12 AM, Lindsey Ozbolt <LOzbolt@sammamish.us> wrote:

>

> Dear Jennifer,

>

> Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

>

> Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

>

> Regards,

>

- > Lindsey Ozbolt
- > Associate Planner | City of Sammamish | Department of Community Development

> 425.295.0527

>

>

> -----Original Message-----

> From: Jennifer Devlin [mailto:jenadevlin@gmail.com]

- > Sent: Thursday, January 26, 2017 6:39 AM
- > To: Lindsey Ozbolt <LOzbolt@sammamish.us>
- > Subject: Please Approve the Permit for Segment 2B of the ELST
- >
- >
- > Dear
- >
- > Dear city of Sammamish,
- >

> I am writing to express my support for completing the ELST and approving permit SSDP2016-00415.

>

> Please approve the permit, as submitted.

>

> Request 1: Approve the permit: Complete this regional trail and local amenity Request 2: Follow AASHTO national standards: Allow for all users (people on bikes, people walking) of all ages and abilities.

> Request 3: Give crossing priority to the trail at roads and driveways: Ensure safety and predictability

>

> The Adam Amish property owners do NOT own the railroad ROW and have encroached on it long enough to feel entitled to it. It's not theirs! It belongs to The People.

>

> Please approve the permit, as proposed, with expediency.

- > > Sincerely,
- > Jennifer Devlin

>

- > Jennifer Devlin
- > 4200 NE 105 st
- > Seattle, WA 98135
- > 3605099536

From:	Patricia Harrell <pat_harrell@msn.com></pat_harrell@msn.com>
Sent:	Friday, January 27, 2017 11:42 AM
То:	Lindsey Ozbolt
Subject:	Re: East Lake Sammamish Trail-South Sammamish Segment B section-60% Design Plan comments

Thanks Lindsey! Have a great weekend. Pat

From: Lindsey Ozbolt <LOzbolt@sammamish.us>
Sent: Friday, January 27, 2017 11:18 AM
To: Patricia Harrell
Subject: RE: East Lake Sammamish Trail-South Sammamish Segment B section-60% Design Plan comments

Dear Pat,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Patricia Harrell [mailto:Pat_Harrell@msn.com]
Sent: Thursday, January 26, 2017 6:58 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: East Lake Sammamish Trail-South Sammamish Segment B section-60% Design Plan comments

Hello Lindsey,

Attached are my comments. If you have a minute please confirm your receipt and no issue opening the document.

Best Regards,

Pat Harrell

From:Lindsey OzboltSent:Friday, January 27, 2017 11:18 AMTo:'Patricia Harrell'Subject:RE: East Lake Sammamish Trail-South Sammamish Segment B section-60% Design Plan
comments

Dear Pat,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Patricia Harrell [mailto:Pat_Harrell@msn.com]
Sent: Thursday, January 26, 2017 6:58 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: East Lake Sammamish Trail-South Sammamish Segment B section-60% Design Plan comments

Hello Lindsey, Attached are my comments. If you have a minute please confirm your receipt and no issue opening the document. Best Regards, Pat Harrell Emailed 1/26/2017 lozbolt@sammamish.us Hand Delivered 1/27/2017

Lindsey Ozbolt, Associate Planner City of Sammamish City Hall 801 228th Avenue SE Sammamish, Washington 98075

RE: King County SSDP Permit-- South Sammamish Segment B Homeowner comments regarding 60% Design Plan Survey Station 332+00 2221 East Lake Sammamish PL SE

Dear Lindsey,

I am a Sammamish lakeside property owner with two properties located within the South Sammamish Segment B. I have reviewed the 60% Master Plan Designs in detail that relate to my property and the properties in the near vicinity and met with the County representative on January 17. I have identified several issues regarding safety, property access and landscaping which must be addressed, as discussed below.

The improved trail is a significant asset to our community and the issues I have identified can be easily resolved. I would greatly appreciate the opportunity to discuss them with the appropriate person(s). These issues may simply not have been addressed in the 60% plan, but prudence dictates that I document my concerns with King County, and reach mutual resolution before the SSDP Permit is issued and the design finalized. Thank you for your review and support with this matter.

My primary residence is located between Survey Station 331+00 and 333+00, primarily at 332+00. In this area, the current trail is very close to the lake-edge. The current trail divides homeowners' properties, such that our lakefront property is separated from our residences. This area is challenging to improve, due to this division and the walls that must be built in order to support the width of the improved trail. A long straight wall must be built to support the eastern side of the improved trail, because the natural land is significantly below the trail elevation.

SAFETY: The first issue pertains to the safety of the trail users. As noted above, in this area, the trail is very close to the lakeshore. From approximately Survey 327+00 to 334+00, the trail has a steep drop-off to the lake. My shoreline currently has huge boulders that reinforce the shoreline bank. Consequently, my dock is my only true use of the waterfront. Currently, my property and all properties in the area, have fencing with gates that protect the current trail users, as well as the private property.

The plan noted at AL 11 appears to remove the fence, because it is located within the CG lines. However, the plan does not provide a replacement of the fence with access gates for the homeowners, as evident in the LA7 plan. The improved trail will increase the traffic on the trail, particularly bicyclists. Safety mandates for trail-users, that the fence be replaced with a fence adequate to withstand an accident. My property currently has a split-rail fence, which is not adequate for the improved trail. I have been involved in two bicycle accidents on the unimproved trail at low speeds. Without a proper fence in this area, and due to the increased use with the improved trail, inadequate fencing can result in serious injury. Access for emergency vehicles is limited, because neither public, nor private roads, exist in the area to allow access to the trail and to the lakefront. The gates will be required for emergency access, and enable the homeowners' access to their docks and lakefront property.

- 1) Does the County agree that a fence is necessary for the safety of the trail users?
- 2) Does the <u>City</u> agree that a fence is necessary for the safety of trail users?
- 3) Will the County retain the existing fencing along the lakeshore or actually replace with new fencing?

ACCESS: My property has a 70-foot long wooden bridge that leads across a gully in the Railroad Right of Way, to the eastside of the existing trail. Nearby is one other similar bridge. The plan at AL11 indicates removal of the bridge to the R/W line (70 feet) during construction, but does not indicate it will be replaced. The bridge need not be removed completely, given less than 10 feet of it interferes with trail construction. The bridge has been in place for over 40 years and is built on telephone poles. Removing it will disrupt the entire area (including a steep hillside) and likely destroy the bridge. I have engaged a Geotechnical Engineering firm to perform periodic studies to ensure the stability of the hillside and existing terraces which would also be compromised with removal of the bridge. I understand the need to remove a small part of the bridge permanently due to the improved trail, but removing the entire bridge seems unreasonable and unnecessary. Furthermore, without the bridge, my property has no access to the trail or to my lakefront property—an unacceptable result. This issue is further magnified by no designated gate in the fence to access the trail and my lakefront. As the plans are currently drafted, residents and trail-users appear to have access to my lakefront and dock, but I do not have such access which is not an acceptable situation. Several other nearby properties have a similar situation.

- 4) Why is the County removing such a significant private property structure but not providing for its replacement?
- 5) What does the County plan to do to ensure the stability of the hillside of my property if the bridge is removed?
- 6) Is the County going to adjust the plan to provide my access to the trail as well as my lakefront property as it currently exists? This requires a gate in the proposed fencing as well as the bridge or other means to reach the elevated trail.

Currently, electrical service runs along the bridge, and proceeds under the existing trail to my dock. This electrical service must be retained under the improved trail for safety as well as for dock use and maintenance. Unfortunately, this service was installed before my ownership of the property, so I am not aware of the depth of the electrical lines under the existing trail bed.

7) Will the County provide for retention of the existing utilities under the improved Trail?

LANDSCAPE: The Landscape Plans (LA 6 and LA 7) indicate the property located at 331+00, owned by Theresa East, has been identified as Wetland 18C. This designation is likely based on prior weather patterns. This designation should be reassessed to determine whether or not this area is actually currently a wetland. The plans should correctly reflect the true size of any wetland, assuming wetland still exists. The plans further provide for a significant portion of my property, and the adjacent two properties to the south, to be stripped of their current plants and grass and replanted as a wetland buffer area. This is beyond the needs of the improved trail and appears to be an unreasonable infringement on property rights to restrict the use of property in this regard. In addition, these areas are actually very dry and it is questionable as to whether or not any plants would flourish without irrigation. I have installed artificial turf, rather than grass, in this area due to the absence of irrigation. Furthermore, the designation appears to include the steep hillside on my property, which have been terraced, planted and maintained to prevent erosion and to ensure stability. Prudence requires reassessment of the wetland designation and mapping, to ensure any remaining wetlands are protected, and any non-wetland areas are not negatively impacted. In addition, the plans should be corrected to reflect the true wetlands, and reduce the wetland buffer area currently indicated in the plans. I believe if we address this together we can resolve the wetland buffer area to the satisfaction of all parties.

- 8) Has the existence of a wetland been confirmed and documented?
- 9) Why has the County chosen this area to establish a large wetland buffer and why is it so expansive?
- 10) Will the County provide ongoing maintenance for the wetland buffer or will I as the property owner be required to maintain the wetland buffer?

PROPERTY RIGHTS:

I understand that the County owns the former railroad right of way through a quit claim it received. Various portions of the right of way have different legal origins. Some portions are based on a specific grant by the Federal Government; including my property. While the scope of what the County acquired may be somewhat uncertain, the United States Supreme Court has recently held in Marvin M. Brandt Revocable Trust v. United States, 134 S.Ct. 1257 (2014), that federal grants of property to railroads were grants easements, and not fee ownership. Additionally, the federal Surface Transportation Board is only allowing King County to use the railroad corridor for trail purposes and for an interim period of time. These too are indicative of an easement.

Because the County only has an easement in this section of the right of way, I am entitled to use my property in any way that does not interfere with the County's trail easement. It seems like I have the right to retain my bridge, my yard and other landscaping provided they do not interfere with trail use. Nevertheless, as noted above, I am supportive of the trail as a community asset and may be willing to give up some of these rights if the County recognizes my concerns. The City should not allow the County to exceed its property rights in this particular area where the most it acquired was an easement without addressing my concerns.

Attached are two pictures of the shoreline and one of the bridge and terraces. Please let me know if you have any questions, or I can clarify any of the above issues or provide additional facts. I can be contacted at (425) 765-2267 or at pat_harrell@msn.com. It would be very helpful for the County and

City to arrange to walk the Trail in our area as well as meet with the homeowners to resolve the issues and concerns presented by us individually as well as in the joint community letter sent this week.

Thank you very much for your assistance with the above matters, and for working with the County to make the necessary changes in the plans. Our community sincerely appreciates your time and support in making the trail enjoyable to everyone.

Very Truly Yours, nel

Patricia Harrell 2221 East Lake Sammamish Place SE Sammamish, WA 98075

yne Sampson <daynesampson@hotmail.com></daynesampson@hotmail.com>
day, January 27, 2017 11:40 AM
ndsey Ozbolt
: Lake Sammamish Trail Concerns

Thank you Lindsey. Have a great day.

Best Regards,

Dayne

From: Lindsey Ozbolt [mailto:LOzbolt@sammamish.us]
Sent: Friday, January 27, 2017 10:51 AM
To: Dayne Sampson <daynesampson@hotmail.com>
Subject: RE: Lake Sammamish Trail Concerns

Dear Dayne,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Dayne Sampson [mailto:daynesampson@hotmail.com]
Sent: Thursday, January 26, 2017 2:36 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Dayne Sampson <daynesampson@hotmail.com</pre>; Julie Sampson <julieasampson@hotmail.com</pre>
Subject: Lake Sammamish Trail Concerns

From: Dayne Sampson 1809 Eastlake Sammamish Place SE

Sammamish WA 98075

To: City of Sammamish Lindsey Ozbolt 425 295-0527 lozbolt@sammamish.us

Re: Concerns about the East Lake Sammamish Trail Project construction, South Segment 2B

Hello Ms. Ozbolt,

Our home is located on Station 348. The trail runs through our backyard. It bisects our lot, as it does many of our neighbors. Please find below my list of concerns regarding the construction project.

- Security we need lockable gates as part of the lakeside fence. The current plan doesn't include gates, but rather only openings in the fence. Our kids play on our lower lot. They need protection. Imagine random strangers wandering through your backyard when your kids are outside playing. How safe would you feel? We also have boats and many personal items on our lower lots which need to be protected.
- 2) Privacy we need the right to plant vegetation along the lakeside fence. There are numerous areas along the lake (e.g. Marymoor, Sammamish Landing, etc.) which provides access to the general public.
- 3) The lots should not have shared gates. Each lot should have a dedicated gate, as they do now.
- 4) The lots should not have shared stairs. Each lot should have dedicated stairs, as they do now.
- 5) The replacement stairs to our lots should not be parallel to the trail. They should follow the path of the stairs removed for construction, which in most cases are perpendicular. It's more difficult, in some cases impossible (e.g. carrying a kayak), to navigate stairs with 90 degree turns.
- 6) Homeowners should be given the option to install our own replacement stairs, at our expense.
- 7) Access we need access to our lower lots during construction. Nothing in the plans indicate access to our property during construction.
- 8) Wetland Mitigation the construction plans do not indicate any intention of mitigating the impact to the wetland on my property. As part of a code enforcement issue with the City and County, I'm being required to mitigate the impact to the wetland on my property, and to maintain such mitigation for a period of 5 years. This will be impossible due to the construction and its impact on my property.
- 9) Wetland Impact due to the construction of an impermeable surface and the required draining. The new trail will eliminate the wetland on my property. This needs to be addressed. Either the wetland designation needs to be entirely removed, or it should be appropriately maintained.

The City should place the SSDP on-hold until the 90% plans are completed/released and all the homeowner concerns are addressed.

Best Regards,

Dayne Sampson

From:Tyson Goodwin <tysongoodwin@hotmail.com>Sent:Friday, January 27, 2017 11:01 AMTo:Lindsey OzboltSubject:RE: subject: South lake Sammamish trail section 2b, markers 470-473 comments

Thanks Lindsey!

Tyson Goodwin

From: Lindsey Ozbolt [mailto:LOzbolt@sammamish.us]
Sent: Friday, January 27, 2017 10:52 AM
To: Tyson Goodwin <tysongoodwin@hotmail.com>
Subject: RE: subject: South lake Sammamish trail section 2b, markers 470-473 comments

Dear Tyson,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Tyson Goodwin [mailto:tysongoodwin@hotmail.com]
Sent: Thursday, January 26, 2017 2:39 PM
To: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>>
Subject: subject: South lake Sammamish trail section 2b, markers 470-473 comments

Please review the attached letter regarding South lake Sammamish trail section 2b, markers 470-473 comments.

Thank you!

Tyson Goodwin

From:Lindsey OzboltSent:Friday, January 27, 2017 10:52 AMTo:'Tyson Goodwin'Subject:RE: subject: South lake Sammamish trail section 2b, markers 470-473 comments

Dear Tyson,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Tyson Goodwin [mailto:tysongoodwin@hotmail.com]
Sent: Thursday, January 26, 2017 2:39 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: subject: South lake Sammamish trail section 2b, markers 470-473 comments

Please review the attached letter regarding South lake Sammamish trail section 2b, markers 470-473 comments.

Thank you!

Tyson Goodwin

To who it may concern,

I am writing to you regarding your proposed changes to the trail from marker 470 to 473. I do not live on the properties that are being affected by the changes but I am regular visitor of the properties. I am a good friend of the owners and I enjoy property with my son. The property in it's as is condition is a great place for kids to play. My son learned how to ride his bike on the large paved area between 1533 and 1537. It's also an easy area for me and my son to access the lake.

I would like to point out that the trail is not a safe place for kids to learn to ride bikes and play. The bikers on the trail are usually going very fast and are rude if you or your children get in their way. I've been verbally accosted on several occasions by bikers speeding by without regard for anyone but their own heart rates and timed races.

By removing the driveway, you are putting another busy street right next to the safe area that me and my son enjoy regularly during the summer. I hope that you can find some empathy for the property owners and meet with them to come up with a plan that satisfies your desire to improve the trail for the public and accommodate the existing properties nuance and safety.

Sincerely

Tyson Goodwin

AMU

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 1:00 PM
То:	'Jeff and Julie Gelfuso'
Subject:	RE: East Lake Sammamish Trail Questions and Comments - Gelfuso, Jeff and Julie

Dear Jeff and Julie,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Jeff and Julie Gelfuso [mailto:jeffandjulie@live.com]
Sent: Thursday, January 26, 2017 11:28 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Hettich, Christi <hettich7@comcast.net>; Lindquist, Vern <vernlindquist@msn.com>; Tsilas, Nick
<ntsilas@microsoft.com>; Jane Tsilas <janetsi@microsoft.com>; Doug & Lori Birrell <dgb18@comcast.net>; George
<gbreuel@msn.com>; Jeff and Julie Gelfuso <jeffandjulie@live.com>
Subject: East Lake Sammamish Trail Questions and Comments - Gelfuso, Jeff and Julie

Dear Ms Osbolt

As instructed following the the Sammamish City Council public meeting on January 10th 2017, Julie and I are submitting the following attached PDF documenting our questions, concerns, and requests regarding the proposed 60% East Lake Sammamish Trail Improvement Plan. Thank you for taking the time to review it, provide detailed responses to each of our questions, and include it in the city public record filing for the King County of trail permit application.

If you have any issues opening or reading the attached pdf, please let us know. We want to ensure that you've received it from us successfully in time to be reviewed and submitted.

Thank you.

Jeff and Julie Gelfuso 1423 E Lake Sammamish Shore Lane SE Sammamish, WA 98075 jeffandjulie@live.com (425)736-5682 To: Ms. Lindsey Osbolt, City of Sammamish.

Subject: East Lake Sammamish Trail Expansion and Impact Questions regarding the proposed 60% plan for South Sammamish B Segment. To be included in the public record as documented concerns against the King County trial permit application.

Date: January 26, 2017

From: Jeff and Julie Gelfuso 1423 E Lake Sammamish Shore Lane SE Sammamish, WA 98075 jeffandjulie@live.com (425) 736-5682

Background information: Per the King County plans, our property and residence is located on, page 49 of 135 (still listed incorrectly under Ittes, Robert and Marylyn), Plan ID 362+00, Driveway #9.

Dear Ms. Osbolt,

This letter is a request for response to each of the questions regarding King County's 60% plan to expand the East Lake Sammamish Trail in the South Sammamish B Segment.

We attended the Sammamish City Counsel public meeting on Tuesday Jan 10th, 2017 to voice our concerns with the proposed plan and express our frustration with the overall process, the lack of transparency and communication, and disregard for the serious concerns of the residents of Mint Grove that this plan imposes. As a result, we are submitting this letter to officially document our concerns and the impacts of the proposed plan with regards to safety, access, environment, and property.

We respectfully request formal written acknowledgement of receipt from King County as well as written responses to each of the questions and concerns contained in this letter. We believe that there are alternative solutions that should be considered and implemented that will be acceptable comprises that will both improve the trail for all citizens, maintain minimum safety access for residents, and lower the impact on the environment and community. After careful consideration, we'd ask that you provide a written response for each item.

1) Trail Usage Statistics, Analysis, and Plan

Construction of a trail this size comes at considerable expense to King County tax payers. Because the process has been completely opaque, it's unclear to residents what are the desired objectives (for both homeowners and trail users) the County is working to achieve, what analysis has been done to inform the best solution to meet the desired objectives, and how/when those results are communicated to residents and the public. Simply stated, without knowing what objectives you're trying to achieve, how can you ensure you've done the right analysis to create a proposed plan to achieve them? Improving the trial, making it more safe, providing better views are not specific enough.

- 1.1 What studies have been conducted and where are the results of the studies showing trail usage, benefits to the community, etc.? Please provide access to any/all studies.
- 1.2 What is the rationale or justification for widening the trail versus paving the existing trail?
- 1.3 Are there safety concerns, incidents, or other records that show there are hazards to residents and trail users? If so, please share this data.
- 1.4 Has there been studies or data quantitative data showing an increase in trail usage due to the increased width? If so, please share this data.
- 1.5 What is the total cost of the trail? Is there federal funding being applied to the trial improvement project? If so, in what amount?
- 1.6 Without federal money, thus removing the requirement for the proposed width, would King County make the trail narrower?
- 1.7 What costs are being being paid by King County/Sammamish city residents?
- 1.8 Is there additional funding being obtained by making the trail a minimum width?
- 1.9 What is the cost of trail maintenance on an annual basis and how is this funded?
- 1.10 When will a plan be published that describes in detail the phases, milestones, timelines, approvals, etc for each portion of the proposed plan?
- 1.11 How and when will this plan be shared with residents and the public?

2) Legal Disputes

Several residents raised concerns at the public city council meeting on Tuesday Jan 10th, 2017 that there are still legal litigation underway regarding clear ownership of property, easement, right of use, etc.

- 2.1 How can planning begin when these legal disputes are still outstanding and ongoing?
- 2.2 What record has been provided that each of these outstanding legal disputes have been resolved? Including outstanding appeals?
- 2.3 If not, what cases still exist and when are these planned to be resolved?
- 2.4 Without resolution of the legal/ownership disputes, under what authority is King County proceeding with construction?
- 2.5 If the decisions from these legal disputes are resolved post construction and overrule King County claims, will the proposed plans be altered, or resulting construction be redone based on the outcome of these plans?

3) Access, Ingress and Egress

The proposed plans move the trail westward toward the lake (current centerline not adopted, and moved to the western edge of current trail), thus reducing residential driveway, parking, and ingress/egress capabilities if this plan is executed. The proposed 60% plans move the trail roughly eleven feet closer to the resident's houses and lake thereby reducing the width of the existing access. The current shared private drive is already very narrow whereby large vehicles cannot access our properties including recycling and yard waste collection and large emergency vehicles such as full fire trucks. In addition, delivery vehicles such as FedEX or UPS, as well as ambulance emergency vehicles are already challenged to navigate the current narrow lane. Mint Grove is unique as it is one of the few neighborhoods with only one entry/exit for 20 residents. Therefore, there is no "pass- through" capabilities and all vehicles must back

up/down the private drive or perform a multi-point U-Turn to exit.

- 3.1 What are the King County, Eastside Fire and Rescue, and City of Sammamish minimum requirements for safe ingress/egress?
- 3.2 Do the proposed plans meet these requirements?
- 3.3 What analysis has been done to ensure the appropriate safety access will be met post construction?
- 3.4 When will Eastside Fire/Rescue and the City of Sammamish have the opportunity test the proposal and provide a review of the proposed reduction to the Mint Grove neighborhood access?
- 3.5 When will this independent review be published to the residents of Mint Grove?
- 3.6 Will King County comply with Eastside Fire/Rescue and/or the City of Sammamish recommendations regarding this topic and as a result revise the proposed plan?

4) Entry/Exit to Mint Grove

As mentioned above, the Mint Grove neighborhood has only one entry/exit location for 20 residents. The existing location is narrow, steep, and close to East Lake Sammamish Parkway (referenced as Driveway #9 in the proposed plan). To allow for proper safe entry and exit from East Lake Sammamish Parkway into the neighborhood and to provide for safety for trail-users, the trail has stop signs requiring trail-users to stop for vehicles.

- 4.1 What is King County's plan or modifying the entry/exit to Mint Grove? The plan is unclear in the existing plans.
- 4.2 Will the same standard be maintained post construction?
- 4.3 Will King County repost appropriate safety signs (including stop sings, trail usage, speed limits, private drive no access, etc) on the trail for trail to ensure the safety of both residents/drivers in vehicles and trail users?
- 4.4 The entrance to Mint Grove is a private driveway owned by the Mint Grove residents (paperwork can be provided if necessary). The Mint Grove driveway is currently marked as a Construction Access. King County does not have resident permission to use this private lane and therefore should not be used as for construction access. It poses a safety risk to residents and trial users based on the limited narrow access Mint Grove owners already have. Will you revise the plan to eliminate the Mint Grove entrance as a Construction Access and provide the residents with updated plans?

5) Wetland Definition and Mitigation (Trail Location)

On the east side of the existing trail near our property is a section that is marked as a Wetland that also contains a manmade ditch. It is our understanding that designated Wetlands have various classifications including ones that are movable as an example. The property approximately 100' south of our location has drain pipe installed in place of a ditch and periodically cleaned with a backhoe. This drain pipe acts as a culvert instead of a ditch and the drain pipe is covered with dirt, trees, and vegetation. The water flow comes from the drain pipe into the manmade ditch flowing northward.

- 5.1 What is the exact classification of the wetland (ditch) at our property location?
- 5.2 Has King County considered a wetland mitigation plan that would continue the drain pipe north past our property thus allowing the trail to be moved eastward? If so,

what factors were considered and what is the justification for moving the center line of the trail westward, widening the trail in that directions, and narrowing driveway access to resident's homes?

- 5.3 Can a wetland mitigation plan be implemented at this location, keeping the current center line or moving the trail east if a wider trail is approved to lessen the safety impact to our neighborhood (as described above)?
- 5.4 What criteria was used to establish the proposed centerline of the Trail? The proposed new centerline does not follow a specific path but instead wanders back and forth along the existing trail, mostly moving randomly westward toward the lake and eastward towards the highway. What criteria was used to determine the proposed centerline? Why wasn't this analysis shared with residents and the public? Please provide such analysis.
- 5.5 It appears that a large amount of the wetland area east of our neighborhood is being graded and redone as a native growth or planting area (i.e. new and expanded wetland). What is the justification for this wetland improvement?
- 5.6 If this large area is going to be graded and disturbed, why isn't the ditch just being relocated five to ten feet to the east and avoid impacting our neighborhood's ingress/egress?

6) Clearing and Grubbing Line/Fence

On the King County plans, a Clearing and Grubbing (CG) line is shown. We were informed by King County employees that this is where temporary fencing will be placed for the entire two year duration of our Segment's project. This will make access to our neighborhood unacceptable, impossible for us to enter and exit our neighborhood and garage, and pose a safety risk to residents (especially access to emergency vehicles). It will also impede any type of regular delivery vehicles from providing regular grocery, package, and large item deliveries. In addition, the Mint Grove neighborhood has no reasonable or walkable off-site parking, so additional safety risk is posed to the residents that will be forced to park on East Lake Sammamish Parkway in the morning/evening or during adverse weather including bus pick up and drop off for children in the neighborhood. Real safety concerns exist due to creating a hazardous condition.

- 6.1 What alternate plans have been considered for accommodating residents in this location during the construction phase?
- 6.2 What are the proposed access and parking accommodations during all phases of the proposed 2 year construction?
- 6.3 When will this info be shared with residents and the public so that appropriate plans can be made for homeowners, services agencies, nannies, etc?

7) Environmental Impact

According to the proposed plan, King County is moving the trail westward toward the lake. The benefit of moving the trail west is not clear, not understood, and to our knowledge not based on data as the analysis has not been provided. In addition, this decision will directly result in the removal of thousands of long living trees. Specifically, in our neighborhood the current plans call out for the removal of approximately 300 trees that are all over 20 feet and have been in place for 20+ years.

- 7.1 The only justification that has been provided is that trail improvements will increase safety and views for trail users. How is that proven? At what cost to the environment?
- 7.2 Has an environmental impact study been completed showing that moving the trail westward and removing hundreds of trees has a positive impact on the environment? If so, where are these results? If not, when will King County perform such a study and provide results?
- 7.3 What is the positive benefit and/or justification for removing hundreds and hundreds of trees?
- 7.4 Has the Core of Engineers review the plans? Have both parties approved moving the trail closer to the lake? If not, are there plans to have them review it?

8) Construction Timeline

The proposed timeline for construction of Section 2B is two years. Large sections of the North and South segments were fenced and closed during the entire construction phase while smaller sub-segments were under construction. As noted above, with regards to access and and safety, large-scale closing and installation of the Clearing and Grubbing and construction phases will cause major impact to many residents in Section 2B.

- 8.1 Will the construction zone be segmented into smaller subsections to minimize largescale impacts to the residents? If not, why?
- 8.2 As previously noted, how will safety concerns be addressed with regard to access for emergency, delivery, and resident vehicles during this long period?

Requests prior to proceeding:

- 1) We request that all information regarding the planning of the proposed plan including detailed analysis and assessment, fire and safety tests, environmental studies and impacts, access during construction, etc be provided to residents and the public prior to continuation of any further execution of the proposed plan.
- 2) We request that the City of Sammamish stop construction until all legal disputes are resolved. Authorizing King County to proceed adds risk to the City of Sammamish and wasted tax payer's dollars in additional litigation.
- 3) We request that the City of Sammamish does not grant the requested permit to King County until all residents questions have been responded to and adequately incorporated into the 90% design review.

Thank you for taking the time to review our concerns and questions. We look forward to your detailed responses.

Regards,

Jeff and Julie Gelfuso

From:Lindsey OzboltSent:Friday, January 27, 2017 12:59 PMTo:'marywictor@comcast.net'Subject:RE: Public Comment (2): K.C. ELSTrail Segment 2B--SSDP2016-00415 ~ Stormwater
Issues

Dear Mary,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your additional comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: marywictor@comcast.net [mailto:marywictor@comcast.net]
Sent: Thursday, January 26, 2017 11:16 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Public Comment (2): K.C. ELSTrail Segment 2B--SSDP2016-00415 ~ Stormwater Issues

To: Lindsey Ozbolt / Associate Planner, City of Sammamish re: Stormwater Issues + design for future built-out capacities

1) Please ensure the Capacity for all culverts, ditches, and passages for storm/surface water runoff and drainage are designed for FULL BUILT-OUT of uphill areas of the Sammamish Plateau so that water will pass as naturally as possible, but with the needed constructed stormwater facilities for control/management, especially to work even under 100-year flood conditions.

In addition the the KCSWDM, Sammamish Addendum, and SMC, the Public Works Standards of the City also relate to Stormwater management. {See attached .jpg capture from City of Sammamish P.W.S on conveyance and sizing.}

On 60% design cover page by King County/Parametrix dated Sept 2016, it says 9.8AC Disturbed, 5.3AC existing impervious with 8.4AC proposed impervous areas. This means K.C. for the Trail needs to handle Stormwater Quantity and hopefully deal with the Water Quality too (asphalt pollutants, etc.)

2) There are past/present areas with drainage-related issues due to stormwater, surface water, runoff, etc. Some are known, others maybe not?

a) Problem areas should be addressed/solved... it does NOT make sense to do the Trail and not acknowledge or ignore problems/issues! [I strongly suggest that King County and the City of Sammamish both <u>make field visits this spring 2017</u>, summer?, <u>and fall 2017</u> to watch the water and determine any soggy, saturated, eroding areas etc. that need and deserve timely and effective stormwater management as part of the Trail development.]

-Sammamish public/private lands... are above

-City roads/infrastructure E. Lk. Samm. Parkway... are above

-King County Trail surface and varying R.O.W... are above

-Private lands and homes... which are above

-Lake Sammamish where stormwater will run from natural water courses (lakes, streams), constructed ditches and facilities, and by gravity.

The whole sequence and "water story" system must be considered, with "watershed context" being analyzed for existing plus future cumulative effects. {King County Trail is NOT a standalone project, and water does and will need to run downhill to and through it.}

b) King County design and implementation must ensure additional impervious surface impacts are handled, but also take upgradient flows. For example, I see at Station 436+30 and Station 448+40 where are "new" proposed drainage easements and storm drain pipes. I believe they are intended to be only 12" diameter. To handle existing as well as future requirements from King County, City Parkway, and existing plus development/re-development uphill...<u>are these big enough (or 18", 24" etc.)?</u> For Station 436+30, for example, there is water that flows or infiltrates from Tlingit and many unplatted homes upgrade, plus outflow from Tamarack likely too. Plus, some parcels (large and small) are not developed yet.

c) Open-up the thinking/design to avoid future "unintended consequences" ... What are all the locations where current drainage goes, or could go, and are there other places pipes, culverts, ditches etc should be added? [The City has a no-cuts on roads/asphalt ordinance for something like 5-7 years.] Planning and putting pathways for future stormwater needs is critical to do now with the Trail!

3) WALKWAY at Station 432+00 thru +80 is located on, above, or near where important storm/surface water passage flows. It would be extremely important and prudent to do any needed stormwater work in that area which flows out to Lake Sammamish... BEFORE building the Walkway there. [The location of the walkway is really nice and needed... but under/adjacent work for stormwater... so drainage must be done before or with it.]

a) Landslide Hazard and Erosion Hazard critical areas are intersected by the K.C. ELST from about Louis Thompson Rd NE to north of George Davis Creek crossing. These are Environmentally Critical Areas and deserve protection and mitigation for which there are County/City codes.

b) Presently, EdenView ADD stormpond outflow and Tlingit ADD detention pipe outflow send stormwater directly down to the lake.

c) Tamarack ADD needs drainage improvements to handle past, existing, and future development for stormwater needs. This old, historic neighborhood was recorded by King County as, "Assessor's Plat of Tamarack" in 1964 for all Divisions 1-2-3 (a total of about 210 lots.) King County had not developed nor required drainage provisions for this subdivision which has had significant growth lot-by-lot via infill development of vacant lots. Stormwater must be controlled and managed. The City has been

studying this and there is a "Tamarack Downstream Analysis" from 2016 which should be used to ensure adequate and sufficient stormwater facilities and capacity all the way to Lake Sammamish.

Bottom Line: Don't let King County's Trail permit and work "choke" stormwater runoff or capacity by not being big enough for existing and future needs.

City of Sammamish must ensure that all drainage systems are sized to be able to handle fully developed and built-out conditions, for existing and new impervious surfaces, hopefully to all regulations and code standards and requirements, including pertinent things from newest adoptions as is either required or prudent. King County must do their part as owners of the Trail and full right-of-way.

5 Attachments (.jpg screen captures... PWS, AL32 & AL32, Figure 3 & 1 of Tamarack analyses)

Sincerely, Mary Wictor, Tamarack resident since 6/2000. 425-283-7253 mobile

П

X

💼 2366. Interi	im Public Wo $~ imes~+$					-	٥	\times
$\leftarrow \ \ \rightarrow$	O file:///C:/Users/MW/Documents/MRW20	4/Neighborhood/00)00%20ar	chive	CityOfSamm/2366.%20Interim%20Public%20Works%20Standards%202001.%20111p 🔟 🕁 📔 🚍	2	٩	
Find on page	Enter text to search	No results	<	>	Options \checkmark			\times
	V. Inspection of the s drain system.	torm drainag	ge sys	ster	m must be called for before any backfill is placed for the storm 4/19/00 Ordinance 02000-60 Pectangular Snip			

PWS.20.050 Conveyance.

A. Pipe. Storm drain pipe within a public right- of-way or easement shall be sized to carry the maximum anticipated runoff from the possible contributing area.

The minimum main size shall be 12 inches in diameter. Lateral lines may be six inches in diameter. Nothing shall preclude the City from requiring the installation of a larger sized main if the City determines a larger size is needed to serve adjacent areas or for future service.

All pipe for storm mains shall comply with one of the following types:

()

...

file:///C:/Users/MW/Documents/MRW2014/Neighborhood/00000%20K.C%20ELST%20last%20Segment/Tamarack%20Modeling%20Memo%2011-17-2016%20Frc 🔟 📩

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:55 PMTo:'Rogalski, Mark E'Subject:RE: East Lake Sammamish Master Trail Plan 60% review comments

Dear Mark,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Rogalski, Mark E [mailto:mark.e.rogalski@boeing.com]
Sent: Thursday, January 26, 2017 10:11 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Tom Hornish <THornish@sammamish.us>; Carol Rogalski <carol@zebrapartners.net>
Subject: East Lake Sammamish Master Trail Plan 60% review comments

Dear Lindsey,

Please find attached a PDF file of a PowerPoint presentation with text comments and reference documentation as submittal of comments regarding **East Lake Sammamish Master Plan Trail, South Sammamish Segment B**. If you have any questions or cannot open the file please let me know at this E-mail address or call me at the number below or 425-890-4748. I included City Council member Tom Hornish as CC since he is familiar with our property and rights.

Thank you,

Mark E. Rogalski ATF – Composites

Materials Development Boeing Commercial Airplanes, Product Development Office/Mobile: 425-941-8298

Lindsey Ozbolt, Associate Planner Phone: 425-295-0527 Email: <u>lozbolt@sammamish.us</u> Mail: City of Sammamish City Hall, 801 228th Avenue SE, Sammamish, Washington 98075.

Dear Lindsey,

Included in this PowerPoint are comments, issues and corrections regarding East Lake Sammamish Master Plan trail South Sammamish Segment B regarding Plan and Profile AL7 (Mark and Carol Rogalski Tax parcel #4065100005.) (see Slide 3)

For background, reference settlement agreement King County Cause No. 97-2-23731-9 SEA that clarifies it is a 20 ft easement as indicated on the 60% plan (Slide 4 and 5) with the <u>centerline not at the centerline of the old tracks</u> but per the Quit Claim Deed settlement. For clarification there is also a right for an overpass bridge (Item 3.3 on slide 6) and access to load and unload large items or emergency vehicles or wheel chairs. I met with the King County personnel on Thursday January 26, 2017 at the City of Sammamish site and shared our concerns identified in this PowerPoint. One key item discussed is that relative to the wall there is a required special meeting for collaboration with the engineering design team for the 60% plan that needs to happen in person to coordinate needs and requirements for future construction of an overpass, a single entry and elevations. Specifically, this will change the plan to achieve requirements in the text and comments of this Power Point and allow discussion of options such that when an overpass is constructed (after the Trial is complete) there is minimal trail interruption when it is installed. The King County people at this meeting could not commit for the design team but thought is would be beneficial. So your support in making this happen is appreciated. This Power Point also contains information and comments that may not be covered in the text on some of the pages.

Key points to be addressed before the City of Sammamish approves the 60% plan.

- 1) Current plan (see slide 7) shows a single entry point for both the Rogalski and Reinhardsen properties. These are separate properties and Easements requiring separate stair cases at entry for top and at bottom for security and retention of land value. The proposed plan ignores the fact that the elevations do not work as indicated in Slide 8 and 9 of this PowerPoint. (Photo and elevations indicate a 8 10 ft difference at the point where cars are parked (entry point height). The Reinhardsen lot starts at an elevation of ~64' and the Rogalski lot entrance starts at 74' in the proposed area on slide #9) (Point 9 identifies a height discrepancy for planning)
- 2) Mid level Stair #23 Platform and Wall #6 must be at a height and build to support future 4-6 foot bridge and its attachment. Current plan (13) shows it at 60' only 10 feet above the trail. Hanging support structure will not meet the 10 requirement. Platform should probably be at 12 feet with stairs running down either direction. See slides 18, 19 and 20 for bridge concepts. Coordination on this point with Engineering/planning is required to minimize any future trail interruptions since there are many options to address these issues that can change Plans for the Wall and Stair location and construction and provide cost efficiencies.

Lindsey Ozbolt, Associate Planner Phone: 425-295-0527 Email: <u>lozbolt@sammamish.us</u> Mail: City of Sammamish City Hall, 801 228th Avenue SE, Sammamish, Washington 98075.

Continuation of comments:

- 3) Entrance is not aligned with garage exit for stair case down or future bridge. (slide #11 and 16) We need to work on how to accommodate a single access point to reach a platform for the overpass.
- 4) Safety and access for our elderly parents who use the Stewarts (lot number) parking to attend gatherings. (See slide #6 for access rights) Expectations are that access can be near by and not at 7-11. Road to the north may be okay with no barriers.
- 5) Drainage on the wall side of the easement. There used to be a ditch that ran along east side of tracks all the way to the creeks to the north. Home owners in areas have filled in the ditch over the years. Your plans show an increase in elevation to create a high area of the trial, is that the plan? See comment # 9 also relative to elevation. Plan needs to show how run off of hillside will be handled also with paved trail runoff. It currently or has never run into the west (house side) due to the track elevation. Also this is hard pack and water currently sits on the trial for days after rain.
- 6) Gate is required at the trails entrance. We do not want people sitting on the stairs or wondering up to our garage. Will need pavers for to cross trail form stairs and house side across the trail. Note, it is expected that for safety there will be 4 feet form both access points (East and West) before the trail. I believe there is a code for this from previous discussions on trail and access points.
- 7) Require working with Planners to create layout plans to address wall construction to support stairs and future bridge before the 60% approval.
- 8) Upper garage power, lighting, sewer and water need better identification and plan to reroute into hill side. Currently sewer is in a different place than the water and electrical. Both are in steel casings but may not run into the hill side very deep. See slide #17 for details.
- 9) Elevations are not consistent with previous Surveys. Easement elevation is at 46- 47 feet and not at 50 feet as shown on these plans. Center line of Easement is at 46.9 Ft. (See slides # 12, 13, 14, 15)
- 10) What is the plan for planting near the wall and west side? No plans for vegetation to reduce noise is in this 60% plan. Trees or shrubs on the west side would help reduce noise. Trail users are noisy from experience.

Thank you,

Mark and Carol Rogalski

Sheet 3 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Existing Conditions Plan EX5 Plan and Profile AL7

East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Garage floor height is at 64 ft and trail is proposed at ~ 51 ft

Mark & Carol Rogalski Comments; East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Excerpts from Quit Claim Deed, March 4, 1999 easement agreement.

Clarify construction requirements to have access during construction of trail improvements.

Railway Company concurrently herewith. Grantors intend to convey after acquired title, if any.
1.3 The Easement bisects the Property and is legally described as follows:

A PORTION OF GOVERNMENT LOT 2, SECTION 7, TOWNSHIP 24 NORTH, RANGE 6 EAST, W.M., IN KING COUNTY, WASHINGTON, FURTHER DESCRIBED IN EXHIBIT No. 2.

2. <u>Construction Access</u>

In the event of the construction of a recreational trail, Grantee temporarily may occupy that portion of the Property needed to construct the trail. Construction access shall not materially interfere with Grantors' use of the Property for their principal residence.

Page 12

Mark & Carol Rogalski Comments; East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Excerpts from Quit Claim Deed, March 4, 1999 easement agreement. Page 13.

Item 3.2; Clarify homeowners use of easement for emergency access and moving of large objects

Item 3.3; right to construct an overhead roadway or walkway over the easement at a height of not less than 10 feet. Thus the mid level platform must accommodate at least this height and the weight of the bridge. Planned construction is for a 4 – 6 foot walkway. Or there must be room to add in post in front of the wall to support the walkway.

- Use of Easement Area
 - 3.1. The easement area shall not be open for public use unless it is part of a continuous trail.

- 3.2. Grantors shall continue to have the right to use and cross over the easement (i) for pedestrian access to and from various portions of their property, and (ii) for vehicular access in emergency situations, and with the County's permission when moving large
- 3.3. Grantors shall have the right to construct an elevated roadway over the easement (subject to County approval for safety, which approval shall not unreasonably be withheld) provided that the clearance between the overpass and the surface of the easement is at least 10 feet or whatever is required for safe railroad operation should railroad service resume.
- Miscellaneous 4.
 - 4.1. This agreement shall be binding upon, and inure to the benefit of, the heirs, successors and assigns of the parties herein.
 - 4.2. Grantee shall indemnify and hold harmless (including from court costs and attorney's fees) Grantors and their assigns for personal injury or damage to property caused by Grantor's, its employees', and its agents' sole negligence.

Thursday, January 26, 2017

Sheet 108 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Sheet 39 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

10

Sheet 39 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Platform need to at least 10 feet above trail and capable of supporting a bridge or bridge attachment is higher.

Staircase is not aligned with garage door for future bridge. A separate stairs allows this and avoids other conflicts of height and property separation.

Engineering options for discussion. Stairs could be brought into the hillside more than indicated and a base footing at trail height Footing could be inserted in front of the wall to accommodate supporting pillars to support a bridge as a option or the platform cold be made larger with capability to support the bridge structure at the correct height. Stairs can go either direction to accommodate single property access. Platform size will also need to be discussed.

60% Review Comments

Elevations are not consistent with previous Surveys. Easement elevation is at 46-47 feet and not at 50 feet as shown on these plans. Center line of Easement is at 46.9 Ft. Needs correction to assure elevations are consistent with current grade within reason of conversion to a trail. Plans for bridge are relative to existing trail/Grade height. Correct/reconcile elevations and provide drainage plan. Sheet 108 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Wall #6 Wall Profile

Sheet 108 of 135 (East Lake Sammamish Master Plan trail South Sammamish Segment B 60% review

Wall #6 Wall Profile

0+00

60 58 NO HOC STEP my. 83100000000 56 HSAND & BRUDO 54 52 304 0 50 33 SANDONNOSO Current trail height is at 46.9 feet and not at 50 feet. Thus the drainage issue since Intention to build a trail is supposed to be near original height. bridge or overpass. (OM8135 CROUNDCOVER 46 44 SROUMDORRS. 2 2

Building plans from 1999 showing land layout and the intention for a bridge over the trail.

Building plans from 1999 showing land layout and the intention for a **bridge** over the trail. Garage ended up being at the lower elevation of 64 ft. and not 70 feet as indicated in plans.

Artist rendition of potential walkway over easement (1999)

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 12:53 PM 'saeed abtahi' RE: ESLT segment 2B design

Dear Saeed,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your additional comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: saeed abtahi [mailto:msabtahi@gmail.com]
Sent: Thursday, January 26, 2017 9:59 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: RE: ESLT segment 2B design
Importance: High

Hi Lindsey,

I had an opportunity to examine the plans at the City today. I have some more questions and concerns as listed below. I have sent these to Lindsey Ozbolt too. My comments concern Section 337 to 342 and Wall 12B

- The trail alignment from section 339-342 requires clearing and grading of very steep slopes on the west side of proposed trail. This work can significantly erode the slopes and harm shorelines of Lake Sammamish. There is no apparent reason why the alignment cannot be shifted to the east through this area. The right of way east of trail is very flat and makes much more accommodating to place the trail there. It will be a lot more cost effective with a lot less impact to the environment.
- Wall 12B for rest area is designed to be about 6' tall and on the steep slopes west of trail. Construction of such tall wall will require additional deeper excavation and possibly shoring of slopes or driving deep pin piles which are significantly costly and could further erode the slopes and impact the shorelines. There is no apparent reason why the bike stop cannot be located <u>on the east side of the trail</u> and in the same vicinity or further north or south? It will not require massive fill and retaining walls PLUS <u>it will save a lot of tax payer dollars</u>.
- The plans DO NOT show any fencing on the west side of trail from section 337 to section 342. However, fencing is shown north of 342 and south of 337. Why is that? This area has been a community beach for residents of this neighborhood. Why is the existing fence being removed without replacement just like the other sections of the trail?

These are significant issues that impact our community and our neighborhood for no apparent reason. They can all be mitigated with minor adjustments to the design while maintaining the integrity of the proposed trail.

Saeed Abtahi (425) 869-1212 office (206) 484-0028 Cell (425) 869-6795 Fax

From: Lindsey Ozbolt [mailto:LOzbolt@sammamish.us]
Sent: Wednesday, January 25, 2017 10:45 AM
To: saeed abtahi <meabtahi@gmail.com
Subject: RE: ESLT segment 2B design</pre>

Dear Saeed,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: saeed abtahi [mailto:msabtahi@gmail.com]
Sent: Tuesday, January 24, 2017 10:08 PM
To: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>>
Subject: ESLT segment 2B design

Hi Lindsey,

My property is located at 2033 East Lake Sammamish Place SE, which is next to the trail and part of segment 2B. I have reviewed the 60% plans, in particular sheets 16,17,44,45.87.99 and 112 which relate to area adjacent to my property and my neighbors. I have the following concerns and questions:

- The chain-link fence on the west side of the trail (Sections 339 to 342) will be removed during construction. Why is there is no plan to replace it?
- The wooden fence to the east side of the trail (Section 339) will be removed during construction. Why is there no plan to replace it?
- The Gate to the west of the trail (Section 338 + 50) provides access to private recreation areas. This must not be blocked off during construction.
- The rest area shown on page 45 of the 60% plan (Section 341) appears to be very costly to build due to slopes and potential erosion of steep banks. Why doesn't the County build this rest on the east side of the trail which is fairly flat THUS less impact to environment
- There will be less grading, retaining wall construction, fill, and drainage work on the east side of the trail.

I would appreciate to receive your comments and feedback, especially as it relates to the rest stop design, which is very puzzling. Thank you.

Saeed Abtahi

(425) 869-1212 office (206) 484-0028 Cell (425) 869-6795 Fax

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:47 PMTo:'JudithKeyser@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Judith,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Judith Keyser [mailto:JudithKeyser@hotmail.com] Sent: Thursday, January 26, 2017 9:04 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

As a mom of three teenagers, I am finally getting back into my hobby of cycling, and the Sammsmish trail has been an awesome resource that has allowed me to do that. By completing the trail would allow biking all the way through.

Sincerely,

Judith Keyser 2501 204th Terr NE Sammamish, WA 98074 425-985-5165

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:48 PMTo:'JudithKeyser@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Judith,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Judith Keyser [mailto:JudithKeyser@hotmail.com] Sent: Thursday, January 26, 2017 9:04 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

As a mom of three teenagers, I am finally getting back into my hobby of cycling, and the Sammsmish trail has been an awesome resource that has allowed me to do that. By completing the trail would allow biking all the way through.

Sincerely,

Judith Keyser 2501 204th Terr NE Sammamish, WA 98074 425-985-5165

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:45 PMTo:'marywictor@comcast.net'Subject:RE: Public Comment (1): K.C. ELSTrail Segment 2B--SSDP2016-00415 ~ Stormwater
Rules

Dear Mary,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: marywictor@comcast.net [mailto:marywictor@comcast.net]
Sent: Thursday, January 26, 2017 8:06 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Public Comment (1): K.C. ELSTrail Segment 2B--SSDP2016-00415 ~ Stormwater Rules

To: Lindsey Ozbolt / Associate Planner, City of Sammamish re: STORMWATER RULES--basically, "What does, and What should apply?" to King County ELST project/permit

I understand that the Substantial Shoreline Development Permit (SSDP2016-00415) application submitted by King County was "deemed complete" by the City of Sammamish as of December (last month) on the specific date of 12/13/2016. My essential questions/concerns are the following:

a) Does the Permit "vest" to existing codes as of December 2016, or will new codes effective 1-Jan-2017 be required, selected, or elected to apply?

2016 KCSWDM: King County adopted via Ordinance 18257 effective 3-15-2016 after many years of effort and was deemed equivalent to Ecology's. 2016 KCSWDM (Surface Water Design Manual) with Sammamish Addendum was adopted by Sammamish City Council also on 12-13-2016.

Before this, the City of Sammamish adopted 2009 KCSWDM with prior Sammamish Addendum (with bifurcation to 1998 KCSWDM in some cases).

The past year was a BIG one for Storm and Surface water for drainage! The City of Sammamish also updated their SW Comp Plan on 12/13/16. Low Impact Development changes and Code was another (3rd) vital storm/surface water item needing to be updated on/before 12-31-2016.

b) Environmentally "sensitive" Critical Areas must ALL be identified properly, protected, and with pastpresent-future impacts mitigated:

Since the King County Trail project (final section along East Lake Sammamish Trail--Segment 2B) is voter approved with public funds, it makes sense to try to use the Best Available Science (BAS) and Best Management Practices (BMPs) whenever and whereever possible to ensure that the East Lake Sammamish Trail is

+implemented well and functions for everyone--owners/residents, public, users, visitors, wildlife, etc. +doesn't have to be redone soon fixing issues not addressed (or known problems, avoiding adverse impacts, and not creating new problems)

+addresses issues and/or mitigates them and their effects--especially related to drainage

+respects infrastructure, private property, public land, ROW & accesses, environment, wildlife, and ensuring improvements/systems work for now and with new development

+properly identifies and protects all Environmentally Critical Areas (ECA)*

*King County has identified environmentally "sensitive" areas and denoted multiple "Sensitive Area Overlay (SAO)" as far back as 1990. These include the following list--ALL which should be reviewed completely for impacts and design considerations with the ELST:

1) wetlands (and bogs)

2) streams (and lakes)

plus "Hazard areas" defined in Code or displayed on Maps (by King County, K.C. iMap, and City of Sammamish Maps/GIS) including...

3) flood hazards (& 100 year floodplain)

4) erosion

5) landslide hazards and landslide hazards drainage areas (soils and slope-based)

- 6) steep slopes (>15%, >40%, etc)
- 7) seismic

8) volcanic

and

9) coal mines hazards.

These areas are subject to natural hazards and are lands that support unique, fragile, or valuable natural features. They require buffers, setbacks, etc. to protect them from harmful development impacts. Sammamish has many sensitive/critical areas. {See .jpg screen capture from K.C. iMap}

c) Water Quality is a direct product Storm/Surface Water Management:

Lake Sammamish is very important and so is protecting it's waters which connect to everyone and everywhere. I believe that NPDES Permit I and II requirements might require Water Quality treatment for the ELST project? But if not, perhaps because the permit application was "complete" just underthe-wire only a couple weeks before 1-Jan-2017, then it should really be done to protect the environment, wildlife and eco-systems, and everyone! Pollutants are better prevented and treated before being released to ground or surface waters... and much less costly than trying to clean them up later. Lake Sammamish is also on the 303(d) list... so water quality should NOT be made worse via pollutants in runoff, but work should be done to make things better via proper controls of the Quantity of Water (flow, velocity, duration) and improving the Water Quality via treatment, etc.

Finally, the new SWDM, Addendum, and Code have many worthy elements too numerous to list here. Some of these include changes such as ditches (linings) and protecting groundwater. City of Sammamish has new code and requirements for stormwater ponds, vaults etc (that might even be applied to wetland area mitigation/protection for more "asethetics" and better functioning via native plants.) Landslide and steep slope areas are being updated for stronger protection and to avoid risk or increasing risk of landslides. As this here is only a brief list, any/all new code regulations should be required, or looked and elected to be implemented to make the best of the trail for the region, area, County, City/Cities, and public.

I hope that the <u>newest regulations will be required</u> or <u>selected to be used</u> for storm/surface water, drainage, and other important or related items.

Sincerely, Mary Wictor (Sammamish resident since 6/2000. Redmond/Trail user for 8 years before the millennium too by foot, roller blading, bike, horseback.) 408 208th Ave NE, 98074 425-283-7253 mobile

KCSWDM 2015 Compens × 🧿 King County - File #: 201 ×							±	2 <u></u>	đ	×		
\leftrightarrow \Rightarrow C	() m	cclegisearch.kingcounty.gov/	LegislationDetail.aspx?ID=25397()5&GUID=F9648BFD-C6	BB-4135-A9D5-CEFDF41C7F64&C	Options=ID%7cText%7c&Search=18257	☆	Ø	0	3		
							(•	C Sha	si re 🖾	<u>gn In</u> RSS	
Details	Reports											
File #:		2016-0012 Version: 3 •										
Туре:		Ordinance	Status:	Passed								
File created:		1/11/2016	In control:	Transportation, Econo	my and Environment Committee							
On agenda:			Final action:	3/14/2016								
Enactment dat	te:	3/15/2016	Enactment #:	18257								
Title (Version	3):	aquatic resources, public he Section 3, as amended and amended, and K.C.C. 9.04.1 K.C.C. 9.12.025, Ordinance 9.12.050, Ordinance 10636,	alth, safety and welfare; amending K.C.C. 9.04.030, Ordinance 2281, S 140, Ordinance 10636, Section 2, as 10636, Section 5, as amended, and Sectio	Ordinance 9163, Section ection 5, as amended, and amended, and K.C.C. 9.1 K.C.C. 9.12.035, Ordinan	L, as amended, and K.C.C. 9.04.010, K.C.C. 9.04.050, Ordinance 2281, S 2.005, Ordinance 10636, Section 3, a ce 10636, Section 6, as amended, ar	, Ordinance 9163, Section 2, as amended, and K. Section 6, as amended, and K.C.C. 9.04.070, Ord as amended, and K.C.C. 9.12.015, Ordinance 106 nd K.C.C. 9.12.045, Ordinance 10636, Section 7, a	C.C. 9.0 nance 4 36, Sec as amer	04.020 4938, 1 tion 4, nded, 1	, Ordina Section as amo and K.C	ince 9: 12, as ended, .C.	163, , and	
Sponsors (Version 3):		Rod Dembowski										
Indexes:		Surface Water										
Code sections:		21A.06 - , 21A.16.085 - *, 21A.24.550 - *, 9.04 - , 9.04.010, 9.04.020 - , 9.04.020 - *, 9.04.030 - , 9.04.050 - , 9.04.070 - , 9.04.140 - , 9.12.005, 9.12.015 - , 9.12.025 - , 9.12.035 - , 9.12.045 - , 9.12.050 - , 9.12.060 - *, 9.12.080 - , 9.20.010 - *, 9.20.030 - *, 9.20.040 - *										
Attachments:		1. Ordinance 18257.pdf, 2. 2 2016-0012 fiscal note.xls, 7 Verner.pdf, 10. 2016-0012 / 0012 SR StormwaterCode 0012 RevisedSR Stormwater Seattle Times 3-30-16.pdf	1. Ordinance 18257.pdf, 2. 2016-0012 legislative review form.pdf, 3. 2016-0012 transmittal letter.docx, 4. 2016-0012 Determination of Nonsignificance.doc, 5. 2016-0012 Environmental Checklist.docx, 6. 2016-0012 fiscal note.xls, 7. 2016-0012 KCC 20.18.100 Plain Language Summary.doc, 8. 2016-0012 Regulatory Note.docx, 9. 2016-0012 Department of Commerce Letter Dated January 13, 2016 to Lisa Verner.pdf, 10. 2016-0012 AckLetter Expedited Review.pdf, 11. 2016-0012 hearing notice - publish Seattle Times 1-27-16, 12. Affidavit of Pub Seattle Times 1-27-16.pdf, 13. 2016-0012 SR StormwaterCode 01-19-16.docx, 14. 2016-0012 SR StormwaterCode 03-01-16.docx, 15. 2016-0012 Amendment S1.docx, 16. 2016-0012 Amendment T1.docx, 17. 2016-0012 RevisedSR StormwaterCode 03-01-16.docx, 18. 18257 Amendment package 3-14-16.pdf, 19. 18257 Adoption Notice - publish Seattle Times 3-30-16.doc, 20. Affidavit of pub for adoption notice - publish Seattle Times 3-30-16.pdf									
Staff:		Auzins, Erin										
History (8)	Text	(Version 3)										
8 records	Group	Export										
Date 👻	Ver.	Action By		Action		Result Action Details Meet	ing Deta	ils V	ideo			

-

https://www.sammamish.us/attachments/pagecontent/38804/Draft%202016%20KCSWDM%20Sammamish%20Addendum.pdf

GOOD POND DESIGN

POOR POND DESIGN

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 11:27 AM
То:	'Hettich Family'
Subject:	RE: East Lake Sammamish Trail Questions and Comments - Hettich

Dear Mike and Christi,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Hettich Family [mailto:hettich7@comcast.net]
Sent: Thursday, January 26, 2017 7:16 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Hettich, Christi <hettich7@comcast.net>; Lindquist, Vern <vernlindquist@msn.com>; Tsilas, Nick
<ntsilas@microsoft.com>; Doug & Lori Birrell <dgb18@comcast.net>; Jeff and Julie Gelfuso <jeffandjulie@live.com>;
George <gbreuel@msn.com>
Subject: East Lake Sammamish Trail Questions and Comments - Hettich

Dear Ms. Osbolt,

Attached is a PDF file with questions and comments regarding the proposed expansion of the East Lake Sammamish Trail. Thank you for receiving these comments and we look forward to receiving responses to each question.

If there are any issues opening the file or if you would prefer a Word version to assist in the reply, please let us know and we will forward you a copy.

Best regards, Mike and Christi Hettich 1419 E Lake Sammamish Shore Lane SE
To: Ms. Lindsey Osbolt City of Sammamish

Subject: East Lake Sammamish Trail Expansion and Impact Questions

From: Michael and Christina Hettich 1419 E. Lake Sammamish Shore Lane SE Sammamish, WA 98075 (425) 882-1431

Dear Ms. Osbolt,

This letter is a request for response to the below questions regarding King County's plan to expand the East Lake Sammamish Trail in the South Sammamish B Segment.

We respectfully request written responses to the questions contained in this letter. In addition, there are some observations and/or alternate suggestions for lowering the impact of the trail expansion on the environment, community, and residents while providing for successful implementation of the trail changes. After careful consideration of the alternatives suggested, please provide a written response for each item.

Background information: Per the King County plans, our property and residence is located on, page 49 of 135, Driveway #9, Plan ID 363+00.

1. Clearing and Grubbing Line/Fence – During Contruction:

On the King County plans, a Clearing and Grubbing (CG) line is show. We were informed by King County employees that this is where temporary fencing will be placed for the entire two year duration of our Segment's project. This will make access to our neighborhood unacceptable, impossible for us to enter and exit our garage, and pose a safety risk to residents and workers. In addition, the Mint Grove neighborhood has no reasonable or walkable off-site parking, so additional safety risk is posed to the residents that will be forced to park off-site and walk on East Lake Sammamish Parkway in the morning/evening while it is dark, wet, icy, and snowing. Real safety concerns exist due to creating a hazardous condition.

- a. What are the ingress/egress requirements for fire and rescue vehicles?
- b. What is the safe width recommended by King County, Eastside Fire, and the City of Sammamish for two vehicles to pass on our roadway? Has this been considered for our location and is it to code?

- c. When will Eastside Fire and Rescue provide their assessment and approval of the proposed Clearing and Grubbing construction fence line? Our understanding is Eastside Fire and Rescue reviews the plans for post-construction egress and ingress, but are unsure if such a review is performed for the construction period (two years). We respectfully request a review of the construction phase ingress and egress and access by emergency vehicles by Eastside Fire and Rescue. When will such a review be performed?
- d. What alternate plans have been considered for accommodating residents in this location during the construction phase? Where are the results of this study?
- e. Is King County and/or the City of Sammamish taking additional insurance policies to cover in the event personal injury or death from creating this hazard?

2. Ingress and Egress – Post Construction:

The proposed plans move the trail westward toward the lake, thus reducing residential driveway, parking, and ingress/egress capabilities post construction. By way of example, the proposed plans move the trail approximately eleven feet closer to the houses and lake thus reducing the width of the existing access. Finally, Mint Grove is unique in the fact that it is one of the few neighborhoods with only one entry/exit. Therefore, there is no "pass-through" capabilities and all vehicles must perform a U-Turn to exit.

- a. What is the King County, Eastside Fire and Rescue, and City of Sammamish requirements for safe ingress/egress? Do the proposed plans meet these requirements?
- b. When will Eastside Fire/Rescue and the City of Sammamish review and comment on the proposed reduction to this neighborhoods access?
- c. Will King County comply with Eastside Fire/Rescue and/or the City of Sammamish recommendations regarding this topic?

3. Wetland Mitigation – Trail Location:

On the east side of the existing trail near our property is a manmade ditch. This ditch is marked as a Wetland. We understand that Wetlands have various "classifications". This manmade ditch is periodically cleaned with a backhoe. The property approximately 100' south of our location has drain pipe installed in place of a ditch. This drain pipe acts as a culvert instead of a ditch and the drain pipe is covered with dirt, trees, and vegetation. The water flow comes from the drain pipe into the manmade ditch flowing northward. We further understand that wetland mitigation is allowed.

- a. What is the exact classification of the wetland (ditch) at our property location?
- b. Has King County considered a wetland mitigation plan that would continue the drain pipe north past our property thus allowing the trail to be moved eastward? If so, what factors were considered and what is the justification for moving the trail closer to the lake?
- c. Can a wetland mitigation plan be implemented at this location, thus moving the trail east to lessen the safety impact to our neighborhood?

- d. What criteria was used to establish the proposed centerline of the Trail? The proposed new centerline does not follow a specific path but instead wanders back and forth along the existing trail, mostly moving toward the lake to remove rows of trees. What criteria was used to determine the proposed centerline?
- e. It appears that a large amount of the "wetland" area east of our neighborhood is being graded and redone as a native growth or planting area (i.e. new and expanded wetland). If this large area is going to be graded and disturbed to such a large extent, why isn't the manmade ditch just being relocated five to ten feet to the east and avoid impacting our neighborhood's parking and ingress/egress?

4. Construction Timeline

The proposed timeline for construction of Section 2B is two years. During the construction phase:

- a. Will the construction zone be segmented into smaller subsections to minimize largescale impacts to the residents? If not, why?
- b. As an observation, we noticed that large sections of the North and South segments were fenced and closed during the entire construction phase while smaller subsegments were under construction. Large-scale closing and installation of the Clearing and Grubbing fencing will cause major impact to many residents in Section 2B. Please consider fencing and constructing in smaller subsections to minimize impact.

5. Adverse Impact Specific to Our Residence:

The house footprint of the above plans is incorrect for our residence. The mailing address is 1419 E Lake Sammamish Shore Lane SE. The house was constructed under approval of King County, so the correct footprint should be available via the county. The footprint of the house is much closer to the trail than what is shown on the above Trail Expansion plans.

- a. Impact: An erroneous or incorrect footprint of our residence may move the trail westward closer to the actual residence than is represented on the plans. This may cause impacts to the residence, ingress/egress, access of emergency vehicles and safety concerns. Please provide a written response that King County will:
 - i. Correct the Trail Expansion plans to properly represent our residence.
- b. After correcting the residence locations, please confirm that you will review for proper clearances and make any trail adjustment required.
- c. **Comment**: It is our belief that the location of our property (specifically access to the garage) will be one of the most adversely impacted properties along this segment of the trail. The house along with the angle of the house to the proposed trail is extremely difficult to maneuver. It is quite possible that the completed trail will render our garage inaccessible. Is this King County's plan?

6. Specific Impacts to Our Residence:

The proposed completed construction will move the trail/wall approximately eleven feet closer to our property. The specific location of our garage entry/exit (approved by King County) will be impacted. Depending on the final grade, wall location, etc. our garage may be unusable.

- a. King County approved our house construction permit, with that said, what is the King County required distance for a garage to a "wall" for ingress/egress? King County never should have approved our construction permit if there was the potential for our garage to become unusable due to trail construction. It is a reasonable expectation as a homeowner to be able to continue to use our garage to park cars as well as to provide parking in front or our home for the drivers in our household, as it has been done for the past 50+ years?
- b. During the trail planning, what steps did King County take to eliminate impact on personal property such as the one described above?
- c. Will King County send a representative to our residence to review the plans and impact to our location with the goal of reducing the impact? If so, what process do we use to request such a meeting/review?

7. Rainwater Collection and Runoff – Post Construction:

The Mint Grove area, like many others, has drainage concerns.

- a. What steps has King County taken to improve and/or minimize the impact of water runoff from adding an impervious surface to the trail?
- b. Which direction will the trail slope (east, west, or crown)?
- c. What is King County's plan and process for dealing with post-construction water impacts to personal property?

8. Entry/Exit to Mint Grove:

The Mint Grove neighborhood has only one entry/exit location. The existing location is narrow, steep, and close to East Lake Sammamish Parkway. To allow for proper exit from East Lake Sammamish into the neighborhood and to provide for safety to trail-users, the trail has stop signs requiring trail-users to stop for vehicles.

- a. What is King County's plan (if any) for modifying the entry/exit to Mint Grove? We ask because it is unclear on the existing plans.
- b. Will King County retain the stop sign on the trail for trail users allowing vehicles to exit East Lake Sammamish without increasing risk to the vehicles? If not, and with the extremely steep grade and narrow driveway, we have safety concerns for both vehicles and trail users.
- c. What speed limit will be posted on the trail for bicycles?
- d. How will King County monitor and enforce trail speed limits?
- e. The entrance to Mint Grove is a private driveway owned by the Mint Grove residents (paperwork can be provided if necessary) The Mint Grove driveway is currently marked as a Construction Access. King County does not have resident permission to use this private lane. Please revise the plans to eliminate the Mint

Grove entrance as a Construction Access and provide the residents with updated plans.

9. Tree Removal

It appears King County is generally moving the trail westward toward the lake. The benefit of moving the trail west is not understood. In addition, this decision will directly result in the removal of thousands of long living trees. Specifically, in our neighborhood the current plans call out for the removal of 297 trees that are all over 20 feet and have been in place for 20+ years.

- a. Why is King County proposing to move the trail west closer to the lake? Has an environmental impact study been completed to show that this is in the best interest of the Lake Sammamish? If so, where are these results? If not, when will King County perform such a study and provide results?
- b. Has the Core of Engineers and the appropriate Tribes review the plans? Have both parties approved moving the trail closer to the lake?
- c. What is the positive benefit or justification for removing thousands of trees?

10. Legal Disputes

We understand that there are some legal disputes regarding ownership, right of use, easement, etc. for the trail location.

- a. Are all legal disputes resolved?
- b. Are all appeals completely resolved?
- c. If not, what cases still exist and when are these planned to be resolved?
- d. Without resolution of the legal/ownership disputes, under what authority is King County proceeding with construction?
- e. Without resolution of the legal/ownership disputes, is King County adding risk of expense to the King County residence should King County be found to not have legal authority to construct the trail?

11. Trail Usage Statistics and Width

Construction of a trail this size comes at considerable expense to King County tax payers.

- a. What studies have been conducted and where are the results of the studies showing trail usage, benefits to the community, etc.?
- b. What is the rationale or justification for widening the trail vs. paving the existing trail?
- c. Is there tangible data showing an increase in trail usage due to the increased width? If so, where is this data located?
- d. What is the total cost of the trail? How much of the cost offset by federal money?
- e. Without federal money, thus removing the requirement for the proposed width, would King County make the trail narrower?
- f. Is there additional funding being obtained by making the trail a minimum width?
- g. What is the cost of trail maintenance on an annual basis and how is this funded?

12. Comment to the City of Sammamish

Below are some general comments, observations, and questions:

- a. Approval and permitting of the proposed plan and impact to the local residents prior to resolution of the legal disputes (ownership, easement, etc.) could result in legal action against the City of Sammamish. We request that the City of Sammamish stop construction until all legal disputes are resolved. Authorizing King County to proceed adds risk of culpability to the City of Sammamish.
- b. If any accidents result from the lack of parking and ingress/egress issues during or post-construction in our neighborhood, we will specifically hold the City of Sammamish and King County liable as they have been adequately notified of our concerns regarding safety, expectation of reasonable access, and ingress/egress of emergency vehicles.
- c. We specifically request that the City of Sammamish does not grant the requested permit to King County until all homeowners questions have been responded to and adequately incorporated into the 90% design review.

We look forward to your responses.

Regards, Michael and Christina Hettich

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 12:44 PM
То:	'Kristin Landry'
Subject:	RE: East Lake Sammamish Trail - 2B Comments

Dear John and Kristin,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Kristin Landry [mailto:kristinlandry@yahoo.com]
Sent: Thursday, January 26, 2017 7:57 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: John Landry <johnlandry@southernwine.com>
Subject: East Lake Sammamish Trail - 2B Comments

Ms. Ozbolt,

Please see the attached letter with our comments regarding the 60% plans for the East Lake Sammamish Trail - Section 2B, specifically how it relates to our property at 1225 East Lake Sammamish Shore Ln SE and the community of Mint Grove.

Regards, John and Kristin Landry January 26, 2017

City of Sammamish Sent via Email Attn: Ms. Lindsey Ozbolt

RE: ELST Segment 2B – Mint Grove

Dear Ms. Ozbolt,

We have a few comments and concerns that we would like to get on record and receive some feedback on relating to sections 369 + 50 and 370 + 00. All of these questions were posed to the County representatives at a meeting at Sammamish City Hall on January 25th at 12pm, but they were unable to provide definitive answers.

- Fire Hydrant There is a Fire Hydrant that falls in section 370 + 00 that would service the homes on the north side of the lane. The County representatives could not tell us if there was a plan to relocate or remove that Hydrant. Our concern is access to the hydrant during the clearing and grading phase because it falls into the clearing and grading line. Will the Fire Department have access during the construction phase?
- 2. Retaining Wall There is a retaining wall that runs east to west that is in the clearing and grading line that is between 369 + 50 and 370 +00. There is an approximate 18-24" elevation change from one side of the trees to the other. On the plans it doesn't appear there is a clear plan to regrade or rebuild the retaining wall. Because the clearing and grading fence (C&G) will go approximately half way through the wall, it appears that some of the trees will be left. For safety reasons and potential property damage we believe that the wall and some type of physical barrier will need to be in place to prevent people or vehicles from dropping off the edge.

View from South Side of wall:

View from North Side of wall:

3. **Replace / Repair aggregate concrete between the clearing and grading area and new wall.** It is not clear if the concrete will be dug up between the C&G fence and the eventual permanent wall or just slightly altered near the permanent wall. What is the plan to repair / replace the concrete that gets damaged in the process?

- 4. **Drainage plan** Is there going to be impact on the amount of water that drains towards the house? We have heard several accounts where during and after construction there has been flooding because of increased run off.
- 5. **Stop sign for trail vs driveway** There is currently a stop sign at the trail that halts biker traffic. Is that going to stay?
- 6. **Construction time** We are hearing that the C&G fence is potentially going to be in place for 2 years. That seems like an unnecessary and egregious interruption. Can you please clarify?

Sincerely,

John and Kristin Landry 1225 East Lake Sammamish Shore Lane SE Sammamish, WA 98075 203-803-8615 johnlandry@southernwine.com

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:42 PMTo:'Gene Morel'Subject:RE: Gene Morel East Lake Sammamish Trail Section 2B Comments

Dear Gene,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Gene Morel [mailto:gene.morel@gmail.com]
Sent: Thursday, January 26, 2017 7:37 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Lyman Howard <lhoward@sammamish.us>
Subject: Gene Morel East Lake Sammamish Trail Section 2B Comments

Via Electronic Mail

January 26, 2017

Lindsey Ozbolt

Associate Planner

City of Sammamish

Department of Community Development

City of Sammamish City Hall

 $801 - 228^{th}$ Avenue SE

Sammamish, Washington 98075

RE: Opposition to Issuance of SSDP2016-00415 Permit

Dear Ms. Ozbolt:

I live at 2933 E Lake Sammamish Pkwy SE. My family has owned our parcel on Lake Sammamish for over 70 years. My wife and I built our existing home in 2000.

The construction of our house was originally permitted by the City of Sammamish. In fact, we received one of the first building permits issued by the City of Sammamish. This permit application included all necessary documentation including title reports, a site plan, and permits to allow me to cross the railroad easement and access my house by car.

The 60% plans issued by King County Parks for the development of the East Lake Sammamish Trail Section 2B eliminates vehicle access to my house. Instead, the plan details that I can cross the easement by car but cannot enter our garage. Instead, after crossing the easement, we must park on my neighbors lot to the south and walk about 150 feet to my residence front door. We cannot get to our garage by car.

Needless to say, this is unacceptable and the City of Sammamish should not approve this permit request until proper vehicle access to my house is detailed in the construction plan.

In 2000, Sammamish City issued my building permit which included all necessary documentation required for vehicle access. I will hold the City liable for damages if the City grants King County this permit as currently presented in the 60% plans.

Please call me with any questions.

Best regards,

Gene Morel

425-591-6182

Via Electronic Mail January 26, 2017

Lindsey Ozbolt Associate Planner City of Sammamish Department of Community Development City of Sammamish City Hall 801 – 228th Avenue SE Sammamish, Washington 98075 Email: lozbolt@sammamish.us

RE: Opposition to Issuance of SSDP2016-00415 Permit

Dear Ms. Ozbolt:

I live at 2933 E Lake Sammamish Pkwy SE. My family has owned our parcel on Lake Sammamish for over 70 years. My wife and I built our existing home in 2000.

The construction of our house was originally permitted by the City of Sammamish. In fact, we received one of the first building permits issued by the City of Sammamish. This permit application included all necessary documentation including title reports, a site plan, and permits to allow me to cross the railroad easement and access my house by car.

The 60% plans issued by King County Parks for the development of the East Lake Sammamish Trail Section 2B eliminates vehicle access to my house. Instead, the plan details that I can cross the easement by car but cannot enter our garage. Instead, after crossing the easement, we must park on my neighbors lot to the south and walk about 150 feet to my residence front door. We cannot get to our garage by car.

Needless to say, this is unacceptable and the City of Sammamish should not approve this permit request until proper vehicle access to my house is detailed in the construction plan.

In 2000, Sammamish City issued my building permit which included all necessary documentation required for vehicle access. I will hold the City liable for damages if the City grants King County this permit as currently presented in the 60% plans.

Please call me with any questions.

Best regards, Gene Morel 425-591-6182

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 12:40 PMTo:'brad@bradniemeyer.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Brad,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brad Niemeyer [mailto:brad@bradniemeyer.com] Sent: Thursday, January 26, 2017 7:27 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

City of Sammamish:

I ride my bicycle on the East Lake Sammamish trail weekly. I frequently ride with my 12 yo son. I support completing the ELST and approving permit SSDP2016-00415. Trails are the safest way to exercise and commute by bicycle. Trails bring revenue to businesses in suburban cities. The ELST provides public access to East Lake Sammamish views and a safe link from Redmond to Issaquah. The ELST should be a mirror of what we have with the Burke- Gilman trail.

Please approve the trail permit. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

Priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

Please complete the trail. It links Sammamish and Issaquah to the greater Seattle trail system and just makes sense.

Sincerely,

Brad Niemeyer

15360 NE 201st Street Woodinville, WA 98072 425- 402-1661

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:16 AM 'Mark and Dee Ann' RE: Comments on East Lake Sammamish Trail Section B

Dear Mark,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Mark and Dee Ann [mailto:mdkaus@comcast.net]
Sent: Thursday, January 26, 2017 6:36 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Mark Kaushagen <mdkaus@comcast.net>
Subject: Comments on East Lake Sammamish Trail Section B
Importance: High

Ms. Ozbolt:

Please find attached for submittal and your use our comment letter and attachments on the East Lake Sammamish Trail Section B. If you would, please confirm receipt of our comments prior to the expiration of the comment period.

Best Regards:

Mark Kaushagen 425-260-5866 mdkaus@comcast.net January 25, 2017

VIA EMAIL

Ms. Lindsey Ozbolt Associate Planner City of Sammamish 801 228th Ave SE Sammamish, WA 98075

Re: Lake Sammamish Trail Segment B Shoreline Substantial Development Permit Comments and Concerns 457 E. Lake Sammamish Pkwy SE Mark and Dee Ann Kaushagen

Dear Ms. Ozbolt:

Below you will find our Comments and Concerns regarding the Shoreline Substantial Development Permit for the area on and adjacent to our property at 457 E. Lake Sammamish Pkwy SE, as identified within the "South Sammamish B Segment" for which King County Parks is the Applicant.

Removal of Driveway #14 at Approximately Sta. 393+40:

- 1. We are opposed to the removal of the area identified as driveway #14 at approximately Sta. 393+40. We believe that this removal creates a substantial access, health, and safety issue for us as well as our adjacent neighbors. Additionally, this would preclude us from utilizing our parking areas on the east side of the trail. Both this access point and the parking areas located on the east side of the trail have been in use for at least 50 years, which can be verified through a review of the King County Aerial photos cataloged through 1965. These photos indicate a definitive prescriptive right by our neighbors and ourselves through the open and continuous utilization of the parking areas, paved areas and access driveway.
- 2. Additionally, we have had the title company research, confirm with King County, and subsequently provide an access endorsement in regard to the crossings. Attached you will find correspondence from King County confirming to the title company that the crossing was permitted and would be renewed in perpetuity.

No Additional Tree Removal:

1. The submitted tree preservation plan indicates that none of the trees in front of our house will be removed, and that all will be retained. That is acceptable to us, should this change in any way, we would be adamantly opposed and would ask that the process be halted and reconsidered.

Lack of Adequate Evaluation of Noise and Appropriate Mitigation:

1. Trees and vegetation are shown on the plans to be removed north of our property and as such, we are opposed to moving forward in the process without an appropriate review and approval of any required mitigation regarding noise impacts. In reviewing the documents, we could not find anything where the impact of increased noise has been adequately addressed. It appears that the noise impact from East Lake Sammamish Pkwy as a result of the removal of the vegetation, trees, and any re-grading of berms, in concert with the increased traffic on the trail has not been evaluated, modeling done, or a mitigation plan put in place to address this serious health issue. Because the vegetation removal was not identified during the process, but only now, we would not have know how to comment on it at that time, and therefore it is unfair to proceed without an evaluation and subsequent hearing. Before any additional work is approved, there should be a thorough noise impact study completed, with a mitigation plan created and approved by the impacted residents. Increased noise is a serious health impact and livability issue that needs to identified and resolved.

Lack of Appropriate Drainage Design and Mitigation:

1. The plans do not include any detailed design or conclusive hydraulic modeling regarding the drainage impacts to our property. From the cross section provided, it appears that the intent is to direct flows towards our property without mitigation. Our concern is that without a detailed drainage strategy and design being provided prior to approval, our homes may be put at risk. The type of strategy utilized, be it detention or infiltration needs to be reviewed prior to approval. Of primary concern is that we can be assured through appropriate studies and hearings that water "percolated or infiltrated" as a result of the increased impact of the trail development along with the subsequent concentration of the flows will not flood our crawl spaces and basements if that methodology is chosen. If detention is selected, it is not realistic to call the existing gravel trail to be "existing impervious area" for calculation purposes and not provide an appropriate design to mitigate and transfer the additional flows created through development.

Lack of Detailed Maintenance and Safety Program:

1. No additional permits for trail improvements should be issued until a Maintenance, Safety, Warranty, and Patrolling Memorandum of Understanding, is put in place with the County that includes a direct budget allocation for the trail. Maintenance is currently poor at best, and security and patrolling is nonexistent. As an example, currently, none of the bollards are locked, there is minimal maintenance, and we are not aware of any patrol schedule being put in place, nor have we seen anyone patrol the trail in our area. With the increased size of the trail now making access by truck for theft easy, traffic and speed anticipated to be high through the greater width and increased design speed to 20 mph over the previously given 15 mph, safety will become a primary consideration. With this type of mixed use and the increased width of the trail, many metropolitan Cities have

Page 2

Page 3

seen significant safety issues come into play without regular patrolling. I would cite the City of Sacramento, as one example that has been in the news with a situation similar to the one being created with this design. It would not be prudent to proceed with approval until an agreement is put in place to assure that the City of Sammamish or its residents do not incur any additional costs as a result of the County's lack of attention.

In closing, we believe that it is imperative, and quite frankly the right thing to do, to continue the hearing until the comments are reviewed with the property owners from the 60% plans, those items are then clarified and agreed to in writing; and the plans are at a 90% stage so that an informed decision can be made. It is plain to see from the limited number of appointments that were available considering the number of property owners effected and the lack of available engaged King County personnel to discuss the 60% plans, that King County's strategy is to push this through over the rights of the people. King County has a history of not living up to their commitments and in believing that the end justifies the means. We are looking to our City Council and fellow neighbors to help protect our rights and quality of life.

Should you have any questions, please feel free to contact me by email at mailto:mdkaus@comcast.net or on my Cell at 425-260-5866.

Very truly yours,

MEK-g

Mark E. Kaushagen

Cc: Brad Bastian Alan Hau **Subject:** FW: Can you tell me how long the crossing permit is valid from the Railroad on E. Lake Sammamish Parkway?

Date: Thursday, January 26, 2017 at 6:26:23 PM Pacific Standard Time

From: Mark and Dee Ann

To: Mark Kaushagen

From: Berlanga, Amelia [mailto:Amelia.Berlanga@fnf.com]
Sent: Tuesday, April 23, 2013 4:22 PM
To: Mark Kaushagen
Subject: FW: Can you tell me how long the crossing permit is valid from the Railroad on E. Lake Sammamish Parkway?

Hi Mark,

Here is the answer to your question below. 10 year permit, renew as necessary until the end of time.

Hope this answers your question.

Thanks so much!

Amelia Berlanga, LPO | Branch Manager Fidelity National Title 10655 NE 4th Street, Suite 200 | Bellevue, WA 98004 P- 425-289-2414 | F- 425.453.0136 | E-Fax- 425.671.0066 Email: <u>Amelia.Berlanga@fnf.com</u> Email for docs: <u>Fnt04@fnf.com</u>

From: Nunnenkamp, Robert [mailto:Robert.Nunnenkamp@kingcounty.gov]
Sent: Tuesday, April 23, 2013 4:17 PM
To: Berlanga, Amelia
Subject: RE: Can you tell me how long the crossing permit is valid from the Railroad on E. Lake Sammamish Parkway?

If you're specifically referring to a permit issued by BNSF, then it's technically expired. When we purchased the corridor in 1998 the old railroad permits were assigned to us and we've generally honored the terms until we get to a point of 'buy, build or sell', which is where the property is being sold or needs a permit to build on. This was a logistics choice made back then since we don't have staffing levels to accommodate 700 permits at once. If a property is in the buy, build or sell mode a new King County permit would be needed at that point. Our permits have a ten-year term that we renew as necessary until the end of time.

Lindsey Ozbolt

Fri 1/27/2017 12:59 PM

To:judykraemer50@gmail.com <judykraemer50@gmail.com>;

Dear Judy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Judy Kraemer [mailto:judykraemer50@gmail.com] Sent: Thursday, January 26, 2017 11:28 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Judy Kraemer 5440 Leary Ave. NW, Unit 203 Seattle, WA 98107 2065265255

Lindsey Ozbolt

Fri 1/27/2017 12:58 PM

To:graham.siebe@gmail.com <graham.siebe@gmail.com>;

Dear Graham,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Graham Siebe [<u>mailto:graham.siebe@gmail.com</u>] Sent: Thursday, January 26, 2017 11:06 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. Please approve the permit, as submitted.

I have cycled this unfinished section several times. In it's current state it is uninviting, and not particularly safe. As an experienced rider, I was willing to do it, but I would never recommend it to a child, inexperienced rider, pedestrian, or someone with any level of physical disability.

As you approach this, I would encourage you to think about the possibilities associated with doing this project well. For example, biking to Woodinville is a popular activity for people all over the region that supports the local businesses. Or, if you look at any real estate listing near the Burke Gillman trail in Seattle, you are sure to see that asset prominently listed.

In closing, let me just say that I hope one day to excitedly tell my kids "let's bike to Sammamish!"

Sincerely, -Graham Siebe Graham Siebe 149 149th Ave NE Apt C Bellevue, WA 98007 2062285863

Lindsey Ozbolt

Fri 1/27/2017 12:58 PM

To:julesbologna@hotmail.com <julesbologna@hotmail.com>;

Dear Julianne,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Julianne Drogin [<u>mailto:julesbologna@hotmail.com</u>] Sent: Thursday, January 26, 2017 11:04 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

My husband and I enjoy doing the Lake Sammamish loop, but we don't like to ride on the road on the east of the lake because of the fast moving traffic. It seems so dangerous, as there isn't a shoulder where the traffic and traffic speed is the worse.

Julianne Drogin 12832 71st Ave NE Kirkland, WA 98034 4252421268

Lindsey Ozbolt

Fri 1/27/2017 12:56 PM

To:jazzign@hotmail.com <jazzign@hotmail.com>;

Dear Holly,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Holly Green [mailto:jazzign@hotmail.com] Sent: Thursday, January 26, 2017 10:26 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Our family has been looking forward to the completion of this trail for years because it will enable us to do long distance bike rides with our young children without the concerns of vehicle traffic. Our children are ready for long distances, but with the heavy road traffic in the Issaquah-Sammamish-Redmond area, it is not safe for elementary students to be out riding on the roads. I am not aware of any other route in this area that will be able to provide what this long, flat trail can with respect to a safe path.

Please don't let this be another failed transportation project in this area. This is actually a trail that can be a viable alternative to driving between cities.

Holly Green 2410 NE Davis Loop Issaquah, WA 98029 4256778782

Lindsey Ozbolt

Fri 1/27/2017 12:55 PM

To:Aprilgreenwalt@hotmail.com <Aprilgreenwalt@hotmail.com>;

Dear April,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: April Greenwalt [<u>mailto:Aprilgreenwalt@hotmail.com</u>] Sent: Thursday, January 26, 2017 10:26 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

East Lake Sammamish Trail was the first trail I walked along when I moved out here. I have loved every week that I have gone walking on the trail with friends. It is such a beautiful path that when I'm on a bike ride I like to get off my bike and enjoy the view before I can get back on my bike and continue my ride. This is such a beautiful place that everyone deserves to enjoy.

Please approve the permit, as proposed, with expediency.

Sincerely,

April Greenwalt 4219 212th Ave NE Sammamish, WA 98074 8014272594

Lindsey Ozbolt

Fri 1/27/2017 12:55 PM

To:tnkasper@gmail.com <tnkasper@gmail.com>;

Dear Troy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Troy Kasper [mailto:tnkasper@gmail.com] Sent: Thursday, January 26, 2017 10:22 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish Council Members,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

My wife and I regularly ride from Bothell to Sammamish. We often stop in at Uncle Si's Pizza for lunch. We would love it if you let the trail be completed per the permit. My wife isn't crazy about riding on the gravel and this would make the ride much more enjoyable for both of us.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Troy Kasper 9110 NE 179th PL Bothell, WA 98011 206-316-0909

Lindsey Ozbolt

Fri 1/27/2017 12:55 PM

To:jbroadus@gmail.com <jbroadus@gmail.com>;

Dear Jim,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jim Broadus [<u>mailto:jbroadus@gmail.com</u>] Sent: Thursday, January 26, 2017 10:17 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Jim Broadus 412 N 39th St Seattle, WA 98103 206-634-3699
RE: Support for Trail Permit SSDP2016-00415

Lindsey Ozbolt

Fri 1/27/2017 12:54 PM

To:Heller and Fox <heller-fox@msn.com>;

Dear Robert,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Heller and Fox [mailto:heller-fox@msn.com] Sent: Thursday, January 26, 2017 10:13 PM To: City Council <citycouncil@sammamish.us>; Lindsey Ozbolt <LOzbolt@sammamish.us> Cc: Kelly.Donahue@kingcounty.gov Subject: Support for Trail Permit SSDP2016-00415

Dear Council Members,

I am writing to urge you to approve this permit for important trail improvements.

The proposed project will comply with trail standards that will allow safe use by multiple trail users, including the disabled. The proposed crossing priorities are consistent with common sense and driver/trail user intuitive behaviors, and thus safest for all.

I know that some adjoining property owners are opposed, but other trail improvement projects have shown that within a short time adjacent property owners are advertising their immediate proximity to the trail as an important property amenity and a contributor to property value.

Many communities in our region have supported trail improvements, and they contribute substantially to the quality of life we all enjoy.

I hope that the City of Sammamish will approve this important trail improvement project.

Thank you,

Robert Heller 736 17th Ave East Seattle WA 98112 heller-fox@msn.com

Lindsey Ozbolt

Fri 1/27/2017 12:54 PM

To:Lasbeck@gmail.com <Lasbeck@gmail.com>;

Dear Lynn,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Lynn Quanstrom [<u>mailto:Lasbeck@gmail.com</u>] Sent: Thursday, January 26, 2017 10:12 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who travel to and through Sammamish.

The City of Sammamish and Lake Sammamich are two jewels of the East Side. Running, walking, bicycling, and taking the kids out on Saturday afternoons on a safe, comfortable multi-use trail is nothing short of idyllic. This is the opportunity that every city in the country wants for their town. Sammamich has the chance to actually get it done.

I have biked along the east and west sides of Lake Sammamich on roads that would not be safe to take my children on. I look forward to the day when they are old enough to accompany my husband and me on a safe ride through one of Washington's most beautiful communities on this safe trail.

Best wishes, and please seize this opportunity to complete the trail as planned.

Sincerely,

Lynn Quanstrom 7706 11th ace NW Seattle, WA 98117 858-442-1236

Lindsey Ozbolt

Fri 1/27/2017 12:53 PM

To:Jenniferwoodward@msn.com <Jenniferwoodward@msn.com>;

Dear Jennifer,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jennifer Woodward [<u>mailto:Jenniferwoodward@msn.com</u>] Sent: Thursday, January 26, 2017 10:01 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Jennifer Woodward

Jennifer Woodward 4335 209th Ave NE SAMMAMISH, WA 98074 (425) 898-1405

Lindsey Ozbolt

Fri 1/27/2017 12:52 PM

To:wardkeitha@gmail.com <wardkeitha@gmail.com>;

Dear Keith,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Keith Ward [mailto:wardkeitha@gmail.com] Sent: Thursday, January 26, 2017 9:59 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. Please approve the permit, as submitted.

I am an avid bike ride and really enjoy biking along beautiful Lake Sammamish. I find biking on East Lake Sammamish Parkway to be very dangerous and completing the East Lake Sammamish Trail would be much safer for me and my family and allow us to better enjoy the lake.

Please approve the permit, as proposed, with expediency.

Keith Ward 148 NE 53rd St. Seattle, WA 98105 2063343298

Lindsey Ozbolt

Fri 1/27/2017 12:51 PM

To:joiner.family1@frontier.com <joiner.family1@frontier.com>;

Dear David,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: David Joiner [mailto:joiner.family1@frontier.com] Sent: Thursday, January 26, 2017 9:49 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I have personally biked the new paved segment and love it! Please complete the trail to standards for bikers and hikers all the way into Issaquah.

I have also had to use the paved road above the uncompleted sections for rides into Issaquah, and know having a paved trail would be much safer to ride on.

This section, once completed, will allow bikers and hikers a safe trail that will meet the standards of the extremely popular Sammamish river trail and the Burke along with the already completed section and the Marymoor connector trail.

This is a big plus to the community!

Sincerely,

David Joiner Avid Cyclist

David Joiner 22325 17th Pl W Bothell, WA 98021 425-870-9392

Lindsey Ozbolt

Fri 1/27/2017 12:51 PM

To:kderbyshire@gmail.com <kderbyshire@gmail.com>;

Dear Katherine,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Katherine Derbyshire [<u>mailto:kderbyshire@gmail.com</u>] Sent: Thursday, January 26, 2017 9:45 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Having lived (and cycled) in places from Boston to Southern California before ending up here, I can tell you that the King County trail system is a tremendous asset to the region. As a relatively new resident, I've used it to explore the Lake Sammamish/Sammamish River corridor at a much more leisurely pace than is possible for the car-borne. It takes cars off the roads and provides recreation for all ages and multiple species. The gravel section along Lake Sammamish is a significant gap in an otherwise excellent resource. It needs to be closed.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

Sincerely,

Katherine Derbyshire 19422 77th Place NE Kenmore, WA 98028 4254837309

Lindsey Ozbolt

Fri 1/27/2017 12:50 PM

To:Rick@thesurvivalkit.com <Rick@thesurvivalkit.com>;

Dear Rick,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Rick Giesa [mailto:Rick@thesurvivalkit.com] Sent: Thursday, January 26, 2017 9:40 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Rick Giesa 20566 NE 33rd Court Sammamish, WA 98074 425-898-8853

RE: Open Comment Period

Lindsey Ozbolt

Fri 1/27/2017 12:50 PM

To:Eric Loper <ericlo@microsoft.com>;

Dear Eric,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Eric Loper [mailto:ericlo@microsoft.com]
Sent: Thursday, January 26, 2017 9:37 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Loper, Marisa (loperfamily@live.com) <loperfamily@live.com>
Subject: Open Comment Period

Hi Lindsey,

I wanted to provide comment related to the development of the trail and ask that approval be put on hold until the 90% plans are released and the concerns below can be addressed. My wife and I are not opposed to the development of the trail but feel that the current approach by the county is overreaching and aggressive and in contrast to the property rights of the community they should be serving.

Address: 19314 SE 24th Way Sammamish WA 98075 Parcel: #302

Concerns

- No Gate: There is no gate on the plan from the trail to enter my property
- No Planned Access To My Property: There is a retaining wall on the plans but no planned stairs from the trail down to my beachfront
- **Unnecessary Encroachment:** The current plan encroaches on our precious waterfront vs. the hillside that's not landscaped on the other side of the trail.
- Loss In City Tax Revenue: This overaggressive action on behalf of the county is illegal and overreaching. If the City of Sammamish approves this project it will be validation of King County's claim to of a property line that runs through living rooms and deep into property lines. Even if the

county "chooses" not to take all that they have laid claim to the outstanding ownership issue will devalue everyone's property. City approval will valid unfounded claims and create a toxic corridor of disputed property with deteriorating values and lower tax contributions.

Eric

Lindsey Ozbolt

Fri 1/27/2017 12:50 PM

To:aevansromano@gmail.com <aevansromano@gmail.com>;

Dear Allison,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Allison Romano [mailto:aevansromano@gmail.com] Sent: Thursday, January 26, 2017 9:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Allison Romano 13585 Adair Creek Way NE Redmond, WA 98053 425-242-0613

Lindsey Ozbolt

Fri 1/27/2017 12:49 PM

To:donjb11@me.com <donjb11@me.com>;

Dear DJ,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: DJ Blanchard [<u>mailto:donjb11@me.com</u>] Sent: Thursday, January 26, 2017 9:31 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I moved into my home on the Sammamish Plateau in 1998 and my real estate agent at the time mentioned the new trail that was planning stages would be a great asset for me and my two young children at the time. My kids are now off to college and no longer live at home. We never did the chance to walk to trail together as it has been contested and incomplete for almost 20 years now. There is a long history of rail to trail and I feel it is very unfortunate the city has take such an adversarial position with the county. Yes homeowners along the trail had concerns with the plans but please understand that this project is in the entire regions best interest. This was never about saving some trees as is clearly visible at any of the major projects going in which were approved by the city. I feel it is really unfortunate and short sighted of the city to not realize the benefit to our community.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

DJ Blanchard 3319 Sahalee drive west Sammamish, WA 98074 425-444-8880

Lindsey Ozbolt

Fri 1/27/2017 12:49 PM

To:jm.justin@gmail.com <jm.justin@gmail.com>;

Dear Justin,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Justin Martin [<u>mailto:jm.justin@gmail.com</u>] Sent: Thursday, January 26, 2017 9:30 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I have a 6-year-old and a 3-year-old, and we ride our bikes almost every day. We love getting out and enjoying nature, and in particular taking a ride on a safe and pleasant path or trail. I'd really like to see more trails like East Lake Sammamish Trail completed in our region that provide a safe environment for families - people of all ages and abilities - to get outdoors, get exercise and experience nature.

I also believe that these trails should serve as an alternative transportation infrastructure, for those who - like myself, after I bike with my first-grader to her elementary school - choose to bike (or jog, or walk!) to work. East Lake Sammamish Trail can and should be constructed to provide a safe option for commuters, and with dimensions wide enough to accommodate multiple users at once - such as commuters and recreational users.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (12 ft, plus 2 ft gravel shoulders) will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. I feel much more comfortable biking with my family, including my two young children, when we can ride on a trail that has safe roadway crossings. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

Sincerely,

Justin Martin 8715 Evanston Ave N Seattle, WA 98103 206-753-8744

Lindsey Ozbolt

Fri 1/27/2017 12:49 PM

To:nealefamily5@msn.com <nealefamily5@msn.com>;

Dear Karina,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: karina neale [<u>mailto:nealefamily5@msn.com</u>] Sent: Thursday, January 26, 2017 9:29 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

When we first moved to Sammamish, 17 years ago, we didn't even have north end access to our gorgeous local lake. I am urging you to continue the fight to complete the trail for the greater good of our community.

Sincerely, Karina V. Neale

karina neale 3831 204th ave ne sammamish, WA 98074 425-891-0647

RE: Comments for the East lake Sammamish Trail from Homeowner January 26, 2017

Lindsey Ozbolt

Fri 1/27/2017 12:49 PM

To:Ada Loving <Adaloving@outlook.com>;

Dear Ada,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Ada Loving [mailto:Adaloving@outlook.com]
Sent: Thursday, January 26, 2017 9:21 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments for the East lake Sammamish Trail from Homeowner January 26, 2017

TAX PARCEL 0624069106

1. RETAINING WALL = Stair No. 48 is within close proximity or in front of retaining wall consequently any removal of Stair 48 due to widening of trail could jeopardize the structure of the retaining wall for the house.

2. Stair No. 47 which is set to be eliminated during construction = Construction crew needs to be careful of sprinkler system when removing stairs towards the lake. Homeowner will place markers or supply blueprints to indicate where sprinkler system is located.

3. Stair No. 45 = Homeowner suggests installing a gate leading towards lake for the safety of personal property which includes boats, jet ski, and ski equipment.

4. Signage = signs should be installed at the entrance with rules of the usage of trail. Homeowner has witnessed a biker riding after dark. He uses a bright light that illuminates into the kitchen. Homeowner will photograph the biker for proof.

5. Usage of Trail by Public = Please do not allow motorcycles or horses. Horses will deposit manure of which

will pose a health hazard. Motorized vehicles pose a threat to safety.

6. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION = Please abide by the national guidelines outlined in AASHTO which call for a 12 feet trail with 2 foot gravel shoulders.

Comments

I enjoy living on the lake participating in various water activities and look forward to working with the county to create a safe trail to use with my children for many years to come.

Ada McKee

Lindsey Ozbolt

Fri 1/27/2017 12:48 PM

To:chhandaa@outlook.com <chhandaa@outlook.com>;

Dear Gayatri,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Gayatri Choudhari [<u>mailto:chhandaa@outlook.com</u>] Sent: Thursday, January 26, 2017 9:19 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

The people living alongside the trail deserve the right of privacy and safety, but not getting the trail paved isn't a justifiable solution of this concern. The trail a a vital resource of health goals and recreation for several residents of all ages of the cities it traverses through.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Gayatri Choudhari 158th Ave NE Redmond, WA 98052 4257851065

Lindsey Ozbolt

Fri 1/27/2017 12:48 PM

To:statesofgrace@yahoo.com <statesofgrace@yahoo.com>;

Dear Grace,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Grace Huang [<u>mailto:statesofgrace@yahoo.com</u>] Sent: Thursday, January 26, 2017 9:17 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the East Lake Sammamish Trail and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Grace Huang po box 99568 seattle, WA 98139 2062857648

Lindsey Ozbolt

Fri 1/27/2017 12:47 PM

To:dnrrahn@earthlink.net <dnrrahn@earthlink.net>;

Dear Dorota and Richard,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Dorota and Richard Rahn [<u>mailto:dnrrahn@earthlink.net</u>] Sent: Thursday, January 26, 2017 9:14 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

My family enjoys riding on the trail. As long as segment 2B remains too gravelly for safe biking, we prefer riding toward (and stopping for refreshment in) Redmond/Kirkland/Bellevue.

Please approve the permit, as proposed, with expediency.

Sincerely,

Dorota and Richard Rahn 21130 ne 43rd place Sammamish, WA 98074 4258363371

Lindsey Ozbolt

Fri 1/27/2017 12:46 PM

To:joe_goeke@hotmail.com <joe_goeke@hotmail.com>;

Dear Joe,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: joe goeke [<u>mailto:joe_goeke@hotmail.com</u>] Sent: Thursday, January 26, 2017 9:01 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Let's get this done!

Sincerely,

joe goeke 10410 132nd Ave NE Kirkland, WA 98033 4254424617

Lindsey Ozbolt

Fri 1/27/2017 12:46 PM

To:mcdonald_dave@msn.com <mcdonald_dave@msn.com>;

Dear David,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: David McDonald [<u>mailto:mcdonald_dave@msn.com</u>] Sent: Thursday, January 26, 2017 8:57 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

When riding a road bike, it will also be safer because there won't be a need to ride on east lake Sammamish road.

Sincerely,

Dave McDonald

David McDonald 20533 NE 150th St Woodinville, WA 98077 425-882-0529

Lindsey Ozbolt

Fri 1/27/2017 12:46 PM

To:nealek@uw.edu <nealek@uw.edu>;

Dear Kylie,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Kylie Neale [<u>mailto:nealek@uw.edu</u>] Sent: Thursday, January 26, 2017 8:57 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

PLEASE complete the trail. The people opposed to the trail are using concern for the environment as poorly veiled pretext for their desires to not have the trail finished. They are being selfish, as many people would benefit from the completion of this historic trail. I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.
Sincerely, Kylie

Kylie Neale 3831 204th AVE NE Sammamish, WA 98074 4258910640

Lindsey Ozbolt

Fri 1/27/2017 12:46 PM

To:shopdad808@msn.com <shopdad808@msn.com>;

Dear Mark,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Mark Boles [mailto:shopdad808@msn.com] Sent: Thursday, January 26, 2017 8:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I ride around the lake 3-4 times a month and must use East Lake Sammamish during part of my ride along the east side of the lake. There have been MULTIPLE times that I have nearly gotten hit with passenger side rear view mirrors from drivers that do not give me a wider berth because of oncoming traffic. It is also very busy, especially on the weekends and in late afternoon. It is a

real shame and obvious embarrassment that the city and county can't figure out how to work together to get this stretch of trail completed. Please do what you can to make this a safer and more effective trail for us all.

Sincerely, Mark Boles

Mark Boles 4120 181st Ave SE Bellevue, WA 98008 425 643-3982

Lindsey Ozbolt

Fri 1/27/2017 12:45 PM

To:nmenk@earthlink.net <nmenk@earthlink.net>;

Dear Nancy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Nancy Encke [<u>mailto:nmenk@earthlink.net</u>] Sent: Thursday, January 26, 2017 8:34 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I am 62 yrs old and ride my bicycle for recreation and fitness. I do not feel safe ridng on the roads and so use the Sammamish River Trail and ELST extensively. In 2015-16 I rode 1,950 miles on those trails, riding 15-20 miles/day whenever weather permitted. Up to Woodinville, across to Bothell, down to Issaquah. Finishing the ELST will make it so much safer to ride as I worry about sliding on the gravel portion of the trail. When the weather is too wet for riding, I often will walk a portion of the trail. Please finish the upaved portion of the trail, and provide access points for all to use.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people

riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Nancy Encke 5820 224th Ave NE Redmond, WA 98053 4258688144

Lindsey Ozbolt

Fri 1/27/2017 12:45 PM

To:Pd3signs@yahoo.com <Pd3signs@yahoo.com>;

Dear Paul,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Paul Kunz [<u>mailto:Pd3signs@yahoo.com</u>] Sent: Thursday, January 26, 2017 8:24 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

Using the trail to ride from Snohomish to Issaquah is great fun and I ride it almost every week. Hopping up to the road for the 3.5 is dangerous for a number of reasons and look forward to a smooth ride once completed.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Paul Kunz 207th st se Snohomish, WA 98296 3608632632

Lindsey Ozbolt

Fri 1/27/2017 12:45 PM

To:vsahney@umich.edu <vsahney@umich.edu>;

Dear Vik,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Vikram Sahney [<u>mailto:vsahney@umich.edu</u>] Sent: Thursday, January 26, 2017 8:23 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

This trail will enable greater safety for bicycle commuters as well as ample recreation opportunities. I love the Burke Gilman, Interurban, Green River Trail, and the Sammamish River Trail. The more trails we have the less road traffic, the less road rage, the less bike/car accidents. It is a win-win. Properties along such recreation corridors are also highly desirable.

Please approve the permit, as proposed, with expediency.

Sincerely,

Vik Sahney Seattle Resident and frequent Sammamish cyclist

Vikram Sahney 1301 Spring St. APT 21J Seattle, WA 98104 2066974098

Lindsey Ozbolt

Fri 1/27/2017 12:45 PM

To:e.tolkova@gmail.com <e.tolkova@gmail.com>;

Dear Elena,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Elena Tolkova [mailto:e.tolkova@gmail.com] Sent: Thursday, January 26, 2017 8:19 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

As number of residents in the area grows, the trail is needed more and more. With more trails, more people are using them. The East Lake Sammamish trail in particular will be a busy one, with bike commuters in both directions, joggers, pedestrians all day long, including after dark. It's dark after 5 pm already, in winter. It's not safe, if the trail is narrow or not meeting other standards.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely, Elena Tolkova

live in Kirkland bike commuter to Redmond and Issaquash

Elena Tolkova 13016 NE 98th Place Kirkland, WA 98033 4258895991

Lindsey Ozbolt

Fri 1/27/2017 12:44 PM

To:dankirkd@comcast.net <dankirkd@comcast.net>;

Dear Daniel,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Daniel Kirkdorffer [mailto:dankirkd@comcast.net] Sent: Thursday, January 26, 2017 8:17 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

This trail has gone through every process up until now and it is finally time to complete it.

Please complete the trail.

Sincerely,

Daniel Kirkdorffer

Daniel Kirkdorffer 18568 NE 57th Street Redmond, WA 98052

Lindsey Ozbolt

Fri 1/27/2017 12:42 PM

To:ajancola@gmail.com <ajancola@gmail.com>;

Dear Alicia,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alicia Jancola [mailto:ajancola@gmail.com] Sent: Thursday, January 26, 2017 7:56 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Safe biking trails are a necessity in our beautiful county. As an avid biker, I depend on these trails for training purposes and recreation. Without the trail on East Lake Sammamish, riders are forced to ride on the road with the traffic. That stretch of road is almost always busy with traffic, traffic that isn't always aware of bikers, making it very dangerous. It is also a benefit to your community to have a safe biking trail, because bikers are then more likely to shop at your business and restaurants. I love to stop for lunch in the middle of a long ride! Safe trails will bring more bikers.

Please approve the permit, as proposed, with expediency.

Thank you.

Alicia Jancola 8314 JONES AVE NW SEATTLE, WA 98117

Lindsey Ozbolt

Fri 1/27/2017 12:42 PM

To:jardussi@hotmail.com <jardussi@hotmail.com>;

Dear John,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: John Ardussi [<u>mailto:jardussi@hotmail.com</u>] Sent: Thursday, January 26, 2017 7:53 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Our story: We moved to Issaquah decades ago, when the train still ran along E. Lk Sammamish. There were no houses except in the widest areas with sufficient RoW. The railroad owned the land and only granted easements.

Now some of the property owners resent this easement being re-purposed for a broader public transportation use.

We fully support this trail, as designed. I am sorry for owner discomfort, but they knew what they were purchasing. In time, they or future owners will also benefit.

Some owners have talked about property theft.

As a biker for decades, I have never heard of a biker who steals property on a ride, nor any who would "case" a property for future theft. This is a "scare" argument, with no evidence. It could be easily mitigated with a few security cameras placed at the trail entry and crossing points. On the other hand, there is massive evidence to support the community benefit of completion of the trail to the AASHTO standards for safety for trail width and margins.

I served on the Issaquah City Council in 1986-92 when the original recreational trail plan was adopted, and in 2003 I helped to write the non-motorized policies adopted into the Comp Plan update. Those plans and resources have long since proven their detractors wrong, and their lasting value to the community. The same will happen with the ELST.

Sincerely,

John Ardussi

John Ardussi 255 Almak Court NW Issaquah, WA 98027 4254270740

Lindsey Ozbolt

Fri 1/27/2017 12:42 PM

To:birdmarymoor@frontier.com <birdmarymoor@frontier.com>;

Dear Michael,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Michael Hobbs [<u>mailto:birdmarymoor@frontier.com</u>] Sent: Thursday, January 26, 2017 7:53 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

The Friends of Marymoor Park has long supported the ELST, and the various events that start, end, or pass through Marymoor and which continue down the ELST. The East Lake Sammamish Trail is an important leg in the trail system that runs through Marymoor Park.

It is very important that the whole trail conforms to equivalent standards of a 12ft trail with 2ft shoulders, so that trail events will run safely. These events, as well as regular trail users, need crossing priority for safety.

It would be dangerous if the path narrowed, and events such as the various half-marathons (both running and bicycling) could not be safely accommodated.

A too-narrow, or otherwise unsafe, trail might mean the large events would need to be rerouted onto East Lake Sammamish

Parkway, which would be an inconvenience for all Sammamish residents.

Please approve the permit with the trail widths as proposed, and with crossing priority for trail users.

- Michael Hobbs

- Secretary, Friends of Marymoor Park

Michael Hobbs 13506 NE 66th St Kirkland, WA 98033 4253011032

Lindsey Ozbolt

Fri 1/27/2017 12:42 PM

To:williamalanphoto@gmail.com <williamalanphoto@gmail.com>;

Dear Will,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Will Alan [mailto:williamalanphoto@gmail.com] Sent: Thursday, January 26, 2017 7:42 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Will

Will Alan 12025 215th PL SE Snohomish, WA 98296 2069338853

Lindsey Ozbolt

Fri 1/27/2017 12:40 PM

To:rcc@blarg.net <rcc@blarg.net>;

Dear Patrick,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Patrick Marek [<u>mailto:rcc@blarg.net</u>] Sent: Thursday, January 26, 2017 7:29 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

I frequently cycle around Lake Sammamish, and have used both the on-road bike lanes and the East Lake Sammamish Trail. However, many bicyclists in your community and adjacent ones will not ride on roadway bike lanes, no matter how well designed they are. That means that many recreational and commuting cyclists who want to travel between Issaquah and Redmond will only use the East Lake Sammamish Trail. In order to make Segment 2B as safe and welcoming for all trail users as the rest of the trail is, it must be brought up to AASHTO standards. Leaving it in its current state will only increase the likelihood of accidents, and increased liability for the City of Sammamish. Please approve the permit, as proposed.

Sincerely,

Patrick Marek

Patrick Marek 2814 NE 177th Place Lake Forest Park, WA 98155 2063615064

Lindsey Ozbolt

Fri 1/27/2017 12:40 PM

To:mjct_hobbs@msn.com <mjct_hobbs@msn.com>;

Dear Jana,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jana Hobbs [<u>mailto:mjct_hobbs@msn.com</u>] Sent: Thursday, January 26, 2017 7:29 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

As a resident of Kirkland, I enjoy riding my bike to Marymoor park and beyond. The circuit around Lake Sammamish, or a ride to Issaquah makes a fine day trip. Unfortunately, the gap in the East Lake Sammamish trail forces bicyclists and pedestrians onto the roadway, which is significantly less pleasant and less safe. I cannot in good faith invite my friend's teenage daughter to ride the whole trail with me until the trail is whole.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Jana Hobbs 13506 NE 66th St Kirkland, WA 98033 4258692370

Lindsey Ozbolt

Fri 1/27/2017 12:40 PM

To:stevel427@yahoo.com <stevel427@yahoo.com>;

Dear Steve,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Steve Leach [mailto:stevel427@yahoo.com] Sent: Thursday, January 26, 2017 7:24 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I woul love to use the ELST to ride my bike between Redmond, Sammamish & Issaquah. As it now stands I have to detour to riding on the shoulder of the street. Doing so is dangerous, the shoulder is not swept often enough on a regular basis. Causing flats, and risky repairs on the side of the road.

Cars that pass even if they provide 3 feet of space, still kick rocks and debris towards the shoulder, once having just missing me. I do not wish to be injured by flying debris.

Sincerely,

Steve Leach 9126 170th Ave NE Redmond, WA 98052 4258690120

RE: Lake Sammamish Trail

Lindsey Ozbolt

Fri 1/27/2017 11:28 AM

To:Msp482@gmail.com <Msp482@gmail.com>;

Dear Jeff,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415) and Inglewood Hill Parking Lot (SSDP2016-00414).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jeff Goldsmith [<u>mailto:Msp482@gmail.com</u>] Sent: Thursday, January 26, 2017 7:23 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Lake Sammamish Trail

Dear

Dear Review Group,

Please allow the trail to be a full width state standard width trail.

The construction of the trail should be the full width to allow the most safe design.

By trying to shrink the trail down it will only cause dangerous congestion and increase the change for accidents.

Sammamishn has the chance to leave a legacy gift to the whole area by having the widest trail.

I have ridden the trail before, and seen the areas where it is compressed down. It needs to be expanded to include the widest design through all areas.

Thank you

Jeff Goldsmith 145th Bothell, WA 98011 Unlisted

Lindsey Ozbolt

Fri 1/27/2017 11:27 AM

To:kc7adk@yahoo.com <kc7adk@yahoo.com>;

Dear Constance,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Constance Winter [<u>mailto:kc7adk@yahoo.com</u>] Sent: Thursday, January 26, 2017 7:20 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

My husband and I enjoy riding our bikes in the Sammamish Valley, from Kenmore to Issaquah. Right now we don't venture too often beyond the mid-point of the east side of Lake Sammamish, due to the lack of a safe paved trail. The gravel surface of the interim trail is often unstable for the skinny tires on our road bikes. We prefer the safety of riding on the trail away from vehicular traffic. What has been constructed so far along east Lake Sammamish is beautiful and highly functional. We are looking forward to the completion of the paved trail surface on this trail.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in its interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Constance L Winter

Constance Winter 8436 NE 143rd ST Kirkland, WA 98034 4258238927

Lindsey Ozbolt

Fri 1/27/2017 11:18 AM

To:dsmyth@signett.com <dsmyth@signett.com>;

Dear Donald,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Donald Smyth [<u>mailto:dsmyth@signett.com</u>] Sent: Thursday, January 26, 2017 7:14 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I use trails throughout the greater Seattle area, and they provide an important infrastructure resource for all citizens. Please allow this project to be completed!

As the President of Cyclists of Greater Seattle, I believe that safe trails go a long way towards encouraging people to get out of their cars for shorter trips.

Sincerely, Don Smyth

Donald Smyth 1530 27th Ave Seattle, WA 98122 206-245-7625

Lindsey Ozbolt

Fri 1/27/2017 11:18 AM

To:Politics@lampi.us <Politics@lampi.us>;

Dear Lampi,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Michael Lampi [<u>mailto:Politics@lampi.us</u>] Sent: Thursday, January 26, 2017 7:08 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk, run and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in its interim state, and will provide a safe option for people who walk, run or bike to travel to and through Sammamish. Please complete the trail.

I frequently ride around Lake Sammamish, and this trail is a welcome change from having to ride on the Parkway with its typically high volume of high speed traffic.

Sincerely,

Michael Lampi 2667 170th Ave SE Bellevue, WA 98008 4256413941

Lindsey Ozbolt

Fri 1/27/2017 11:18 AM

To:Roddpemble@hotmail.com <Roddpemble@hotmail.com>;

Dear Rodd,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Rodd and Janie Pemble [<u>mailto:Roddpemble@hotmail.com</u>] Sent: Thursday, January 26, 2017 7:07 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

We are writing to express our support for completing the ELST and approving permit SSDP2016-00415.

My wife and I (55 and 57 years old, both career professionals) and numerous friends from Whatcom County who bicycle tour and hike want to spend several weekends on YOUR trail each year, bringing thousands more tourism dollars and local economic activity to your towns and cities, benefitting all involved.

You almost have a very rare thing, an off road multi use trail that has food and board options along the trail, so visitors can spend more than one day, exploring crafts and antique stores, wineries and gardens, B&B's and restaurants.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.
When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Rodd and Janie Pemble 2915 Cedarwood BellIngham, WA 98225 3607342441

Lindsey Ozbolt

Fri 1/27/2017 11:18 AM

To:srijan55@gmail.com <srijan55@gmail.com>;

Dear Manish,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Manish Gupta [<u>mailto:srijan55@gmail.com</u>] Sent: Thursday, January 26, 2017 7:03 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Manish Gupta 11500 158th Ave NE Redmond, WA 98052 4257850133

Lindsey Ozbolt

Fri 1/27/2017 11:17 AM

To:sraudebaugh@hotmail.com <sraudebaugh@hotmail.com>;

Dear Scott,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: scott raudebaugh [<u>mailto:sraudebaugh@hotmail.com</u>] Sent: Thursday, January 26, 2017 6:58 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

scott raudebaugh 6020 204th pl ne redmond, WA 98053 2069307544

Lindsey Ozbolt

Fri 1/27/2017 11:17 AM

To:Klimandmoran@msn.com <Klimandmoran@msn.com>;

Dear Dave,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Dave Klim [mailto:Klimandmoran@msn.com] Sent: Thursday, January 26, 2017 6:58 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Dave Klim 8910 12th Ave Ne Seattle, WA 98115 2067356432

Lindsey Ozbolt

Fri 1/27/2017 11:17 AM

To:timothy.durham86@gmail.com <timothy.durham86@gmail.com>;

Dear Timothy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Timothy Durham [mailto:timothy.durham86@gmail.com] Sent: Thursday, January 26, 2017 6:54 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. I am an avid cyclist. The finished portion of the trail is a joy to ride on, and having a complete trail from Marymoor to Issaquah will make transiting the East side of Lake Sammamish safer and more pleasant for everyone. The gravel section of the trail is not very suitable for road bikes, and there is no clear entry or exit to the trail near where the paved section of the trail currently ends -- only signs prohibiting trail users from exiting or entering on driveways. Furthermore, once one does find a way to exit the trail, he is on the East Lake Sammamish Parkway, which has a high speed limit and no bike lane (although it does have a shoulder for much of the way). The situation is even worse going from South to North because cyclists that want to rejoin the bike trail at the northern paved section have to make a left turn through traffic on East Lake Sammamish Parkway, which can be dangerous considering the speed at which cars drive there.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Timothy Durham 6214 9th Ave NE Apt 201 Seattle, WA 98115 2036058635

RE: Please Complete the East Lake Sammamish Trail (Segment 2B)

Lindsey Ozbolt

Fri 1/27/2017 11:17 AM

To:Amy Reiss <amyreiss2u@gmail.com>;

Dear Amy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Amy Reiss [mailto:amyreiss2u@gmail.com]
Sent: Thursday, January 26, 2017 6:51 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>; Kelly.donahue@kingcounty.gov
Subject: Please Complete the East Lake Sammamish Trail (Segment 2B)

Dear Ms. Ozbolt and Ms. Donahue,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

My Dad first taught me to ride a bike in the 1960s and today I ride to protect the environment as well as my own health. I co-founded a charity bike team to raise money to fight Multiple Sclerosis, and we frequently use roads around East Lake Sammamish for our east-side team members to train for the ride. We have raised over \$130,000 since 2004. I also enjoy visiting friends around Sammamish and walking on the trail with my friend and her pre-teen daughter. The ELST is an important link in our regional trail network, especially as population increases put additional pressure on our transportation infrastructure.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

RE: Support for Segment 2B, East Lake Sammamish Trail

Lindsey Ozbolt

Fri 1/27/2017 11:16 AM

To:David Minaglia <dminaglia@gmail.com>;

Dear David,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: David Minaglia [mailto:dminaglia@gmail.com]
Sent: Thursday, January 26, 2017 6:48 PM
To: City Council <citycouncil@sammamish.us>; Lindsey Ozbolt <LOzbolt@sammamish.us>; Kelly.donahue@kingcounty.gov
Subject: Support for Segment 2B, East Lake Sammamish Trail

Hello,

I am writing in support of the permit to complete the East Lake Sammamish Trail. Completing this trail will bring world class recreation, healthy activities, and connectivity of trails that benefit the entire region. I do believe more people will use the path if paved, providing for safer transit and recreation. Cars will appreciate having the bicycles and runners off the road as well - a win-win for all (I hope).

Thanks, David Minaglia

Lindsey Ozbolt

Fri 1/27/2017 11:16 AM

To:razelg@gmail.com <razelg@gmail.com>;

Dear Carey,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Carey Gersten [mailto:razelg@gmail.com] Sent: Thursday, January 26, 2017 6:42 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I ride along this route frequently.

Please support completing the ELST. Approve permit SSDP2016-00415. And approve the trail permit as submitted. This helps ensure users of all ages and abilities can safely use the trail, a trail built to national standards (AASHTO) with a 12 ft width plus 2 ft gravel shoulders. There will be adequate room for all users concurrently.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community asset and amenity, providing safe travel for people who bike to and through Sammamish. Please complete the trail.

Sincerely,

Carey Gersten

9430 15th Avenue SW Unit B Seattle, WA 98106 206-792-9044

Lindsey Ozbolt

Fri 1/27/2017 11:16 AM

To:lippytan@hotmail.com <lippytan@hotmail.com>;

Dear Moe,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Moe Moosavi [mailto:lippytan@hotmail.com] Sent: Thursday, January 26, 2017 6:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I have been riding my bicycle all around the Seattle area for over 40 years. I frequently ride my bike to Marymoor Park and around East Lake Sammamish, including a loop around the south end of the lake near Lake Sammamish Park. Completing the last 3.6 miles of the trail would be a huge improvement in safety for trail users and motorists alike.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Moe Moosavi 4203 - 2nd Ave NW Seattle, WA 98107 206-794-2781

Lindsey Ozbolt

Fri 1/27/2017 11:15 AM

To:kolb_dl@yahoo.com <kolb_dl@yahoo.com>;

Dear Daniel,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Dr. Daniel L. Kolb [mailto:kolb_dl@yahoo.com] Sent: Thursday, January 26, 2017 6:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I personally ride the current trail 2-3 times each week. As it is currently not paved, I must use my old mountain bike with 1.75 inch tires to safely navigate it. It is narrow in many places and I regularly need to alert fellow trail users (i.e. runners, dog walkers, fellow cyclists, etc.) of my passing.

I ride from Shoreline and will continue to use the trail, whether paved or not. But I and my fellow trail users would greatly appreciate the ease of use of a newly paved trail. Everyone I see is respectful of the properties of the well-to-do homeowners in the area. That would certainly continue....

Sincerely,

Dr. Daniel L. Kolb 1745 NE 150th Street Shoreline, WA 98155 206.403.3256

Lindsey Ozbolt

Fri 1/27/2017 11:15 AM

To:jang7403@hotmail.com <jang7403@hotmail.com>;

Dear Jaechul,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jaechul Chang [<u>mailto:jang7403@hotmail.com</u>] Sent: Thursday, January 26, 2017 6:29 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Jaechul Chang 138 Cougar Ridge RD NW Issaquah, WA 98027 4257484253

Lindsey Ozbolt

Fri 1/27/2017 11:14 AM

To:Linda Tarte <t.cycle@frontier.com>;

Dear Linda,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Linda Tarte [<u>mailto:t.cycle@frontier.com</u>] Sent: Thursday, January 26, 2017 6:26 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. It is a gem of a pedestrian/biking trail with fabulous Northwest views and I use it often.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Linda Tarte Kirkland, WA

From:Lindsey OzboltSent:Friday, January 27, 2017 11:15 AMTo:'tomofwashington@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Tom,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Tom Lang [mailto:tomofwashington@gmail.com] Sent: Thursday, January 26, 2017 6:25 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Tom Lang 5530 E Greenlake Way N Seattle, WA 98103 2069140673

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:14 AM 'Alan Hua' RE: a letter for Ms Ozbolt page 1

Dear Alan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Alan Hua [mailto:alanhua467@gmail.com]
Sent: Thursday, January 26, 2017 5:54 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: a letter for Ms Ozbolt page 1

January 25, 2017

Mr. Alan Hau 467 E. Lake Sammamish Pkwy SE Sammamish, WA 98074

Ms. Lindsey Ozbolt Associate Planner City of Sammamish 801 228th Ave SE Sammamish, WA 98075

Re: Lake Sammamish Trail Segment B
 Shoreline Substantial Development Permit Comments and Concerns
 467 E. Lake Sammamish Pkwy SE
 Mr. Alan Hau

Dear Ms. Ozbolt:

I am very disappointed that after having owned my property since 1993, that there has not been more interaction and discussion with us by King County to understand our needs and concerns. We are looking to the City of Sammamish and its officials to provide us protection from these unwarranted impacts and to see that our interests are protected. Please find below our Comments and concerns regarding the Shoreline Substantial Development Permit.

- 1. We are opposed to the removal of driveway #14 or any modifications to our access. We are very concerned with the removal impacting our access, as well creating safety concerns for emergency vehicles being able to arrive at our house or our neighbors.
- 2. As I indicated above, we have owned the property since 1993, and prior to that going back into the 1960's, both accesses have been being used as well as all of the property currently paved or cleared that is being used for parking as well. We believe that we have significant property rights that have been created that we need to have preserved and protected.
- 3. The submitted tree preservation plan does not address the existing trees in front of our house being preserved. Since the plan indicates that none of the trees in front of our house will be removed, we want confirmation that they will be retained, regardless of the location of the clear and grub line shown on the plans. To remove existing trees without identifying them in advance would be extremely disingenuous. Only full preservation is acceptable to us, should this change in any way, we would be adamantly opposed.

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:14 AM 'Alan Hua' RE: A letter for Ms Ozbolt

Dear Alan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your additional comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Alan Hua [mailto:alanhua467@gmail.com]
Sent: Thursday, January 26, 2017 5:57 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: A letter for Ms Ozbolt

January 25, 2017

Mr. Alan Hau 467 E. Lake Sammamish Pkwy SE Sammamish, WA 98074

Ms. Lindsey Ozbolt Associate Planner City of Sammamish 801 228th Ave SE Sammamish, WA 98075

Re: Lake Sammamish Trail Segment B
 Shoreline Substantial Development Permit Comments and Concerns
 467 E. Lake Sammamish Pkwy SE
 Mr. Alan Hau

Dear Ms. Ozbolt:

I am very disappointed that after having owned my property since 1993, that there has not been more interaction and discussion with us by King County to understand our needs and concerns. We are looking to the City of Sammamish and its officials to provide us protection from these unwarranted impacts and to see that our interests are protected. Please find below our Comments and concerns regarding the Shoreline Substantial Development Permit.

- 1. We are opposed to the removal of driveway #14 or any modifications to our access. We are very concerned with the removal impacting our access, as well creating safety concerns for emergency vehicles being able to arrive at our house or our neighbors.
- 2. As I indicated above, we have owned the property since 1993, and prior to that going back into the 1960's, both accesses have been being used as well as all of the property currently paved or cleared that is being used for parking as well. We believe that we have significant property rights that have been created that we need to have preserved and protected.
- 3. The submitted tree preservation plan does not address the existing trees in front of our house being preserved. Since the plan indicates that none of the trees in front of our house will be removed, we want confirmation that they will be retained, regardless of the location of the clear and grub line shown on the plans. To remove existing trees without identifying them in advance would be extremely disingenuous. Only full preservation is acceptable to us, should this change in any way, we would be adamantly opposed.

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:14 AM 'Alan Hua' RE: Letter page 2

Dear Alan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your additional comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Alan Hua [mailto:alanhua467@gmail.com]
Sent: Thursday, January 26, 2017 6:00 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Letter page 2

Page 2

- 4. Please provide more details of the proposed wooden guardrail. A guardrail does not provide appropriate privacy and noise protection for our lot without <u>all</u> trees being retained. Please provide a detailed noise mitigation plan. We should not move forward until the noise issues are fully evaluated and mitigation is agreed to, and measures put in place to protect our privacy.
- 5. Safety and security issues have not been addressed, and a formal plan with identified funding mechanisms has not been provided to the residents or the City Council. This should not proceed until this is identified and resolved. Additionally, there has been nothing on ongoing maintenance addressed with the appropriate funding to deal with it. Once they build it, how do we know it will be safe and secure in the future? This should be resolved with agreements in place prior to the project being allowed to move forward.

Should you have any questions, please feel free to contact me by email at mailto:alanhau467@gmail.com.

Very truly yours,

Alan Hida

Cc: Brad Bastian Mark Kaushagen

From:Lindsey OzboltSent:Friday, January 27, 2017 11:13 AMTo:'Adam Eaton'Subject:RE: Comments on ELST South Segment B (STA 375 - 380)

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Adam Eaton [mailto:alreadyeaton@gmail.com]
Sent: Thursday, January 26, 2017 5:43 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on ELST South Segment B (STA 375 - 380)

To Lindsey Ozbolt

I am emailing you my objections and concerns with the proposed trail and fish passage changes included in the South Sammamish Segment B 60% plan. In reviewing the plans and communicating the numerous pros and cons of these plan details with my neighbors, I feel compelled to express my shared concerns that I have and add some volume to my neighbors concerns as well. We are a community of 10 homeowners of Whileaway Court and referenced as Driveway #10.

My neighbor Mike Schmidt has done huge amounts of work in his reply and I feel his concerns echo mine. I have used his concerns as a template and have some additional comments.

New culvert under Whileaway Court (reference pages AL39, FP1, and WP9)

- Property rights concerns
 - Most proposed construction is within private road (519710TRCT) that is not part of the trail ROW. ALL home owners have equally shared ownership of this tract, so every owners consent is required for any construction to begin.
 - I look forward to working together and coming to an agreement that best suits all parties.
 - Why does the proposed construction extend into privately owned Gill Trust lots <u>5197100135</u> and <u>5197100130</u> instead of remaining within the shared driveway 519710TRCT?
- It is important to preserve the two redwood trees at the west exit of the culvert, near 11+00 on the p-line and adjacent to rock walls #1 & #2. An open dialogue would be greatly appreciated.
- Earth walls #42 and #43

- The chain link fencing is not acceptable, I would like a more aesthetically pleasing and natural fence choice that fits the style of the neighborhoods existing fencing. (Cedar rails)
- Both earth walls #42 and #43 lengths and starting points should be reevaluated with regards to driveway orientation and traffic flows and accessibility.
- What is the relationship of culvert replacement plans to trail plans (tied together, different projects, timelines?
 - How will all the utilities be routed and what will the effect on utilities be during construction?
 - Gas, water, sewer are all underground in the road where culvert resides (as are cable and power in other road areas in the construction zone)
 - Current plan would require removal/replacement of power pole near south edge culvert. Could power on these poles be moved underground as part of this work?
 - FYI: There is a separate proposal for a fire hydrant to be added north of the proposed fish passage culvert work on 519710TRCT. This work should be coordinated.
- How will people have access to their homes during culvert/road construction?
- Road grading and drainage is an important concern. We already have issues with water on the road flowing towards residence driveways, in particular the driveways of 835, 903, 909, or 915, so we would appreciate any grading changes to improve upon the drainage conditions.
- Concern about current design reducing parking availability.
- What are landscape plans for this area after culvert replacement?

New trail plan (reference pages AL20 and LA12):

- Is it necessary for the trail around 378+00 to meander into and destroy existing delightful landscaping adjacent to 929?
 - Can the meander be avoided here or moved somewhere else along the trail?
 - At minimum can the meander be reduced to preserve more of the mature trees and bushes?
 - If infringement on wetlands is a concern, the designation of the area east of the trail here as wetland 23C is very questionable. Can this be reevaluated and the plans changed to avoid deconstruction of a viable landscape.
 - We request that south of driveway #10 landscape be replaced with low growing plants or grass.

Lindsey, we all appreciate you and your offices time and hard work in bringing the best possible project to fruition. We understand that not all our requests and concerns will be met but we do expect them to be thoughtfully dealt with and respected. If you have any concerns or questions feel free to contact me directly.

Thank you, Adam Eaton

835 E. Lake Sammamish Shore LN SE Sammamish, WA 98075 6195725412

From:Lindsey OzboltSent:Friday, January 27, 2017 11:12 AMTo:'Rowarren506@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Rose,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Rose Warren [mailto:Rowarren506@gmail.com] Sent: Thursday, January 26, 2017 5:17 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Make the Washington trail network complete! It is incredible that there are so many bike and ped trails available for me to be healthy and active. Thank you for giving this section a priority!

Please approve the permit, as proposed, with expediency.

Sincerely,

Rose Warren 1220 Boren Ave Apt 603 Seattle, WA 98101 480-330-5606

From:Lindsey OzboltSent:Friday, January 27, 2017 11:03 AMTo:'hughandjanetkimball@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Hugh,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Hugh Kimball [mailto:hughandjanetkimball@yahoo.com] Sent: Thursday, January 26, 2017 5:16 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I use a bicycle to get around. An efficient trail is helpful and much safer than using the busy road. Thank you for doing such a nice job on the new sections of the trail. It is one of the best trails around. Sincerely,

Hugh Kimball 8051 28th Ave NE Seattle, WA 98115 206 525 8229

From:Lindsey OzboltSent:Friday, January 27, 2017 11:03 AMTo:'dan.liebling+sam@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Dan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: D Liebling [mailto:dan.liebling+sam@gmail.com] Sent: Thursday, January 26, 2017 5:15 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear council members:

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Cycling and walking on E Lk Sammamish Parkway was dangerous until the existing segments were completed. Now, there is a safe path, EXCEPT for the final segment, awaiting your approval.

Remember that once upon a time, people protested the Burke-Gillman trail, but now that same trail is seen as a huge asset and value-add for those neighbors bordering the trail.

D Liebling 156th Ave NE Redmond, WA 98052 206-000-0000
Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 11:03 AMTo:'RAMON BELUCHE'Subject:RE: Comments on East Lake Sammamish Trail - B 60% Plans

Dear Ramon,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: RAMON BELUCHE [mailto:ramonandlinda@msn.com]
Sent: Thursday, January 26, 2017 5:07 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on East Lake Sammamish Trail - B 60% Plans

Ms. Ozbolt,

When my wife and I met with County staff during a prescheduled appointment on January 10, we specifically asked about access to the waterfront portion of our property at 1721 E. Lake Sammamish PL. SE. during construction. We were told by Ms. Donahue (I believe that is the name), who assisted us in reviewing the 60% plans, that access would be provided and safety arrangements would be made for it.

I have recently learned from some of my neighbors that they have been told by County staff at the City's plan review desk, that there will not be any access to the waterfront portions of the properties during construction. It would appear as if County staff is arbitrarily planning on preventing access to people's properties during what will likely be a minimum of a 12 month construction period.

Access to the waterfront portion of properties divided by the trail must be maintained during construction and the County must clearly address this particularly sensitive issue as part of the completion of the trail improvement plans. There needs to be clear and specific language in the construction plans and documents to address this issue.

I trust that our comments on the 60% plan review are being also reviewed by the City's staff and elected officials and that they too will participate in formulating solutions to these problems.

Thank you for your consideration,

Ramon A. Beluche

Lindsey Ozbolt

Jeff Peterson <jpeterson@tollbrothersinc.com></jpeterson@tollbrothersinc.com>
Friday, January 27, 2017 11:35 AM
Lindsey Ozbolt
RE: Comment on SSDP 2016-00415 - Trail

Thank you Lindsey. Hopefully your mailbox returns to normal shortly! Jeff

From: Lindsey Ozbolt [mailto:LOzbolt@sammamish.us]
Sent: Friday, January 27, 2017 11:02 AM
To: Jeff Peterson
Subject: RE: Comment on SSDP 2016-00415 - Trail

Dear Jeff,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Jeff Peterson [mailto:jpeterson@tollbrothersinc.com]
Sent: Thursday, January 26, 2017 4:48 PM
To: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>>
Subject: Comment on SSDP 2016-00415 - Trail

Lindsey:

Please accept this as public comment regarding plans for the trail improvement project in Sammamish. Early last year we worked on the feasibility of a property for development that receives a significant volume of water discharge from the Tamarack neighborhood. As you know, Tamarack was developed under the regulation and permitting requirements of King County. This trail improvement project represents a key element in the eventual solution to the problematic drainage issues in Tamarack that have developed in that neighborhood and have been the subject of many council meetings and a 2016 drainage study of the area. However, upon my cursory review of the plans, stormwater piping appears to be sized in the realm of 12" diameter pipe with type 1 catchbasins. These sizes appear to be inadequate to handle volumes being produced by the Tamarack neighborhood at this time (table 3 of the attached preliminary modeling memo), which currently discharge onto the property uphill of this project which is the subject of our feasibility. As the city has completed drainage studies for the Tamarack neighborhood, it seems advisable that the discharges be factored into the sizing of the storm system improvements *which appear to have been designed prior to the drainage study*.

As King county was the original approving agency for the Tamarack neighborhood, it seem fair the deficiencies in stormwater for that neighborhood are partially the responsibility of the county, and given the opportunity the county now has to contribute to the solution, it would be a poor use of public funds and effort to not consider these needed drainage facilities in the context of this project. Thank you for your consideration,

Jeff Peterson 9720 NE 120th PL STE 100 Kirkland, WA 98034

- DATE MAY 9, 2016
 - TO DERYA DILMEN, PROJECT ENGINEER, CITY OF SAMMAMISH
 - CC

FROM ROBERT PARISH, PE, PROJECT MANAGER, OSBORN CONSULTING, INC. JOSH VAN WIE, PE, PROJECT ENGINEER, OSBORN CONSULTING, INC.

SUBJECT TAMARACK DRAINAGE IMPROVEMENT PROJECT – MODELING MEMORANDUM

INTRODUCTION

The Tamarack neighborhood is located on the west side of the City of Sammamish bordering Lake Sammamish. The neighborhood contains properties in the area near the intersection of East Lake Sammamish Parkway and Louis Thompson Road NE.

The Tamarack basin contributes flow to Lake Sammamish through a culvert at the intersection of East Lake Sammamish Parkway and Louis Thompson Road. The basin is approximately 52 acres in size, and includes a system of storm drains, culverts, and ditches. Properties in the basin are zoned as R-4 residential, and land cover consists primarily of single family residential houses. Topography ranges in elevation from approximately 40 feet to 460 feet with slopes up to approximately 30% in the steepest areas.

The goal of this study is to use hydrologic and hydraulic modeling to assess the existing flows reaching Lake Sammamish and potential changes in peak flow due to future development in the Tamarack neighborhood. Modeling was performed using the Western Washington Hydrology Model (WWHM) and the EPA Storm Water Management Model (SWMM) through the PCSWMM platform.

SUBBASIN DELINEATION

The Tamarack basin was divided into 8 subbasins for performing modeling calculations. Subbasin boundaries were delineated using King County and City of Sammamish GIS data including elevation contours, streams, parcels, drainage pipes, culverts, manholes, and catch basins. Subbasins were divided by choosing specific points in the stormwater conveyance system and separating out the land area that contributes flow to each point.

Site visits were performed to verify subbasin boundaries. Subbasin boundaries were confirmed by locating high points at the edge of subbasins and by visually locating pipes or culverts that redirected flow to create a basin boundary. The subbasin delineations can be seen in **Figure 1**.

Subbasin 4 is currently undeveloped, and consists of forested area. The remaining subbasins are developed, with the majority of lots built out as single family residential. A few individual undeveloped lots exist in Subbasins 2, 6, and 7.

WWHM MODEL

WWHM was used for computing runoff in each subbasin for existing and future conditions. Input data required for WWHM includes impervious and pervious cover, slopes, and soil types.

Existing impervious areas were calculated using aerial imagery databases available in ArcGIS software. The most recent imagery available was from July, 2013. Impervious areas were traced using ArcGIS, and roadway impervious areas were separated from parcel impervious areas. Impervious cover on parcels was assumed to be 70 percent building area and 30 percent driveway area based on aerial photographs. Separation of individual buildings, driveways, and other impervious is beyond the scope of this work. Pervious areas were assumed to be 100 percent lawn in developed subbasins. In Subbasin 4, which is undeveloped, pervious areas were assumed to be 100 percent forest based on aerial imagery and site visit observations.

Proposed impervious areas were calculated assuming parcels will redevelop individually and increase impervious cover to the maximum allowable level. Developments in the Tamarack basin are required to use level 2 flow control standards according to the City of Sammamish flow control map. Under these standards, developments or redevelopments with greater than 5,000 square feet new or replaced impervious surface are required to install flow control. For the WWHM model, it was assumed that any existing lots with less than 5,000 square feet impervious would redevelop and add impervious area to reach 5,000 square feet. This added a total of 2.12 acres of impervious area for an increase in impervious cover of approximately 4 percent over the entire Tamarack Basin. A summary of existing and proposed conditions is provided in **Table 1**.

Subbasin 4 currently consists of a single large tract of land. The tract is expected to be subdivided and developed into residential lots in the future. The subdivision of the land for development will require installation of flow control meeting the level 2 standards for peak flows and flow durations. Subbasin 4 was modeled as forest, assuming that flow control will maintain predeveloped flows in the subbasin.

Slopes for each subbasin were calculated using GIS elevation contours. Slopes for the eight subbasins ranged from 6 to 29 percent, with an average slope of 17 percent. Soil information was taken from the Natural Resources Conservation Service Web Soil Survey, which compiles soil survey data from various sources. Soils in the Tamarack basin consist primarily of glacial outwash soils, which make up 86 percent of the basin. Some areas of glacial till are also present at the highest and lowest elevations in the basin. WWHM requires soils to be categorized as type A/B, type C, or saturated soils. Soil categories were assigned using the Stormwater Management Manual for Western Washington, which classifies the outwash soils in the basin as type A/B and the till soils as type C. Detailed soil information is provided in **Table 1**.

Under existing conditions, runoff from Subbasins 7 and 8 is collected in an 8-inch drainage system located at NE 4th Street and is released to an open channel that passes through Subbasin 4. Soils in Subbasin 4 consist of glacial outwash, and are expected to have a higher infiltration capacity than till soils. Runoff from basins 7 and 8 was routed through Subbasin 4 using a lateral flow basin in WWHM to estimate the infiltration and remaining runoff that continues through Subbasin 4 to the outfall.

Table 1 Summary of WWHM Parameters						
Subbasin	Total Area (AC)	Existing Percent Impervious	Future Percent Impervious	Slope	Percent Outwash Soil	Percent Till Soil
1	2.15	38%	38%	6%	29%	71%
2	1.61	33%	48%	9%	62%	38%
3	14.07	49%	51%	19%	100%	0%
4	5.82	2%	0%	14%	100%	0%
5	2.70	48%	58%	17%	100%	0%
6	16.25	34%	41%	13%	100%	0%
7	2.22	40%	47%	29%	42%	58%
8	4.51	39%	44%	22%	85%	15%

SWMM MODEL

SWMM was used to model flow from WWHM through the pipes and open channels in the lower part of the Tamarack basin. The drainage system for the model was constructed using survey data, record drawings, and field measurements. Pipes modeled in this study include the mainline pipes that extend from the downstream ends of Subbasins 3, 4, and 6 and continue to Lake Sammamish. A portion of the 8-inch drainage system in Subbasin 8 was also included. The model is meant primarily to provide an estimate of peak flows and velocities in the downstream end of the system. Because of the model's intended use, the full drainage system through the Tamarack basin was not included in the model.

Pipe invert elevations and lengths were taken primarily from survey data and record drawings. Survey data was used for the majority of pipes and culverts along Louis Thompson Road and for the pipes along NE 4th Street in Subbasin 8. Several areas of missing data were encountered for the pipes along Louis Thompson Road where existing manholes could not be located. Based on survey notes and site visits, it appears that existing manholes may have been paved over with asphalt. In these cases, pipe data was taken from record drawings. One area with missing data includes the pipes on the south side of Louis Thompson Road near the intersection with East Lake Sammamish Parkway NE. Record drawings show the system extending to the south along East Lake Sammamish Parkway NE and not connecting into the main Tamarack drainage system. However, no pipes along East Lake Sammamish Parkway NE could be verified during the site visit, and it appears possible that the existing pipes do connect to the main Tamarack system. The model was built assuming the pipes are connected to provide a more conservative estimate of flows. However, it should be noted that the future development will not alter the destination of any flows in the basin. The pipes used in the SWMM model can be seen in **Figure 3**.

Open channel and ditch areas were observed in the field to determine the bottom width, approximate side slope, and estimated channel roughness. Observations were taken at the ditch on the north side of Louis Thompson Drive and at the open channel section between East Lake Sammamish Parkway NE and the East Lake Sammamish Trail to the west of the roadway. The open channel that extends from the trail to Lake Sammamish could not be observed because the channel passes through private property that could not be accessed at the time of the site visit. Parameters for this channel were assigned using engineering judgement based upon the site photographs included as part of the Cooper Beach – Mitigation As built Memorandum (see attached).

Two existing detention systems were included in the model. One is a detention pond located at the Subbasin 5 outlet that provides flow control for the residences near the intersection of 207th Avenue NE and NE 3rd Street. The second is an inline detention pipe located in the 205th Avenue NE right-of-way

near the intersection with Louis Thompson Road. Parameters for both detention systems and their orifices were taken from record drawings.

Flows for the SWMM model were taken from WWHM results for 100-year peak runoff. Flow from each subbasin was applied as a constant flow at the appropriate model node. Flows from Subbasin 3 were split between two nodes because a portion of flow from the subbasin does not reach the conveyance system until near the downstream end. The total flow was divided based on contributing area, with 80 percent assigned to the main drainage line and 20 percent assigned to the farthest downstream node in the subbasin.

SHEAR STRESS CALCULATIONS

Shear stresses for the open channel at the Lake Sammamish outfall were calculated to determine the potential for erosion. The predicted shear stress for each scenario was calculated using equations developed for channel design by the Federal Highway Administration (Kilgore, 2005). The following equations were used for calculating shear stress applied by the modeled flow and permissible shear stress on the channel soil and vegetation:

$$au_0 = \gamma R S_0$$
 (Applied shear stress, FHWA Equation 2.3)

$$\tau_p = \frac{\tau_{p,soil}}{(1-C_f)} \left(\frac{n}{n_s}\right)^2$$
 (Permissible shear stress, FHWA Equation 4.7)

Values for flow rates, velocities and depths, and slopes were taken from the WWHM and SWMM models and used to calculate shear stress. Values for the grass cover factor and roughness were taken from the FHWA document or other literature sources. The bed material grain size where 75% of material is finer (i.e. D₇₅) was estimated to be 2 inches. This estimate was based on observations of the upstream channel near the trail and photos of the constructed channel provided in the Cooper Beach – Mitigation As built Memorandum.

MODELING RESULTS

The peak flow results predicted by WWHM are provided in **Table 2**. Peak flows for future conditions were greater than existing conditions due to increased impervious cover. Subbasins 2, 5, and 6 had flow increases of greater than 10 percent at the 100-year event. Subbasin 4 is predicted to have no significant change in flow due to expected installation of flow control during future development. This will ultimately depend on the design of the future development.

Table 2 WWHM Modeled Peak Flows								
		Flows by Subbasin (CFS)						
Scenario	1	2	3	4*	5	6	7*	8*
Existing	0.42	0.27	2.97	0.05	0.57	2.40	-	-
2-year								
Existing	1.09	0.71	6.74	1.86	1.30	6.01	-	-
100-year								
Future 2-	0.42	0.36	3.07	0.01	0.67	2.78	0.49	0.91
year								
Future	1.09	0.83	6.92	0.03	1.47	6.67	1.19	2.14
100-year								

*For existing conditions, subbasins 7 and 8 were modeled as lateral basins with total flow measured at the outlet of subbasin 4

The peak flows and velocities predicted by SWMM for the ditch and open channel sections are listed in **Table 3**. Flows at the Lake Sammamish outfall are estimated to increase from 17.7 CFS under existing conditions to 20.3 CFS under future conditions during the 100-yr event. This constitutes a 15 percent increase in flow at the outfall. The primary reason for the increase is that runoff from Subbasins 7 and 8 will not be infiltrated as it flows over Subbasin 4. A smaller portion of the increase is caused by a higher percentage of impervious cover in all subbasins.

Velocities along Louis Thompson Road are near 10 feet per second for both existing and future conditions at the 100-year event. The high velocities are caused by steep slopes in the roadside ditch and a grass lined channel without rock material to provide increased roughness. Existing velocities in the open channel sections near Lake Washington are predicted to be 3.8 feet per second at the 100-year event, and are predicted to increase slightly with the higher volume of flow in the future.

Table 3 SWMM Modeled Peak Flows and Velocities						
Location	Existing 100 year Peak Flow	Existing 100 year Velocity	Future 100 year Peak Flow	Future 100 year Velocity		
Ditch along Louis Thompson Road NE	7.3 cfs	9.0 ft/s	8.1 cfs	10.3 ft/s		
Open Channel between East Lake Sammamish Parkway NE and pedestrian trail	17.7 cfs	5.6 ft/s	20.3 cfs	5.8 ft/s		
Open Channel between pedestrian trail and Lake Sammamish outfall	17.7 cfs	3.8 ft/s	20.3 cfs	3.9 ft/s		

The permissible shear stress at the outfall channel was calculated to be 1.27 lb/sf. Calculated shear stresses for each storm event under existing and proposed conditions are shown in **Table 4**. The shear stresses are not expected to increase dramatically, and all predicted shear stresses are below the permissible shear stress. Because the permissible shear stress is based on site photos rather than field observations, there is room for refining the permissible stress calculation. Additional study is recommended during the design phase to investigate any potential erosive channel concerns and verify the level of shear stress that is appropriate for the channel. However, because of the relatively minor change in shear stress due to increased flows, the future conditions are expected to be similar to the existing conditions. If the existing channel is functioning without erosion concerns, then the future conditions will not likely create additional concern.

Table 4 Modeled Shear Stress at Outfall Channel					
Scenario	Flow	Velocity	Shear Stress		
Existing 2-year	6.7 cfs	2.9 ft/s	0.57 lb/sf		
Existing 100-year	17.7 cfs	3.8 ft/s	0.88 lb/sf		
Future 2-year	8.7 cfs	3.1 ft/s	0.64 lb/sf		
Future 100-year	20.3 cfs	3.9 ft/s	0.91 lb/sf		

CONCLUSION

This modeling study developed runoff estimates for 8 subbasins in the Tamarack neighborhood for existing and future developed conditions. Peak flows are expected to increase by as much as 15 percent at the Lake Washington outfall due to increased impervious cover and the change in conveyance for Subbasins 7 and 8 to be conveyed through storm drains rather than an open channel that provides some level of infiltration capacity. Changes in velocity in the open channel near Lake Sammamish are expected to increase slightly due to the higher flow, but increases may not be a concern if there are no erosion or degradation concerns with the existing channel. It is recommended that the condition of the existing open channel be investigated prior to design and construction in Subbasin 4 to review erosion concerns and document existing conditions.

References

Kilgore, R.T. and Cotton, G.K., 2005, "Design of Roadside Channels with Flexible Linings," U.S. Department of Transportation, Federal Highway Administration, FHWA-NHI-05-114, Hydraulic Engineering Circular No. 15, Third Edition.

APPENDIX A FIGURES

Ν 125 250 0 1 In = 250 Feet

500

Tamarack Drainage Improvement Project Sammamish, WA

125

250

1 In = 250 Feet

500

Figure 3: SWMM Model Diagram

Tamarack Drainage Improvement Project Sammamish, WA

APPENDIX B

MODELING DOCUMENTATION

<section-header>

General Model Information

Project Name:	Tamarack
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/9/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

Low Flow Thres	shold for POC1:	50 Percent of the 2 Year
High Flow Thres	shold for POC1:	50 Year
Low Flow Thres	shold for POC2:	50 Percent of the 2 Year
High Flow Thres	shold for POC2:	50 Year
Low Flow Thres	shold for POC3:	50 Percent of the 2 Year
High Flow Thres	shold for POC3:	50 Year
Low Flow Thres	shold for POC4:	50 Percent of the 2 Year
High Flow Thres	shold for POC4:	50 Year
Low Flow Thres	shold for POC5:	50 Percent of the 2 Year
High Flow Thres	shold for POC5:	50 Year
Low Flow Thres	shold for POC6:	50 Percent of the 2 Year
High Flow Thres	shold for POC6:	50 Year
Low Flow Thres	shold for POC7:	50 Percent of the 2 Year
High Flow Thres	shold for POC7:	50 Year
Low Flow Thres	shold for POC8:	50 Percent of the 2 Year
High Flow Thres	shold for POC8:	50 Year

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Tamarack

Subbasin 2 Bypass:	No
Dypass.	NO
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Subbasin 3 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 7.19
Pervious Total	7.19
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 2.24 3.25 1.39
Impervious Total	6.88
Basin Total	14.07

Element Flows To: Surface Inter

Interflow

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7

Element Flows To: Surface

Interflow

Subbasin 6	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.62 0.04
Pervious Total	10.66
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.68 1.15
Impervious Total	5.6
Basin Total	16.26
Element Flows To: Surface	Interflow

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod	acre 5.73	
Surface	Interflow	Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	2.89
Element Flows To:	
Outlet 1	Outlet 2
Basin 4 - Perv Lateral	Flow

Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.4 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Steep .77 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .8 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .57 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.38 0.94
Pervious Total	1.32
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.33 0.14
Impervious Total	0.82
Basin Total	2.14
Flomont Flows To:	

Element Flows TO.		
Surface	Interflow	Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.52 0.32
Pervious Total	0.84
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.25 0.11
Impervious Total	0.78
Basin Total	1.62
Element Flows To: Surface	Interflow

Subbasin 3 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 6.93
Pervious Total	6.93
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 2.24 3.43 1.47
Impervious Total	7.14
Basin Total	14.07

Element Flows To: Surface Inter

Interflow

Subbasin 4 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.82
Pervious Total	5.82
Impervious Land Use	acre
Impervious Total	0
Basin Total	5.82

Element Flows To: Surface Interflow Groundwater

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.15
Pervious Total	1.15
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.73 0.31
Impervious Total	1.56
Basin Total	2.71

Element Flows To: Surface Interflow

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 9.61 0.03
Pervious Total	9.64
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 3.38 1.45
Impervious Total	6.6
Basin Total	16.24
Element Flows To: Surface	Interflow

Subbasin 7	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.5 0.68
Pervious Total	1.18
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.72 0.31
Impervious Total	1.03
Basin Total	2.21
Element Flows To:	

Element Flows To: Surface Interflow
Subbasin 8 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 2.22
C, Lawn, Steep	0.74
Pervious Total	2.96
ROADS STEEP ROOF TOPS FLAT	acre 1.03 0.79
DRIVEWAYS STEEP	0.34
Impervious Total	2.16
Basin Total	5.12
Element Flows To: Surface	Interflow

Groundwater

Routing Elements Predeveloped Routing Mitigated Routing

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.32 Total Impervious Area: 0.82

Flow Frequency Method: Log Pearson Type III 17B

 Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.416796

 5 year
 0.567316

 10 year
 0.677895

 25 year
 0.830552

 50 year
 0.954007

 100 year
 1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.419476
0.570091
0.680611
0.83304
0.956208
1.087905

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Fredeveloped	wiitigate
1949	0.612	0.615
1950	0.594	0.595
1951	0.375	0.376
1952	0.249	0.251
1953	0.279	0.281
1954	0.341	0.343
1955	0.379	0.382
1956	0.346	0.347
1957	0.439	0.442
1958	0.321	0.323

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	$\begin{array}{c} 0.300\\ 0.393\\ 0.348\\ 0.274\\ 0.376\\ 0.324\\ 0.459\\ 0.282\\ 0.596\\ 0.613\\ 0.414\\ 0.386\\ 0.470\end{array}$	$\begin{array}{c} 0.303\\ 0.395\\ 0.351\\ 0.277\\ 0.378\\ 0.325\\ 0.462\\ 0.284\\ 0.597\\ 0.617\\ 0.417\\ 0.389\\ 0.473\end{array}$
1972 1973 1974 1975 1976 1977 1978 1979 1980	0.559 0.243 0.459 0.449 0.356 0.338 0.425 0.518 0.717	0.561 0.246 0.462 0.452 0.358 0.340 0.428 0.523 0.719
1981 1982 1983 1984 1985 1986 1987 1988 1989	0.403 0.637 0.436 0.289 0.394 0.366 0.487 0.277 0.423	$\begin{array}{c} 0.406 \\ 0.640 \\ 0.291 \\ 0.398 \\ 0.368 \\ 0.492 \\ 0.280 \\ 0.427 \end{array}$
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999	$\begin{array}{c} 1.046\\ 0.764\\ 0.309\\ 0.288\\ 0.258\\ 0.356\\ 0.561\\ 0.430\\ 0.377\\ 0.920\end{array}$	$\begin{array}{c} 1.046\\ 0.766\\ 0.311\\ 0.290\\ 0.260\\ 0.359\\ 0.562\\ 0.433\\ 0.379\\ 0.925\end{array}$
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.410 0.408 0.554 0.525 0.856 0.352 0.349 0.987 0.711 0.468	$\begin{array}{c} 0.413\\ 0.412\\ 0.557\\ 0.527\\ 0.861\\ 0.355\\ 0.350\\ 0.986\\ 0.714\\ 0.473\end{array}$

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 0458 1 0461

1	1.0458	1.0461
2	0.9867	0.9861
3	0.9201	0.9251

4 5 6 7 8 9 10 11 23 14 15 16 7 8 9 10 11 23 14 15 16 7 8 9 20 21 22 32 4 5 6 27 28 9 30 132 33 4 5 6 37 8 9 40 41 42 43 44 5 6 7 8 9 5 10 11 20 21 22 32 45 6 27 28 9 30 132 33 45 36 37 8 9 40 41 42 43 44 5 6 5 1 8 9 5 10 11 12 12 23 24 5 6 27 28 9 30 132 33 45 5 6 5 7 8 9 5 10 11 12 12 23 24 5 6 27 28 9 30 132 33 45 5 6 5 7 8 9 5 10 11 12 12 23 24 5 6 27 28 9 30 132 33 45 5 6 5 7 8 9 5 10 11 12 12 23 24 5 6 5 7 8 9 30 12 23 24 5 5 6 5 7 8 9 30 12 23 24 5 5 6 5 7 8 9 9 40 41 42 33 44 5 5 6 5 7 8 9 9 40 41 42 33 45 5 6 5 7 8 9 9 40 41 42 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8561 0.7635 0.7165 0.7114 0.6369 0.6132 0.6132 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4685 0.4595 0.4595 0.4595 0.4595 0.4251 0.4234 0.4251 0.4234 0.4251 0.4234 0.4251 0.4234 0.4251 0.3944 0.3933 0.3861 0.3767 0.3759 0.3759 0.3759 0.3525 0.3525 0.3559 0.3525 0.3562 0.3559 0.3525 0.3487 0.3461 0.3406 0.3377 0.3242 0.3207 0.3207	0.8610 0.7655 0.7187 0.7138 0.6402 0.6173 0.6146 0.5974 0.5946 0.5617 0.5607 0.5269 0.5274 0.4924 0.4729 0.4727 0.4622 0.4617 0.4520 0.4400 0.4326 0.4277 0.4275 0.4167 0.4129 0.4167 0.4129 0.4167 0.3976 0.3973 0.3888 0.3782 0.3784 0.3782 0.3503 0.3548 0.3592 0.3548 0.3592 0.3507 0.3503 0.3467 0.3252 0.3234 0.3211
48 49 50 51 52 53 54 55 56 57 58 59 60 61	0.3377 0.3242 0.3207 0.3093 0.3002 0.2886 0.2876 0.2824 0.2786 0.2767 0.2740 0.2579 0.2488 0.2429	$\begin{array}{c} 0.3399\\ 0.3252\\ 0.3234\\ 0.3111\\ 0.3034\\ 0.2909\\ 0.2898\\ 0.2844\\ 0.2815\\ 0.2800\\ 0.2767\\ 0.2604\\ 0.2508\\ 0.2455\end{array}$

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.84 Total Impervious Area: 0.78

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

	FIUW(CIS
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

2 year	0.357064
5 year	0.468532
10 year	0.548138
25 year	0.655564
50 year	0.740714
100 year	0.830382
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

i cai	i i euevelopeu	wiitiyat
1949	0.378	0.484
1950	0.399	0.466
1951	0.247	0.308
1952	0.164	0.218
1953	0.189	0.263
1954	0.231	0.293
1955	0.249	0.333
1956	0.246	0.297
1957	0.270	0.356
1958	0.210	0.285
1959	0.210	0.293

1960 1961	0.247 0.224	0.317 0.297
1962	0.181	0.250
1963	0.243	0.316
1964	0.224	0.287
1965	0.285	0.370
1966	0.186	0.247
1967	0.405	0.478
1908	0.403	0.031
1909	0.234	0.334
1071	0.247	0.320
1972	0.366	0.330
1973	0.169	0.237
1974	0.290	0.377
1975	0.275	0.371
1976	0.229	0.298
1977	0.220	0.288
1978	0.287	0.392
1979	0.355	0.491
1980	0.452	0.556
1981	0.256	0.347
1902	0.307	0.312
1984	0.207	0.390
1985	0.248	0.337
1986	0.230	0.299
1987	0.322	0.449
1988	0.195	0.268
1989	0.308	0.419
1990	0.703	0.796
1991	0.489	0.590
1992	0.201	0.200
1993	0.213	0.202
1995	0.107	0.200
1996	0.395	0.449
1997	0.278	0.352
1998	0.246	0.325
1999	0.574	0.741
2000	0.258	0.342
2001	0.279	0.383
2002	0.333	0.434
2003	0.340	0.426
2004	0.040	0.704
2006	0.210	0.200
2007	0.692	0.763
2008	0.460	0.541
2009	0.331	0.456

Ranked Annual PeaksRanked Annual Peaks for Predeveloped and Mitigated.Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.7030	0.7957
2	0.6916	0.7627
3	0.5737	0.7415
4	0.5428	0.7039

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 23 34 35	0.4887 0.4598 0.4521 0.4053 0.3990 0.3949 0.3871 0.3783 0.3659 0.3551 0.3400 0.326 0.3219 0.3085 0.3004 0.2896 0.2871 0.2870 0.2849 0.2793 0.2793 0.2749 0.2705 0.2578 0.2561 0.2541 0.2472	0.5895 0.5565 0.5409 0.5309 0.5115 0.4912 0.4839 0.4778 0.4660 0.4563 0.4491 0.4489 0.4441 0.4339 0.4259 0.4190 0.3980 0.3961 0.3915 0.3833 0.3769 0.3705 0.3705 0.3558 0.3518 0.3518 0.3472 0.3419 0.3369 0.3327 0.3282
37 38 39 40 41 42 43 44 45 46 47 48 49 51 53 53 55 55 56 57 58 59 60	0.2466 0.2458 0.2427 0.2312 0.2302 0.2294 0.2290 0.2259 0.2245 0.2235 0.2133 0.2159 0.2133 0.2102 0.2098 0.2005 0.1951 0.1926 0.1893 0.1867 0.1806 0.1694	0.3175 0.3156 0.3109 0.3075 0.2988 0.2982 0.2965 0.2965 0.2931 0.2925 0.2833 0.2873 0.2857 0.2850 0.2834 0.2816 0.2627 0.2601 0.2543 0.2503 0.2473 0.2369
60 61	0.1694 0.1636	0.236 0.218

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 6.93 Total Impervious Area: 7.14

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	2.973468
5 year	3.869482
10 year	4.505279
25 year	5.35887
50 year	6.032374
100 year	6.739069

Flow Frequency Return Periods for Mitigated. POC #3Return PeriodFlow(cfs)2 year3.0724095 year3.98972310 year4.6395625 year5.51084950 year6.197513

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

6.917348

i cai	i reuevelopeu	imilyai
1949	3.768	3.901
1950	3.902	4.046
1951	2.580	2.650
1952	1.886	1.957
1953	2.299	2.382
1954	2.484	2.554
1955	2.734	2.833
1956	2.539	2.591
1957	2.809	2.913
1958	2.383	2.470
1959	2.570	2.661

2.537 2.438	2.605 2.525
2.128	2.207
2.565	2.653
2.491	2.581
2.940	3.032
2.070	2.142
4.045	4.131
4.380	4.539
2.009	2.700
3 235	3 352
3.646	3.739
2.080	2.155
2.958	3.065
3.252	3.372
2.430	2.514
2.437	2.526
3.410 1 252	5.520 1 101
4 305	4 449
2.860	2.966
4.090	4.241
3.376	3.500
2.132	2.205
2.750	2.854
2.460	2.552
2 366	2 453
3.724	3.850
6.539	6.653
4.742	4.870
2.137	2.211
2.532	2.613
2.210	2.286
2.009	2.004
2 903	2 990
2.745	2.846
5.815	6.025
2.756	2.857
3.314	3.431
3.408	3.529
3.415	3.527
0.049 2.256	0.00U 2 2/1
2.316	2.341
6.462	6.547
4.529	4.618
4.037	4.179
	2.537 2.438 2.565 2.491 2.940 2.070 4.045 4.386 2.609 2.671 3.235 3.646 2.080 2.958 3.252 2.430 2.437 3.410 4.252 4.305 2.860 4.090 3.376 2.132 2.750 2.460 3.825 2.366 3.724 6.539 4.742 2.532 2.210 2.569 3.903 2.903 2.745 5.815 2.756 3.314 3.408 3.415 5.649 2.256 2.316 6.462 4.037

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	6.5390	6.6531
2	6.4623	6.5467
3	5.8152	6.0252
4	5.6488	5.8498

5	4.7425	4.8704
6	4.5291	4.6184
7	4.3855	4.5395
8	4.3047	4.4488
9	4.2518	4.4043
10	4.0905	4.2414
11	4.0446	4.1786
12	4.0373	4.1313
13	3.9032	4.0458
14	3.9020	3.9683
15	3.8253	3.9672
16	3.7679	3.9010
17	3.7243	3.8501
18	3.6460	3.7386
19	3.4154	3.5290
20	3.4101	3.5282
21	3.4084	3.5271
22	3.3761	3.5000
23	3.3136	3.4315
24 25 26 27	3.2521 3.2348 2.9576 2.9405	3.3721 3.3520 3.0646 3.0324 2.0000
20	2.9032	2.9900
29	2.8601	2.9663
30	2.8085	2.9127
31	2.7563	2.8568
32	2.7500	2.8537
33	2.7450	2.8456
34	2.7342	2.8326
35	2.6714	2.7686
36	2.6086	2.7060
37	2.5795	2.6636
38	2.5696	2.6612
39	2.5687	2.6529
40	2.5655	2.6501
41	2.5388	2.6130
42	2.5366	2.6054
43	2.5317	2.5907
44	2.4914	2.5807
45	2.4844	2.5541
46	2.4601	2.5517
47	2.4380	2.5257
48	2.4369	2.5251
49	2.4300	2.5144
50	2.3832	2.4700
51	2.3663	2.4531
52 53 54 55	2.3157 2.2991 2.2563 2.2098 2.1269	2.3844 2.3819 2.3407 2.2857 2.2111
57	2.1323	2.2068
58	2.1282	2.2048
59	2.0801	2.1546
60	2.0701	2.1423
61	1.8862	1.9572

POC 4

+ Predeveloped x I

x Mitigated

Predeveloped Landuse Totals for POC #4Total Pervious Area:10.27Total Impervious Area:2.89

Mitigated Landuse Totals for POC #4 Total Pervious Area: 5.82 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4

Flow(cts)	
0.051811	Note: Includes basin areas from
0.156257	Predeveloped POC 7 and 8
0.302829	
0.655511	
1.120767	
1.862801	
	Flow(cfs) 0.051811 0.156257 0.302829 0.655511 1.120767 1.862801

 Flow Frequency Return Periods for Mitigated. POC #4

 Return Period
 Flow(cfs)

 2 year
 0.005048

 5 year
 0.008331

 10 year
 0.011249

 25 year
 0.020372

 100 year
 0.025655

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

i cai	i leuevelopeu	imitiya
1949	0.037	0.004
1950	0.660	0.012
1951	0.146	0.012
1952	0.023	0.005
1953	0.024	0.005
1954	0.095	0.005
1955	0.042	0.005
1956	0.178	0.005
1957	0.031	0.005
1958	0.032	0.005
1959	0.046	0.005

1960	0.114	0.005
1961	0.076	0.005
1963	0.030	0.004
1964	0.056	0.005
1965	0.034	0.005
1966	0.025	0.005
1967	0.420	0.005
1968	0.125	0.005
1969	0.028	0.005
1970	0.025	0.004
1972	0.530	0.000
1973	0.032	0.005
1974	0.038	0.005
1975	0.060	0.005
1976	0.080	0.005
1977	0.009	0.004
1978	0.028	0.005
1979	0.010	0.004
1981	0.031	0.005
1982	0.074	0.005
1983	0.035	0.005
1984	0.026	0.005
1985	0.017	0.005
1986	0.041	0.004
1987	0.094	0.004
1900	0.021	0.005
1990	1.581	0.005
1991	0.288	0.011
1992	0.034	0.005
1993	0.023	0.004
1994	0.015	0.004
1995	0.115	0.005
1996	0.549	0.045
1997	0.147	0.005
1999	0.597	0.004
2000	0.027	0.004
2001	0.009	0.005
2002	0.040	0.004
2003	0.027	0.005
2004	0.087	0.005
2005	0.032	0.005
2000	0.101	0.000 0 068
2008	0 420	0.000
2009	0.061	0.005
-		

Ranked Annual PeaksRanked Annual Peaks for Predeveloped and Mitigated.Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	2.3077	0.0675
2	1.5812	0.0453
3	0.6602	0.0335
4	0.5974	0.0123

5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26	0.5491 0.5303 0.4202 0.4196 0.2875 0.1783 0.1474 0.1460 0.1252 0.1151 0.1139 0.1009 0.0945 0.0935 0.0874 0.0802 0.0764 0.0738 0.0607 0.0599 0.0559	0.0121 0.0106 0.0052 0.0047 0.0046 0.0046 0.0046 0.0046
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 95 1	0.0510 0.0457 0.0419 0.0412 0.0399 0.0379 0.0372 0.0341 0.0341 0.0339 0.0318 0.0318 0.0316 0.0307 0.0302 0.0284 0.0281 0.0281 0.0281 0.0281 0.0281 0.0281 0.0281 0.0259 0.0259 0.0255 0.0245	0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0045 0.00
52 53 54 55 56 57 58 59 60 61	0.0243 0.0233 0.0230 0.0213 0.0184 0.0172 0.0170 0.0157 0.0147 0.0094 0.0090	0.0044 0.0044 0.0044 0.0044 0.0044 0.0043 0.0041 0.0039 0.0037 0.0037

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.15 Total Impervious Area: 1.56

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #5 Return Period Flow(cfs)

	110W(013)
2 year	0.572797
5 year	0.745702
10 year	0.86843
25 year	1.03324
50 vear	1.163309
100 year	1.29981
5	

Flow Frequency Return Periods for Mitigated. POC #5 **Return Period Flow(cfs) 0**667022

z year	0.667922
5 year	0.861329
10 year	0.997605
25 year	1.179534
50 year	1.322365
100 year	1.471646
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

i cai	i i euevelopeu	wiitiyat
1949	0.723	0.851
1950	0.748	0.885
1951	0.494	0.562
1952	0.361	0.427
1953	0.443	0.522
1954	0.481	0.548
1955	0.527	0.621
1956	0.496	0.567
1957	0.537	0.637
1958	0.458	0.541
1959	0.496	0.583

1960	0.490	0.569
1962	0.407	0.483
1963	0.494	0.577
1964	0.480	0.565
1965	0.571	0.659
1966	0.400	0.469
1967	0.781	0.865
1968	0.849	0.996
1969	0.498	0.592
1970	0.513	0.000
1972	0.697	0.787
1973	0.401	0.472
1974	0.569	0.671
1975	0.623	0.738
1976	0.469	0.550
1977	0.468	0.553
1978	0.662	0.774
1979	0.819	0.965
1900	0.040	0.977
1982	0.783	0.928
1983	0.647	0.766
1984	0.412	0.481
1985	0.527	0.624
1986	0.470	0.558
1987	0.732	0.868
1988	0.455	0.536
1909	0.727	0.040
1990	0.912	1.004
1992	0.414	0.485
1993	0.499	0.576
1994	0.430	0.502
1995	0.492	0.583
1996	0.758	0.824
1997	0.556	0.639
1998	0.526	0.623
2000	0.528	1.320
2000	0.520	0.024
2002	0.659	0.774
2003	0.665	0.771
2004	1.090	1.282
2005	0.430	0.511
2006	0.444	0.510
2007	1.241	1.324
2008	0.879	0.965
2009	0.782	0.917

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #5 Rank Predeveloped Mitigated

nann	i i cucvelopeu	mingate
1	1.2519	1.3640
2	1.2408	1.3245
3	1.1187	1.3195
4	1.0902	1.2821

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0.9123 0.8793 0.8491 0.8400 0.8194 0.7831 0.7823 0.7811 0.7578 0.7483 0.7316 0.7271 0.7235 0.6966 0.6650 0.6650 0.6650 0.6652 0.6588 0.6472 0.6397 0.6228 0.6220 0.528 0.6220 0.5556 0.5468 0.5468	1.0354 0.9957 0.9766 0.9650 0.9650 0.9278 0.9168 0.8851 0.8647 0.8647 0.8647 0.8509 0.8462 0.8241 0.7872 0.7745 0.7745 0.7745 0.7745 0.7737 0.7710 0.7659 0.7522 0.7378 0.7341 0.6711 0.6587 0.6487 0.6393
31	0.5276	0.6240
32	0.5274	0.6236
33	0.5266	0.6228
34	0.5264	0.6205
35	0.5129	0.6060
36	0.4992	0.5916
37	0.4981	0.5833
38	0.4962	0.5827
39	0.4959	0.5772
40	0.4944	0.5757
41	0.4936	0.5694
42	0.4917	0.5670
43	0.4901	0.5655
44	0.4813	0.5625
45	0.4801	0.5580
46	0.4701	0.5529
47	0.4697	0.5529
48	0.4693	0.5498
49	0.4679	0.5479
50	0.4577	0.5407
51 52 53	0.4555 0.4439 0.4427 0.4300	0.5364 0.5218 0.5111 0.5100
54 55 56 57	0.4299 0.4142 0.4122	0.5100 0.5020 0.4847 0.4828
59 60 61	0.4075 0.4010 0.3998 0.3610	0.4613 0.4721 0.4687 0.4273

Predeveloped Landuse Totals for POC #6Total Pervious Area:10.66Total Impervious Area:5.6

Mitigated Landuse Totals for POC #6 Total Pervious Area: 9.64 Total Impervious Area: 6.6

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #6 Return Period Flow(cfs)

	11000(013)
2 year	2.403278
5 year	3.208207
10 year	3.802683
25 year	4.626862
50 year	5.296037
100 year	6.014415
•	

Flow Frequency Return Periods for Mitigated.POC #6Return PeriodFlow(cfs)2 year2.779573

5 year	3.662165
10 year	4.30737
25 year	5.194441
50 year	5.909335
100 year	6.672243

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

i cai	i redeveloped	miliyai
1949	3.043	3.548
1950	3.569	3.883
1951	2.231	2.505
1952	1.544	1.818
1953	1.808	2.120
1954	2.052	2.328
1955	2.186	2.559
1956	2.110	2.337
1957	2.276	2.674
1958	1.906	2.236
1959	2.034	2.380

1960	2.116	2.378
1962	1.930	2.251
1963	2.079	2.412
1964	1.976	2.314
1965	2.429	2.828
1966	1.630	1.901
1967	3.554	3.892
1968	3.418	3.992
1969	2.128	2.501
1970	2.139	2.508
1971	2.576	3.020
1972	3.305	3.000 1.021
1973	2 380	2 787
1975	2.000	3 078
1976	1.915	2.231
1977	1.945	2.283
1978	2.654	3.095
1979	3.372	3.949
1980	3.271	3.797
1981	2.311	2.717
1982	3.290	3.864
1983	2.702	3.173
1984	1.091	1.904
1985	2.249	2.040
1987	3 099	3 643
1988	1.904	2.235
1989	2.834	3.296
1990	6.355	6.803
1991	4.044	4.536
1992	1.652	1.942
1993	1.843	2.133
1994	1.730	2.014
1995	2.075	2.430
1990	2 474	2 811
1998	2 205	2.588
1999	4.633	5.426
2000	2.231	2.614
2001	2.607	3.051
2002	2.731	3.214
2003	2.639	3.050
2004	4.429	5.181
2005	1.846	2.170
2000 2007	1.900	2.250
2007	0.400 3 036	0.790
2009	3,135	3 662
_000	0.100	0.002

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #6 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	6.4664	6.8033
2	6.3554	6.7976
3	4.6326	5.4259
4	4.4292	5.1811
3	4.6326 4.4292	5.4259 5.1811

5	4.0444	4.5363
6	3.9362	4.3648
7	3.5691	3.9918
8	3.5543	3.9488
9	3.4723	3.8918
10	3.4178	3.8834
11	3.3722	3.8639
12	3.3047	3.7967
13	3.2897	3.7253
14	3.2713	3.6663
15	3.1349	3.6616
16	3.0993	3.6429
17	3.0429	3.5484
18	2.8339	3.2962
19	2.7309	3.2142
20	2.7020	3.1730
21	2.6542	3.0950
22	2.6394	3.0781
23	2.6199	3.0507
24	2.6074	3.0502
25	2.5765	3.0196
26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 50 51 52 53 54	2.4743 2.4292 2.3801 2.3110 2.2758 2.2489 2.2309 2.2308 2.2050 2.1864 2.1387 2.1277 2.1157 2.1100 2.0791 2.0752 2.0519 2.0343 1.9915 1.9859 1.9761 1.9452 1.9384 1.9153 1.9062 1.9041 1.8460 1.8435 1.8083	2.8276 2.8114 2.7870 2.7165 2.6738 2.6477 2.6143 2.5593 2.5076 2.5055 2.5009 2.4376 2.4116 2.3804 2.3777 2.3419 2.3367 2.3282 2.3140 2.2827 2.2512 2.2504 2.2358 2.2350 2.2350 2.2315 2.1698 2.1328 2.1197
55	1.7298	2.0155
56	1.7156	2.0141
57	1.6915	1.9643
58	1.6517	1.9419
59	1.6495	1.9314
60	1.6297	1.9007
61	1.5443	1.8178

1960 1961	0.107	0.449 0.405
1962	0.028	0.336
1963	0.091	0.442
1964	0.084	0.373
1965	0.119	0.533
1966	0.053	0.337
1967	0.181	0.073
1900	0.109	0.705
1970	0.087	0.462
1971	0.103	0.549
1972	0.169	0.644
1973	0.038	0.296
1974	0.111	0.514
1975	0.123	0.521
1976	0.081	0.411
19/7	0.073	0.391
1979	0.005	0.400
1980	0.231	0.778
1981	0.077	0.489
1982	0.180	0.724
1983	0.108	0.535
1984	0.051	0.344
1900	0.073	0.475
1987	0.088	0.601
1988	0.033	0.345
1989	0.027	0.498
1990	0.341	1.132
1991	0.237	0.845
1992	0.072	0.358
1993	0.041	0.331
1995	0.023	0.303
1996	0.179	0.624
1997	0.103	0.489
1998	0.087	0.434
1999	0.263	1.043
2000	0.099	0.489
2001	0.037	0.499
2002	0.149	0.030
2004	0.209	0.980
2005	0.090	0.415
2006	0.090	0.400
2007	0.316	1.063
2008	0.229	0.788
2009	0.130	0.577

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #7 Rank Predeveloped Mitigated

Rank	Fredeveloped	wiiliyate
1	0.3415	1.1324
2	0.3163	1.0632
3	0.2630	1.0431
4	0.2373	0.9800

5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 21 22 23 24 25 27 28	0.2310 0.2294 0.2086 0.1856 0.1815 0.1801 0.1788 0.1779 0.1689 0.1548 0.1489 0.1298 0.1226 0.1193 0.1126 0.1193 0.1156 0.1106 0.1097 0.1094 0.1077 0.1035 0.1030 0.0992 0.0989	0.8450 0.7881 0.7779 0.7238 0.7054 0.6725 0.6578 0.6444 0.6338 0.6298 0.6237 0.6008 0.5933 0.5765 0.5489 0.5354 0.5354 0.5330 0.5211 0.5136 0.5103 0.4992 0.4985 0.4895
29	0.0987	0.4890
30	0.0954	0.4889
31	0.0907	0.4877
32	0.0903	0.4855
33	0.0895	0.4754
34	0.0877	0.4624
35	0.0874	0.4489
36	0.0873	0.4415
37	0.0842	0.4409
38	0.0832	0.4357
39	0.0809	0.4337
40	0.0774	0.4308
41	0.0738	0.4229
42	0.0732	0.4148
43	0.0728	0.4110
44	0.0718	0.4094
45	0.0705	0.4087
46	0.0694	0.4053
47	0.0647	0.4003
48	0.0610	0.3909
49	0.0531	0.3817
50	0.0525	0.3735
51	0.0506	0.3654
52	0.0448	0.3582
53	0.0406	0.3450
54 55 56 57	0.0378 0.0373 0.0345 0.0336	$\begin{array}{c} 0.3449 \\ 0.3444 \\ 0.3366 \\ 0.3358 \\ 0.2200 \end{array}$
59 60 61	0.0335 0.0281 0.0269 0.0250	0.3034 0.3005 0.2965

1960 1961	0.111 0.072	0.792 0.750
1962	0.029	0.632
1963	0.094	0.797
1964	0.087	0.742
1965	0.124	0.924
1967	0.000	1 286
1968	0.114	1.355
1969	0.120	0.810
1970	0.091	0.823
1971	0.108	0.995
1972	0.175	1.140
1973	0.039	0.613
1974 1075	0.115	0.910
1975	0.127	0.940
1977	0.076	0.722
1978	0.086	1.028
1979	0.036	1.268
1980	0.240	1.408
1981	0.080	0.867
1982	0.187	1.258
1903	0.112	0.655
1985	0.076	0.837
1986	0.103	0.747
1987	0.091	1.131
1988	0.035	0.708
1989	0.028	1.124
1990	0.355	2.073
1991	0.240	0.670
1993	0.073	0.070
1994	0.026	0.662
1995	0.063	0.772
1996	0.186	1.255
1997	0.107	0.891
1998	0.091	0.820
2000	0.273	1.021
2000	0.039	0.997
2002	0.155	1.072
2003	0.161	1.099
2004	0.217	1.767
2005	0.093	0.694
2005	0.094	0.719
2007	0.329	2.000
2009	0.135	1.210
	0.100	

Ranked Annual Peaks Ranked Annual Peaks for Predeveloped and Mitigated. POC #8 Predeveloped Mitigated

Rank	Predeveloped	Mitigate		
1	0.3548	2.0730		
2	0.3286	2.0503		
3	0.2732	1.8212		
4	0.2465	1.7675		

5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 25 27 29 31 32 31 32 33 32 33 32 33 33 33 33 33	0.2400 0.2383 0.2168 0.1928 0.1886 0.1871 0.1857 0.1849 0.1755 0.1608 0.1547 0.1348 0.1273 0.1239 0.1201 0.1201 0.1149 0.1140 0.1137 0.1149 0.1140 0.1137 0.1119 0.1075 0.1075 0.1070 0.1028 0.1026 0.0931 0.0938 0.0930	1.5080 1.4658 1.4077 1.3546 1.2859 1.2680 1.2578 1.2550 1.2291 1.2104 1.1910 1.1398 1.1311 1.1240 1.0992 1.0720 1.0283 1.0083 0.9966 0.9946 0.9241 0.9162 0.8907 0.8667 0.8667 0.8487 0.8372 0.8321
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 34 55 657 58 59	0.0911 0.0908 0.0907 0.0875 0.0865 0.0841 0.0766 0.0761 0.0756 0.0746 0.0732 0.0721 0.0672 0.0634 0.0552 0.0546 0.0526 0.0465 0.0465 0.0422 0.0392 0.0388 0.0358 0.0349 0.0348 0.0292	0.8229 0.8200 0.8168 0.8104 0.7989 0.7967 0.7921 0.7829 0.7723 0.7689 0.7599 0.7570 0.7497 0.7465 0.7416 0.7217 0.7191 0.7176 0.7075 0.6936 0.6852 0.6701 0.6623 0.6553 0.6373 0.6324
60 61	0.0279 0.0260	0.6134 0.5664

POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Subbasin 1	
Subbasin 2	
Subbasin 3	
5.82ac	
Subbasin 5	
Subbasin 6	
Subbasin 7	
Subbasin 8	

Predeveloped UCI File

RUN

FILES <file> <un#> <file name="">***</file></un#></file>	
WDM 26 Tamarack.wdm MESSU 25 PreTamarack.MES 27 PreTamarack.L61 28 PreTamarack.L62 30 POCTamarack1.dat 31 POCTamarack2.dat 32 POCTamarack3.dat 34 POCTamarack5.dat 35 POCTamarack6.dat 36 POCTamarack8.dat 37 POCTamarack8.dat 33 POCTamarack4.dat	
END FILES	
OPN SEQUENCE INGRP INDELT 00:15 PERLND 8 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 PERLND 9 IMPLND 3 IMPLND 16 PERLND 41 PERLND 42 PERLND 42 PERLND 42 PERLND 43 PERLND 42 PERLND 42 PERLND 43 PERLND 502 COPY 501 COPY 503 COPY 506 COPY 506 COPY 506 COPY 508 COPY 504 DISPLY 1 DISPLY 5 DISPLY 5 DISPLY 6 DISPLY 7 DISPLY 7	
DISPLY 4 END INGRP END OPN SEQUENCE	
DISPLY-INFO1	
# - # <title>***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 1 Subbasin 1 MAX 1 2 30 2 Subbasin 2 MAX 1 2 31 3 Subbasin 3 MAX 1 2 32 5 Subbasin 5 MAX 1 2 34</title>	YRND 9 9 9 9

PWAT-PARM1

<pre> <pls> I # - # CS 8 17 9 40 41 42 43 39 END PWAT-PP</pls></pre>	PWATER var SNO RTOP UZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ARM1	iable month ZFG VCS V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nly paramet /UZ VNN V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ter value : IFW VIRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	flags *** VLE INFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HWT *** 0 0 0 0 0 0 0 0 0	
PWAT-PARM2 <pls> # - # ** 8 17 9 40 41 42 43 39 END PWAT-PP</pls>	PWATER **FOREST 0 0 0 0 0 0 0 0 0 0 0 0 0 0	input info LZSN 4.5 5 4.5 5 4.5 4.5 5 5	D: Part 2 INFILT 0.8 0.03 0.8 0.03 0.03 0.03 0.8 2	** LSUR 400 400 400 400 400 400 400 400 400	* SLSUR 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.1	KVARY 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.3	AGWRC 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
PWAT-PARM3 <pls> # - # ** 8 17 9 40 41 42 43 39 END PWAT-PA</pls>	PWATER **PETMAX 0 0 0 0 0 0 0 0 0 0 0 0 0	input info PETMIN 0 0 0 0 0 0 0 0 0 0 0 0	D: Part 3 INFEXP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** INFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* DEEPFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BASETP 0 0 0 0 0 0 0 0 0 0	AGWETP 0 0 0 0 0 0 0 0 0
END FWAT-PARM4 <pls> # - # 8 17 9 40 41 42 43 39 END FWAT-PA</pls>	PWATER : CEPSC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 ARM4	input info: UZSN 0.5 0.25 0.5 0.5 0.15 0.15 0.5 0.5 0.5	Part 4 NSUR 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	INTFW 0 6 0 0 6 6 6 0 0 0	IRC 0.7 0.5 0.7 0.7 0.3 0.3 0.3 0.7 0.7	LZETP 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	***
PWAT-STATE <pls> ** # - # ** 8 17 9 40 41 42 43 39 END PWAT-ST</pls>	** Initial ran from ** CEPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	conditions 1990 to er SURS 0 0 0 0 0 0 0 0 0 0 0	s at start nd of 1992 UZS 0 0 0 0 0 0 0 0 0 0 0	of simula (pat 1-11) IFWS 0 0 0 0 0 0 0 0 0 0 0	tion -95) RUN 2 LZS 3 2.5 3 2.5 2.5 3 3 3 3	1 *** AGWS 1 1 1 1 1 1 1 1	GWVS 0 0 0 0 0 0 0 0 0
END PERLND IMPLND GEN-INFO <pls>< # - #</pls>	Name-	> U:	Unit-syste	ems Prin ies Engl Ma	ter *** etr ***		

2 4 6 3 7 16 END ***	GEN- Sect	ROAI ROOI DRIV ROAI DRIV ROADS INFO ion	DS/MOD F TOPS/ VEWAYS/ DS/STEE VEWAYS/ S/MOD L LWATER*	FLAT MOD P STEEP AT **		1 1 1 1 1	in 1 1 1 1	out 1 1 1 1	27 27 27 27 27 27 27	* 0 0 0 0 0	* *	
ACT: <1 # 2 4 6 3 7 16 END	IVITY PLS > - # ACTI	* * * * * ATMI (((((((VITY	******* SNOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** A IWAT 1 1 1 1 1 1	Ctive SLD 0 0 0 0 0 0	Sec IWG 0 0 0 0 0	tions IQAL 0 0 0 0 0 0 0	* * * * *	* * * * * *	****	* * * * *	*****
PRII <2 4 6 3 7 16 END	NT-IN ILS > - # PRIN	FO **** (((((((((((((((((***** P ? SNOW) 0 0 0 0 0 0 0 0 0 70	rint- IWAT 4 4 4 4 4 4 4	flags SLD 0 0 0 0 0 0	*** IWG 0 0 0 0 0 0	***** IQAL 0 0 0 0 0 0 0	PIVL 1 1 1 1 1	PYR * * * * * * 9 9 9 9 9 9	* *		
IWA <1 2 4 6 3 7 16 END	I-PAR PLS > - #	M1 CSN(((((((((((((((((((ATER VA D RTOP D 0 D 0 D 0 D 0 D 0 D 0 41	riabl VRS 0 0 0 0 0 0	e mon VNN 0 0 0 0 0 0	thly RTLI 0 0 0 0 0 0	paran,	neter ***	value	flags	***	
IWA 4 2 4 6 3 7 16 END	I-PAR PLS > - # IWAT	.m2 * * * *	IWATE LSUR 400 400 400 400 400 400	R inp S	out in DLSUR 0.05 0.01 0.05 0.1 0.1 0.05	fo: 1	Part 2 NSUR 0.1 0.1 0.1 0.1 0.1 0.1	2	* RETSC 0.08 0.1 0.08 0.05 0.05 0.08	**		
IWA <1 # 2 4 6 3 7 16 END	I-PAR LS > - #	.M3 * * * * I	IWATE PETMAX 0 0 0 0 0 0 43	R inp PE	out in TMIN 0 0 0 0 0 0	fo: 1	Part 3	3	*	**		
IWA <] # 2 4	r-sta ?LS > - #	TE1 *** ***	Initia RETS 0 0	l con	ditio SURS 0 0	ns a	t star	ct of	simul	ation		
б		0	0									
-----	-------------	---	---									
3		0	0									
7		0	0									
16		0	0									
END	IWAT-STATE1											

END IMPLND

SCHEMATIC			
<-Source->	<area/>	<-Target->	MBLK ***
<name> #</name>	<-factor->	<name> #</name>	Tbl# ***
Basin 4,7,8 Imperv Lateral *	* *		
IMPLND 16	0.5044	perlnd 39	50
Subbasin 8 - Perv Lateral F	low A/B***		
perlnd 40	0.4188	perlnd 39	30
perlnd 40	0.4188	PERLND 39	34
perlnd 40	0.4188	PERLND 39	38
Subbasin 7 - Perv Lateral F	low A/B***		
perlnd 43	0.0995	PERLND 39	30
PERLND 43	0.0995	PERLND 39	34
PERLND 43	0.0995	PERLND 39	38
Subbasin 7 - Perv Lateral F	low C***		
PERLND 41	0.1344	PERLND 39	30
PERLND 41	0.1344	PERLND 39	34
PERLND 41	0.1344	PERLND 39	38
Subbasin 8 - Perv Lateral F	low C***		
PERLND 42	0.1396	PERLND 39	30
PERLND 42	0.1396	PERLND 39	34
PERLND 42	0.1396	PERLND 39	38
Subbasin 1***			
PERLND 8	0.39	COPY 501	12
PERLND 8	0.39	COPY 501	13
PERLND 17	0.95	COPY 501	12
PERLND 17	0.95	COPY 501	13
IMPLND 2	0.35	COPY 501	15
IMPLND 4	0.32	COPY 501	15
IMPLND 6	0.14	COPY 501	15
Subbasin 2***	0.65		
PERLND 8	0.67	COPY 502	12
PERLND 8	0.67	COPY 502	13
PERLND 17	0.41	COPY 502	12
PERLND 17	0.41	COPY 502	13
IMPLND 2	0.42	COPY 502	15
IMPLND 4	0.08	COPY 502	15
IMPLND 6	0.04	COPY 502	15
SUDDASIN 3***	7 10		10
PERLIND 9	7.19	COPY 503	
PERLIND 9 IMDIND 2	7.19	COPY 503	13 15
IMPLND 3	2.24	COPI 503	15
IMPLND 4 IMDIND 7	3.45	COPY 503	15
IMPLND / Subbagin 5***	1.39	COPI 505	15
DEBLIND 9	1 30	CODV 505	10
DEDIND 9	1 39	COPY 505	13
TMDIND 3	0.52	COPY 505	15
IMPLND 4	0.52	COPY 505	15
	0.33	COPY 505	15
Subbasin 6***	0.21	0011 505	10
PERLND 8	10 62	COPY 506	12
PERLND 8	10.62	COPY 506	13
PERLND 17	0 04	COPY 506	12
PERLND 17	0 04	COPY 506	13
IMPLND 2	1 77	COPY 506	15
IMPLND 4	2.68	COPY 506	15
IMPLND 6	1.15	COPY 506	15
Basin 4 - Perv Lateral Flow*	**		± 0
PERLND 39	5.73	COPY 504	12
PERLND 39	5.73	COPY 504	13
Subbasin 7 - Perv Lateral F	low C***		
PERLND 41	0.77	COPY 507	12

0.77 PERLND 41 COPY 507 13 Subbasin 8 - Perv Lateral Flow C*** 0.8 COPY 508 12 0.8 COPY 508 13 perlnd 42 PERLND 42 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <Name> # <Name> # #<-factor->strg <Name> # #

 <Name>
 #
 <Name>
 #
 #
 <</td>
 <Name>
 #

 #

 #
 #
 <</td>

 #
 #
 #
 <t <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer RCHRES * * * # - #<----> User T-series Engl Metr LKFG in out * * * * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult->Tran <-Target vols> <-Grp> <-Member-> ***

<name> # <name WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP END EXT SOURCES</name </name>	<pre>> # tem strg<-factor->strg ENGL 1 ENGL 1 ENGL 0.76 ENGL 0.76</pre>	<name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999 IMPLND 1 999</name>	<name> # # *** EXTNL PREC EXTNL PREC EXTNL PETINP EXTNL PETINP</name>
END EXI SOURCES			
EXT TARGETS <-Volume-> <-Grp <name> # COPY 501 OUTPU COPY 502 OUTPU COPY 503 OUTPU COPY 505 OUTPU COPY 506 OUTPU COPY 504 OUTPU COPY 507 OUTPU COPY 508 OUTPU END EXT TARGETS</name>	<pre>> <-Member-><mult>Tran</mult></pre>	<-Volume-> <mem <name> # <nam WDM 501 FLOW WDM 502 FLOW WDM 503 FLOW WDM 505 FLOW WDM 506 FLOW WDM 504 FLOW WDM 507 FLOW WDM 508 FLOW</nam </name></mem 	hber>TsysTgapAmd***ne>temstrgstrg***VENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPLVENGLREPL
MASS-LINK <volume> <-Grp <name> MASS-LINK</name></volume>	<pre>> <-Member-><mult></mult></pre>	<target> <name></name></target>	<-Grp> <-Member->*** <name> # #***</name>
END MASS-LINK	12	COPI	INPUI MEAN
MASS-LINK PERLND PWATE END MASS-LINK	13 R IFWO 0.083333 13	СОРҮ	INPUT MEAN
MASS-LINK IMPLND IWATE END MASS-LINK	15 R SURO 0.083333 15	СОРУ	INPUT MEAN
MASS-LINK PERLND PWATE END MASS-LINK	30 R SURO 30	PERLND	EXTNL SURLI
MASS-LINK PERLND PWATE END MASS-LINK	34 IFWO 34	PERLND	EXTNL IFWLI
MASS-LINK PERLND PWATE END MASS-LINK	38 R AGWO 38	PERLND	EXTNL AGWLI
MASS-LINK IMPLND IWATE END MASS-LINK	50 R SURO 50	PERLND	EXTNL SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 mode START RUN INTERP RESUME END GLOBAL	l simulation 1948 10 01 OUTPUT LEVEL 3 0 RUN 1	END 2009 0 0 UN	9 30 IT SYSTEM	1	
FILES <file> <un#< td=""><td>> <file< td=""><td>e Name</td><td></td><td></td><td>>***</td></file<></td></un#<></file>	> <file< td=""><td>e Name</td><td></td><td></td><td>>***</td></file<>	e Name			>***
<-ID-> WDM 2 MESSU 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 Tamarack.wdm MitTamarack.MES MitTamarack.L61 MitTamarack.L62 POCTamarack1.dat POCTamarack3.dat POCTamarack4.dat POCTamarack6.dat FOCTamarack7.dat POCTamarack8.dat 	t t t t t t			* * *
END FILES					
OPN SEQUENCE INGRP PERLND PERLND IMPLND IMPLND IMPLND PERLND IMPLND PERLND PERLND COPY COPY COPY COPY COPY COPY COPY COPY	INDELT 00 8 17 2 4 6 9 3 7 2 18 501 502 503 504 505 506 507 508 1 2 3 4 5 6 7 8	0:15			
END OPN SEQUE DISPLY DISPLY-INFO	ENCE				
# - #<- 1 2 3 4 5 6 7 8	Subbasin 1 Subbasin 2 Subbasin 3 Subbasin 4 Subbasin 5 Subbasin 6 Subbasin 7 Subbasin 8	>***TRAN MAX MAX MAX MAX MAX MAX MAX MAX MAX	PIVL DIG1	FIL1 PYR 1 1 1 1 1 1 1 1	DIG2 FIL2 YRND 2 30 9 2 31 9 2 32 9 2 33 9 2 34 9 2 35 9 2 36 9 2 37 9

END DISPLY-INFO1

17 9 2 18	0 0 0 0	4.5 5 4.5	0.03 0.8 2 0.03	$ \begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \\ 400 \end{array} $	0.1 0.15 0.1 0.15	0.5 0.3 0.3 0.5	0.996 0.996 0.996 0.996
END PWA	I-PARM2						
PWAT-PAI <pls :<br=""># - : 8 17 9 2 18 END PWA'</pls>	RM3 > PWATEI # ***PETMAX 0 0 0 0 0 0 0 0 0	R input info PETMIN 0 0 0 0 0 0	D: Part 3 INFEXP 2 2 2 2 2 2 2	*** INFILD 2 2 2 2 2 2 2	DEEPFR 0 0 0 0 0 0	BASETP 0 0 0 0 0	AGWETP 0 0 0 0 0
PWAT-PAN <pls :<br=""># - : 8 17 9 2 18 END PWAT</pls>	RM4 > PWATER # CEPSC 0.1 0.1 0.1 0.1 0.2 0.1 T-PARM4	input info UZSN 0.5 0.25 0.5 0.5 0.15	Part 4 NSUR 0.25 0.25 0.25 0.35 0.25	INTFW 0 6 0 0 6	IRC 0.7 0.5 0.7 0.7 0.3	LZETP 0.25 0.25 0.25 0.7 0.25	* * *
PWAT-ST <pls :<br=""># - : 8 17 9 2 18 END PWAT</pls>	ATE1 > *** Initia ran from # *** CEPS 0 0 0 0 0 0 0 0 0 0 0	l conditions n 1990 to er SURS 0 0 0 0 0 0	s at start nd of 1992 UZS 0 0 0 0 0	of simulat (pat 1-11- IFWS 0 0 0 0 0 0	ion 95) RUN 21 LZS 3 2.5 3 3 2.5	*** AGWS 1 1 1 1	GWVS 0 0 0 0 0
END PERLNI IMPLND GEN-INF(<pls :<br=""># - ; 2 4 6</pls>	D) > <name # ROADS/MOD ROOF TOPS/J DRIVEWAYS/J</name 	2> U: FLAT MOD	Unit-syst ser t-ser in 1 1 1 1 1 1	ems Print ies Engl Me out 1 27 1 27 1 27	er *** tr *** 0 0		
3 7 END GEN- *** Sect	ROADS/STEED DRIVEWAYS/S -INFO tion IWATER*	P STEEP **	1 1 1 1	1 27 1 27 1 27	0 0		
ACTIVIT <pls # - # 2 4 6 3 7 END ACT</pls 	Y > *********** # ATMP SNOW : 0 0 0 0 0 0 0 0 0 0 1VITY	*** Active S IWAT SLD I 1 0 1 0 1 0 1 0 1 0 1 0	Sections * IWG IQAL 0 0 0 0 0 0 0 0 0 0 0 0	**********	****	*****	
PRINT-II <ils :<br=""># - : 2 4 6 3 7 END PRII</ils>	NFO > ******** P: # ATMP SNOW : 0 0 0 0 0 0 0 0 0 0 NT-INFO	rint-flags IWAT SLD I 4 0 4 0 4 0 4 0 4 0 4 0 4 0	******** P IWG IQAL 0 0 0 0 0 0 0 0 0 0 0 0	IVL PYR ********* 1 9 1 9 1 9 1 9 1 9 1 9			

IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 3 7 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 * * * IWATER input info: Part 2 <PLS > # - # *** LSUR SLSUR NSUR RETSC 2 400 0.05 0.1 0.08 400 0.01 4 0.1 0.1 0.1 400 0.05 0.08 6 0.05 3 400 0.1 0.1 7 400 0.1 0.1 0.05 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 2 0 0 0 4 Ο 6 0 0 0 0 3 7 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 0 2 0 4 0 0 0 0 6 3 0 0 7 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC * * * <-Source-> <--Area--> <-Target-> MBLK * * * <Name> # <-factor-> <Name> # Tbl# Subbasin 1*** 8 8 PERLND 0.38 COPY 501 12 0.38 501 13 PERLND COPY perlnd 17 0.94 COPY 12 501 0.94 PERLND 17 COPY 501 13 IMPLND 2 0.35 COPY 501 15 IMPLND 4 0.33 COPY 501 15 6 0.14 COPY 501 15 IMPLND Subbasin 2*** 8 0.52 COPY 502 PERLND 12 PERLND 8 0.52 COPY 502 13 PERLND 17 0.32 COPY 502 12 PERLND 0.32 13 17 COPY 502 IMPLND 2 0.42 COPY 502 15 4 0.25 COPY 502 15 IMPLND IMPLND 6 0.11 COPY 502 15 Subbasin 3*** 9 6.93 503 PERLND COPY 12 9 PERLND 6.93 COPY 503 13 IMPLND 3 2.24 COPY 503 15 IMPLND 4 3.43 COPY 503 15 7 1.47 COPY 503 15 IMPLND Subbasin 4*** 2 5.82 COPY PERLND 504 12

PERLND 2	5.82	COPY	504	13		
Subbasin 5***						
PERLND 9	1.15	COPY	505	12		
PERLND 9	1.15	COPY	505	13		
IMPLND 3	0.52	COPY	505	15		
IMPLND 4	0.73	COPY	505	15		
IMPLND 7	0.31	COPY	505	15		
Subbasin 6***						
PERLND 8	9.61	COPY	506	12		
PERLND 8	9.61	COPY	506	13		
PERLND 17	0.03	COPY	506	12		
PERLND 17	0.03	COPY	506	13		
IMPLND 2	1.77	COPY	506	15		
IMPLND 4	3.38	COPY	506	15		
IMPLND 6	1.45	COPY	506	15		
Subbasin 7***						
perlnd 9	0.5	COPY	507	12		
perlnd 9	0.5	COPY	507	13		
PERLND 18	0.68	COPY	507	12		
PERLND 18	0.68	COPY	507	13		
IMPLND 4	0.72	COPY	507	15		
IMPLND 7	0.31	COPY	507	15		
Subbasin 8***						
PERLND 9	2.16	COPY	508	12		
PERLND 9	2.16	COPY	508	13		
PERLND 18	0.37	COPY	508	12		
PERLND 18	0.37	COPY	508	13		
TMPLND 3	0.92	COPY	508	15		
TMPLND 4	0 74	COPY	508	15		
TMPLND 7	0 32	COPY	508	15		
*****Routing***** END SCHEMATIC						
NETHODY						
NEIWORK	.]+			(Grove)	(Mambana)	* * *
<-volume-> <-Grp> <-Member-> <member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><</member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member->	lic>iran	<-larg	et vois>	<-Grp>	<-Member->	* * *
$\langle Nalle \rangle $ $\#$ $\langle Nalle \rangle $ $\#$ $\# \langle -1al \rangle$	LOI->SLIG		1 ++ ++	TNIDIT		
COPY 501 OUIPUI MEAN 1 1 40	5.4	DISPLI	1	INPUI	IIMSER I TIMOED 1	
$\begin{array}{ccccccc} COPI & 502 & OUIPUI MEAN & I I & 40 \\ CODV & 502 & OUTTUIT MEAN & 1 & 1 & 40 \\ \end{array}$).4) /	DISPLI	2	INPUI	TIMOER I TTMOED 1	
COPY 503 OUTPUT MEAN 11 40		DISPLI	3	TNDUT	TIMOER I TIMOED 1	
$\begin{array}{cccccc} COPI & 504 & 001P01 & MEAN & 1 & 1 & 40 \\ CODV & 505 & 01TD1T & MEAN & 1 & 1 & 40 \\ \end{array}$		DISPLI	5	TNDUT	TIMOER I TIMOED 1	
$\begin{array}{ccccccc} COPT & 505 & 001P01 & MEAN & 1 & 1 & 40 \\ CODV & 506 & 017 D17 & MEAN & 1 & 1 & 40 \\ \end{array}$	2 4	DISPLI	5	TNDUT	TIMOER I TIMOER 1	
COPY 500 OUTPUT MEAN 1 1 40	D.4 D /	DISPLI	0	INPUI	TIMOER I TIMOED 1	
COPY 507 OUTPUT MEAN 1 1 40	D.4 D /	DISPLI	0	INPUI	TIMOER I TIMOED 1	
COPI 508 COIPOI MEAN II 40	0.4	DISPLI	0	INPUI	IIMSER I	
<-Volume-> <-Grp> <-Member-> <mu< td=""><td>ult>Tran</td><td><-Targ</td><td>et vols></td><td><-Grp></td><td><-Member-></td><td>* * *</td></mu<>	ult>Tran	<-Targ	et vols>	<-Grp>	<-Member->	* * *
<name> # <name> # #<-fac</name></name>	ctor->stra	<name></name>	# #	T-	<name> # #</name>	* * *
END NETWORK	J					
RCHRES						
GEN-INFO						
RCHRES Name Next	its Unit	System	s Prin	ter		* * *
# - #<><	-> User T	-series	Enal M	etr LKF(C,	* * *
	- 0501 1	in ou	+		0	* * *
END GEN-INFO		111 04	C			
*** Section RCHRES***						
ACTIVITY						
<pre><pls> *********** Active S</pls></pre>	Sections *	******	* * * * * * * *	* * * * * * * *	* * * * * *	
# - # HYFG ADFG CNFG HTFG SI	OFG GOFG O	XEG NUE	G PKFG P	HFG ***		
END ACTIVITY			0 1111 0 1			
PRINT-INFO						
<pre><pls> ***********************************</pls></pre>	nt-flags *	* * * * * * *	* * * * * * * *	*** PIV	L PYR	
# - # HYDR ADCA CONS HEAT S	SED GOL O	XRX NUT	R PLNK P	HCB PIVI	L PYR ****	* * * * *
	~ ~					

HYDR-PARM1 * * * RCHRES Flags for each HYDR Section * * * * * * * * * END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR ks db50 * * * * * * <----><----><----><----> END HYDR-PARM2 HYDR-INIT * * * RCHRES Initial conditions for each HYDR section END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name># <Name> # tem strg<-factor->strg<Name># #<Name> # #<Name> # #<Name> # #***WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL0.76PERLND1999EXTNLPETINPWDM1EVAPENGL0.76IMPLND1999EXTNLPETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL
COPY 502 OUTPUT MEAN 1 1 48.4 WDM 702 FLOW ENGL REPL
COPY 3 OUTPUT MEAN 1 1 48.4 WDM 703 FLOW ENGL REPL
COPY 503 OUTPUT MEAN 1 1 48.4 WDM 703 FLOW ENGL REPL
COPY 504 OUTPUT MEAN 1 1 48.4 WDM 704 FLOW ENGL REPL
COPY 505 OUTPUT MEAN 1 1 48.4 WDM 705 FLOW ENGL REPL
COPY 505 OUTPUT MEAN 1 1 48.4 WDM 705 FLOW ENGL REPL
COPY 505 OUTPUT MEAN 1 1 48.4 WDM 706 FLOW ENGL REPL
COPY 506 OUTPUT MEAN 1 1 48.4 WDM 706 FLOW ENGL REPL
COPY 506 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 506 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 507 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 707 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 708 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 708 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 708 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48.4 WDM 808 FLOW ENGL REPL
COPY 508 OUTPUT MEAN 1 1 48. <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** END EXT TARGETS MASS-LINK PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 0.083333 COPY IMPLND IWATER SURO INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ _ _ _ _ _ _ _ _ _____ Tamarack Basin - Existing Condition 2-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Type Interval Data Source Name _____ INTENSITY 15 min. Design 2-year * * * * * * * * * * * * Node Summary ********** InvertMax.PondedExternalTypeElev.DepthAreaInflow External Name _____ A01_UNKJUNCTION239.245.005000.0A02_CBJUNCTION244.014.055000.0A03_CBJUNCTION253.104.155000.0A04_CBJUNCTION253.524.185000.0A05_CBJUNCTION253.647.015000.0A06_CBJUNCTION292.1111.185000.0B01_MHJUNCTION37.398.440.0B02_CULJUNCTION42.645.005000.0

B03_CUL	JUNCTION	53.47	5.00	5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
B05_MH	JUNCTION	56.60	5.80	5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
B09_MH	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
C02_CB	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
C05_CB	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02_CHAN	JUNCTION	33.07	4.00	0.0	
D03_CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary *******

Name	From Node	To Node	Туре	Length	%Slope 1	Roughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	2.3333	0.0450

D03_CHAN_D02_C	HAND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_	B17_CBSTO_1_ORI	FICE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10 MH b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01 UNK B13 CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02_CB_A01_UNK	CIRCULAR	0.67	0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	6.37
B11_MH_B10_MH_a	CIRCULAR	6.00	28.27	1.50	6.00	1	159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C03_CB_C02_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.96
C04_CB_C03_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C05_CB_C04_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.50
D02_CHAN_D01_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.50
D03_CHAN_D02_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.79	0.25	1.	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	13.270	4.324
External Outflow	13.094	4.267
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.158	0.051
Continuity Error (%)	0.134	

Routing Time Step Summary			
Minimum Time Step	:	0.50	sec
Average Time Step	:	0.50	sec
Maximum Time Step	:	2.82	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	2.00	

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time Occu days	of Max rrence hr:min
A01_UNK	JUNCTION	0.00	0.00	239.24	0	00:00
A02_CB	JUNCTION	0.00	0.00	244.01	0	00:00
A03_CB	JUNCTION	0.00	0.00	253.10	0	00:00
A04_CB	JUNCTION	0.00	0.00	253.52	0	00:00
A05_CB	JUNCTION	0.00	0.00	253.64	0	00:00
A06_CB	JUNCTION	0.00	0.00	292.11	0	00:00
B01_MH	JUNCTION	0.53	0.54	37.93	0	06:12
B02_CUL	JUNCTION	0.42	0.42	43.06	0	06:27
B03_CUL	JUNCTION	0.44	0.44	53.91	0	06:49
B04_MH	JUNCTION	0.74	0.75	54.75	0	06:11
B05_MH	JUNCTION	0.51	0.52	57.12	0	06:22
B06_CB	JUNCTION	0.41	0.42	62.32	0	06:25
B07_CB	JUNCTION	0.40	0.40	76.21	0	06:16
B08_CB	JUNCTION	0.46	0.47	82.67	0	06:25
В09_МН	JUNCTION	0.42	0.42	89.72	0	06:11
B10_MH_a	JUNCTION	7.22	7.34	98.43	0	01:21
B10_MH_b	JUNCTION	0.63	0.64	91.73	0	01:34
B11_MH	JUNCTION	6.40	6.52	98.43	0	01:00
B12_CB	JUNCTION	0.45	0.45	108.36	0	00:09
B13_CUL	JUNCTION	0.37	0.37	97.94	0	06:10
B14_CUL	JUNCTION	0.26	0.28	101.49	0	00:01
B15_CUL	JUNCTION	0.41	0.41	102.95	0	06:09
B16_CUL	JUNCTION	0.26	0.26	109.08	0	06:09
B17_CB	JUNCTION	0.43	0.43	109.55	0	06:10
B18_CUL	JUNCTION	0.43	0.46	109.77	0	00:00

JUNCTION	0.35	0.35	68.15	0	00:26
JUNCTION	0.13	0.14	89.09	0	00:10
JUNCTION	0.15	0.16	91.11	0	00:01
JUNCTION	0.15	0.15	97.07	0	00:08
JUNCTION	0.14	0.14	105.47	0	00:08
JUNCTION	0.56	0.56	33.63	0	06:31
JUNCTION	0.53	0.54	35.48	0	06:14
JUNCTION	0.12	0.12	113.72	0	06:08
OUTFALL	0.45	0.46	32.22	0	06:14
STORAGE	0.61	0.61	114.21	0	06:10
	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL STORAGE	JUNCTION 0.35 JUNCTION 0.13 JUNCTION 0.15 JUNCTION 0.14 JUNCTION 0.56 JUNCTION 0.53 JUNCTION 0.12 OUTFALL 0.45 STORAGE 0.61	JUNCTION0.350.35JUNCTION0.130.14JUNCTION0.150.16JUNCTION0.150.15JUNCTION0.140.14JUNCTION0.560.56JUNCTION0.530.54JUNCTION0.120.12OUTFALL0.450.46STORAGE0.610.61	JUNCTION0.350.3568.15JUNCTION0.130.1489.09JUNCTION0.150.1691.11JUNCTION0.150.1597.07JUNCTION0.140.14105.47JUNCTION0.560.5633.63JUNCTION0.530.5435.48JUNCTION0.120.12113.72OUTFALL0.450.4632.22STORAGE0.610.61114.21	JUNCTION0.350.3568.150JUNCTION0.130.1489.090JUNCTION0.150.1691.110JUNCTION0.150.1597.070JUNCTION0.140.14105.470JUNCTION0.560.5633.630JUNCTION0.120.12113.720OUTFALL0.450.4632.220STORAGE0.610.61114.210

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

		Maximum	Maximum		of May	Lateral	Total
		Inflow	Inflow	Occu	urrence	Volume	Volume
Node	Type	CFS	CFS	davs	hr:min	10^6 gal	10^6 gal
A01_UNK	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A02_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A03_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A04_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A05_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A06_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
B01_MH	JUNCTION	0.00	6.69	0	06:27	0.000	4.271
B02_CUL	JUNCTION	0.00	6.69	0	06:11	0.000	4.271
B03_CUL	JUNCTION	0.00	6.69	0	06:11	0.000	4.272
B04_MH	JUNCTION	0.42	6.69	0	05:58	0.269	4.272
B05_MH	JUNCTION	0.00	6.27	0	06:11	0.000	4.003
B06_CB	JUNCTION	0.00	6.00	0	06:11	0.000	3.828
B07_CB	JUNCTION	0.00	6.00	0	06:25	0.000	3.828
B08_CB	JUNCTION	0.00	6.00	0	05:56	0.000	3.828
В09_МН	JUNCTION	0.59	6.00	0	06:11	0.384	3.829
B10_MH_a	JUNCTION	0.00	3.13	0	00:49	0.000	1.517
B10_MH_b	JUNCTION	0.00	2.38	0	01:21	0.000	1.495
B11_MH	JUNCTION	0.00	2.38	0	00:19	0.000	1.537
B12_CB	JUNCTION	2.38	2.38	0	00:00	1.537	1.537
B13_CUL	JUNCTION	0.05	3.03	0	06:00	0.033	1.953
B14_CUL	JUNCTION	0.00	2.98	0	06:15	0.000	1.920
B15_CUL	JUNCTION	0.00	2.98	0	06:08	0.000	1.920
B16_CUL	JUNCTION	0.00	2.98	0	05:57	0.000	1.921
В17_СВ	JUNCTION	0.00	2.98	0	06:06	0.000	1.921
B18_CUL	JUNCTION	2.40	2.40	0	00:00	1.553	1.553
C02_CB	JUNCTION	0.00	0.27	0	00:10	0.000	0.176
C03_CB	JUNCTION	0.00	0.27	0	00:02	0.000	0.176
C04_CB	JUNCTION	0.00	0.27	0	00:08	0.000	0.176
C05_CB	JUNCTION	0.00	0.27	0	00:08	0.000	0.176
C06_CB	JUNCTION	0.27	0.27	0	00:00	0.176	0.176
D02_CHAN	JUNCTION	0.00	6.69	0	06:14	0.000	4.268
D03_CHAN	JUNCTION	0.00	6.69	0	06:12	0.000	4.270
STO_1_ORIFICE	JUNCTION	0.00	0.57	0	06:10	0.000	0.368
D01_CHAN	OUTFALL	0.00	6.69	0	06:14	0.000	4.267
STORAGE_1	STORAGE	0.57	0.57	0	00:00	0.370	0.370

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharg	red	Max. He Above C	ight M rown 1 Feet	in. Depth Below Rim Feet			
B11_MH	JUNCTION	23.	20	0	.522	3.578			
* * * * * * * * * * * * * * * * * * * *	* * *								
Node Flooding Summa	ary ***								
No nodes were flood	led.								
*****	* * * *								
storage volume Summ ******************	nary ****								
	Average	Avg	E&I	 M	aximum	Max	Time	of Max	Maximum
Storage Unit	Volume 1000 ft3	Pcnt Full	Pcnt Loss	10	Volume 00 ft3	Pcnt Full	0ccu days	rrence hr:min	Outflow CFS
STORAGE_1	0.355	7	0		0.357	8	0	06:10	0.57
**************************************	**** mmary ****								
Outfall Node	Flow Freq. Pcnt.	Avg. Flow CFS	Maz Flo	x. Sw FS 1	Total Volume 0^6 gal				
 D01_CHAN	99.83	6.61	б.	 69	4.267				
System	99.83	6.61	6.0	69 59	4.267				
**************************************	**								
		Maximum Flow	Time of Occur	of Max rrence	Maximum Veloc	m Max/ Full	Ma Fu	 x/ 11	
	туре						Dep		
AUI_UNK_BI3_CUL	CONDUIT	0.00	0	00:00	0.0	0 0.00	0.	09	
AUZ_CB_AUI_UNK	CONDUTT	0.00	U	00.00	0.0		υ.	00	
A03_CB_A02_CB A04_CB_A02_CB	CONDULT	0.00	0	00.00	0.0		0.	00	
AUT_CB_AUS_CB AN5 CB AN4 CD	CONDULT	0.00	0	00:00	0.0		0.	00	
AUS_CB_AU4_CB AN6 CB AN5 CD	CONDULT	0.00	0	00:00	0.0		0.	00	
ичъл 201 WH DO3 Снум	CONDUTT	6 69	0	06:12	2 6	9 0.00	0.	13	
B02 CIII, B01 MH	CONDUTT	6 69	0	06:27	∠.0: 11 0	2 0.01 3 0.01	0.	14	
	CONDUTT	6 69	0	06:11	1 O	2 0 01	0.	± ± 11	
	CONDUTT	6.09	0	06:11	4.U. Q. E.	4 0.01	0.	30	
B05 MH B04 MH	CONDUTT	6 27	0	05:58	8 A	8 0.50	0.	42	
B06 CB B05 MH	CONDUTT	6.00	0	06:11	12 8	2 0 17	0.	31	
B07 CB B06 CB	CONDUIT	6.00	0	06:11	15.4	4 0.16	0.	27	
B08 CB B07 CB	CONDUITT	6.00	0 0	06:25	12.7	4 0.21	0	31	
	0010011	5.00	0	55-25	т <i>с</i> • / ·	- 0.21	0.	~ -	

CONDUIT	6.00	0	05:56	13.60	0.17	0.30
CONDUIT	2.38	0	01:33	3.50	0.37	0.41
CONDUIT	3.13	0	00:49	2.71	0.02	1.00
CONDUIT	2.38	0	00:19	6.89	0.42	0.73
CONDUIT	3.03	0	06:11	11.62	0.29	0.37
CONDUIT	2.98	0	06:00	7.13	0.03	0.16
CONDUIT	2.98	0	06:15	12.91	0.32	0.33
CONDUIT	2.98	0	06:08	5.20	0.03	0.17
CONDUIT	2.98	0	05:57	17.04	0.38	0.34
CONDUIT	2.61	0	00:00	9.46	0.42	0.43
CONDUIT	0.27	0	00:26	2.04	0.05	0.33
CONDUIT	0.27	0	00:10	4.20	0.04	0.14
CONDUIT	0.27	0	00:02	4.92	0.05	0.14
CONDUIT	0.27	0	00:08	3.71	0.05	0.15
CONDUIT	0.27	0	00:08	4.09	0.04	0.14
CONDUIT	6.69	0	06:14	2.90	0.01	0.13
CONDUIT	6.69	0	06:14	2.61	0.01	0.14
CONDUIT	0.57	0	06:06	3.29	0.03	0.27
ORIFICE	0.57	0	06:10			1.00
ORIFICE	0.00	0	00:00			0.00
ORIFICE	0.74	0	00:50			1.00
ORIFICE	1.64	0	01:21			0.35
	CONDUIT CONDUIT	CONDUIT 6.00 CONDUIT 2.38 CONDUIT 3.13 CONDUIT 2.38 CONDUIT 2.38 CONDUIT 3.03 CONDUIT 2.98 CONDUIT 2.98 CONDUIT 2.98 CONDUIT 2.98 CONDUIT 2.98 CONDUIT 0.27 CONDUIT 0.27 CONDUIT 0.27 CONDUIT 0.27 CONDUIT 0.27 CONDUIT 0.57 ONDUIT 0.57 ORIFICE 0.57 ORIFICE 0.74 ORIFICE 1.64	CONDUIT 6.00 0 CONDUIT 2.38 0 CONDUIT 3.13 0 CONDUIT 2.38 0 CONDUIT 2.38 0 CONDUIT 2.38 0 CONDUIT 2.98 0 CONDUIT 0.27 0 CONDUIT 0.57 0 ORIFICE 0.57 0 ORIFICE 0.74 0 ORIFICE 1.64 <	CONDUIT 6.00 0 05:56 CONDUIT 2.38 0 01:33 CONDUIT 3.13 0 00:49 CONDUIT 2.38 0 00:19 CONDUIT 2.38 0 00:19 CONDUIT 2.38 0 06:11 CONDUIT 2.98 0 06:00 CONDUIT 2.98 0 06:08 CONDUIT 2.98 0 06:08 CONDUIT 2.98 0 06:08 CONDUIT 2.98 0 06:08 CONDUIT 2.98 0 05:57 CONDUIT 2.61 0 00:00 CONDUIT 0.27 0 00:26 CONDUIT 0.27 0 00:02 CONDUIT 0.27 0 00:08 CONDUIT 0.27 0 00:08 CONDUIT 0.27 0 00:08 CONDUIT 0.27 0 00:08	CONDUIT6.00005:5613.60CONDUIT2.38001:333.50CONDUIT3.13000:492.71CONDUIT2.38000:196.89CONDUIT3.03006:1111.62CONDUIT2.98006:007.13CONDUIT2.98006:1512.91CONDUIT2.98006:085.20CONDUIT2.98005:5717.04CONDUIT2.61000:009.46CONDUIT0.27000:262.04CONDUIT0.27000:024.92CONDUIT0.27000:083.71CONDUIT0.27000:084.09CONDUIT0.27000:084.09CONDUIT0.27006:142.90CONDUIT0.57006:063.29ORIFICE0.57006:142.61CONDUIT0.57006:103.29ORIFICE0.74000:5000:00ORIFICE1.64001:21	CONDUIT6.00005:5613.600.17CONDUIT2.38001:333.500.37CONDUIT3.13000:492.710.02CONDUIT2.38000:196.890.42CONDUIT3.03006:1111.620.29CONDUIT2.98006:007.130.03CONDUIT2.98006:1512.910.32CONDUIT2.98006:085.200.03CONDUIT2.98005:5717.040.38CONDUIT2.61000:009.460.42CONDUIT0.27000:262.040.05CONDUIT0.27000:024.920.05CONDUIT0.27000:083.710.05CONDUIT0.27000:083.710.05CONDUIT0.27000:083.710.05CONDUIT0.27000:083.710.05CONDUIT0.27000:083.710.05CONDUIT0.57006:142.900.01CONDUIT0.57006:663.290.03ORIFICE0.57006:1000:000.01ORIFICE0.74000:500000ORIFICE1.64001:210000

Flow Classification Summary

Conduit	Adjusted /Actual Length	 Dry	Fracti Up Dry	on of Down Dry	Time i Sub Crit	in Flow Sup Crit	Class Up Crit	Down Crit	Avg. Froude Number	Avg. Flow Change
A01_UNK_B13_CUL	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A02_CB_A01_UNK	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A03_CB_A02_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A04_CB_A03_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A05_CB_A04_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A06_CB_A05_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.75	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.69	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.19	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.30	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.89	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	5.04	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.85	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.23	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.90	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.01	0.85	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.94	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.37	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.60	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.25	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.40	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.32	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.23	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.18	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.03	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.33	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.83	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.72	0.0000

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B11_MH_B10_MH_a	23.20	23.20	23.20	0.01	0.01

Analysis begun on: Mon May 09 18:10:57 2016 Analysis ended on: Mon May 09 18:11:04 2016 Total elapsed time: 00:00:07

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ Tamarack Basin - Existing Condition 100-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Data Source Type Interval Name _____ 100-year INTENSITY 15 min. Design * * * * * * * * * * * * Node Summary ********** InvertMax.PondedExternalTypeElev.DepthAreaInflow External Name _____ A01_UNKJUNCTION239.245.005000.0A02_CBJUNCTION244.014.055000.0A03_CBJUNCTION253.104.155000.0A04_CBJUNCTION253.524.185000.0A05_CBJUNCTION253.647.015000.0A06_CBJUNCTION292.1111.185000.0B01_MHJUNCTION37.398.440.0B02_CULJUNCTION42.645.005000.0

B03_CUL	JUNCTION	53.47	5.00	5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
B05_MH	JUNCTION	56.60	5.80	5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
B09_MH	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
C02_CB	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
C05_CB	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02_CHAN	JUNCTION	33.07	4.00	0.0	
D03_CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary *******

Name	From Node	To Node	Туре	Length	%Slope 1	Roughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	2.3333	0.0450

D03_CHAN_D02_C	HAND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_	B17_CBSTO_1_ORI	FICE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10 MH b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01 UNK B13 CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02_CB_A01_UNK	CIRCULAR	0.67	0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	6.37
B11_MH_B10_MH_a	CIRCULAR	6.00	28.27	1.50	6.00	1	159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C03_CB_C02_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.96
C04_CB_C03_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C05_CB_C04_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.50
D02_CHAN_D01_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.50
D03_CHAN_D02_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.79	0.25	1.	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	35.108	11.440
External Outflow	34.868	11.362
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.220	0.072
Continuity Error (%)	0.057	

Routing Time Step Summary		
Minimum Time Step	:	0.50 sec
Average Time Step	:	0.50 sec
Maximum Time Step	:	1.18 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	2.00

* * * * * * * * * * * * * * * * * *

Node Depth Summary ****

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time Occu days	of Max rrence hr:min
A01_UNK	JUNCTION	0.00	0.00	239.24	0	00:00
A02_CB	JUNCTION	0.00	0.00	244.01	0	00:00
A03_CB	JUNCTION	0.00	0.00	253.10	0	00:00
A04_CB	JUNCTION	0.00	0.00	253.52	0	00:00
A05_CB	JUNCTION	0.00	0.00	253.64	0	00:00
A06_CB	JUNCTION	0.00	0.00	292.11	0	00:00
B01_MH	JUNCTION	0.88	0.89	38.28	0	14:27
B02_CUL	JUNCTION	0.67	0.67	43.31	0	14:50
B03_CUL	JUNCTION	0.76	0.76	54.23	0	14:25
B04_MH	JUNCTION	1.33	1.33	55.33	0	14:25
B05_MH	JUNCTION	0.90	0.90	57.50	0	15:23
B06_CB	JUNCTION	0.70	0.70	62.60	0	14:44
B07_CB	JUNCTION	0.67	0.67	76.48	0	14:35
B08_CB	JUNCTION	0.80	0.80	83.00	0	14:36
в09_МН	JUNCTION	0.71	0.72	90.02	0	14:34
B10_MH_a	JUNCTION	7.81	7.87	98.96	0	00:46
B10_MH_b	JUNCTION	1.08	1.09	92.18	0	00:47
B11_MH	JUNCTION	6.99	7.05	98.96	0	00:46
B12_CB	JUNCTION	3.72	5.76	113.67	0	00:19
B13_CUL	JUNCTION	0.72	0.72	98.29	0	14:34
B14_CUL	JUNCTION	0.45	0.46	101.67	0	00:00
B15_CUL	JUNCTION	0.68	0.68	103.22	0	14:37
B16_CUL	JUNCTION	0.44	0.44	109.26	0	14:36
B17_CB	JUNCTION	0.76	0.76	109.88	0	14:36
B18_CUL	JUNCTION	0.79	0.87	110.18	0	00:00
C02_CB	JUNCTION	0.44	0.44	68.24	0	00:22
C03_CB	JUNCTION	0.22	0.22	89.17	0	00:24
C04_CB	JUNCTION	0.25	0.25	91.20	0	00:01
C05_CB	JUNCTION	0.24	0.24	97.16	0	00:06
C06_CB	JUNCTION	0.22	0.22	105.55	0	00:05
D02_CHAN	JUNCTION	0.90	0.90	33.97	0	14:47
D03_CHAN	JUNCTION	0.88	0.89	35.83	0	14:41

STO_1_ORIFICE	JUNCTION	0.18	0.18	113.78	0	14:36
D01_CHAN	OUTFALL	0.78	0.79	32.55	0	16:24
STORAGE_1	STORAGE	2.12	2.15	115.75	0	14:36

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * *

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time Occu days	of Max urrence hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal
A01 UNK	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A02 CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A03 CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A04 CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A05 CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A06 CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
B01 MH	JUNCTION	0.00	17.70	0	14:35	0.000	11.370
B02 CUL	JUNCTION	0.00	17.70	0	14:35	0.000	11.370
B03 CUL	JUNCTION	0.00	17.70	0	14:24	0.000	11.371
B04 MH	JUNCTION	1.09	17.70	0	14:23	0.702	11.372
B05 MH	JUNCTION	0.00	16.61	0	14:23	0.000	10.671
B06 CB	JUNCTION	0.00	15.90	0	14:23	0.000	10.212
B07 CB	JUNCTION	0.00	15.90	0	14:34	0.000	10.213
B08 CB	JUNCTION	0.00	15.90	0	14:23	0.000	10.213
в09 МН	JUNCTION	1.35	15.90	0	14:34	0.871	10.214
 B10 MH a	JUNCTION	0.00	7.29	0	00:18	0.000	3.465
B10 MH b	JUNCTION	0.00	5.39	0	00:46	0.000	3.441
B11 MH	JUNCTION	0.00	7.05	0	00:16	0.000	3.484
B12 CB	JUNCTION	5.39	5.39	0	00:00	3.484	3.484
B13_CUL	JUNCTION	1.86	9.16	0	14:26	1.204	5.911
B14_CUL	JUNCTION	0.00	7.30	0	14:35	0.000	4.708
B15_CUL	JUNCTION	0.00	7.30	0	14:33	0.000	4.708
B16_CUL	JUNCTION	0.00	7.30	0	14:34	0.000	4.709
B17_CB	JUNCTION	0.00	7.30	0	14:33	0.000	4.709
B18_CUL	JUNCTION	6.00	6.00	0	00:00	3.879	3.879
C02_CB	JUNCTION	0.00	0.71	0	00:07	0.000	0.459
C03_CB	JUNCTION	0.00	0.71	0	00:01	0.000	0.460
C04_CB	JUNCTION	0.00	0.71	0	00:19	0.000	0.460
С05_СВ	JUNCTION	0.00	0.71	0	00:05	0.000	0.460
C06_CB	JUNCTION	0.71	0.71	0	00:00	0.460	0.460
D02_CHAN	JUNCTION	0.00	17.70	0	14:41	0.000	11.364
D03_CHAN	JUNCTION	0.00	17.70	0	14:34	0.000	11.368
STO_1_ORIFICE	JUNCTION	0.00	1.30	0	14:36	0.000	0.830
D01_CHAN	OUTFALL	0.00	17.70	0	16:24	0.000	11.361
STORAGE_1	STORAGE	1.30	1.30	0	00:00	0.840	0.840

Node Surcharge Summary ****

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
Node	Туре	Hours Surcharged	Above Crown Feet	Below Rim Feet
B11_MH B12_CB	JUNCTION JUNCTION	23.69 23.67	1.047 4.760	3.053 0.000

Flooding refers to all water that overflows a node, whether it ponds or not.

		Maximum	Time of Max	Total	Maximum
Node	Hours Flooded	Rate CFS	Occurrence days hr:min	Volume 10^6 gal	Depth Feet
B12_CB	0.01	0.35	0 00:19	0.000	5.76

	Average	Avg	E&I	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
Storage Unit	1000 ft3	Full	Loss	1000 ft3	Full	days hr:min	CFS
STORAGE_1	1.283	27	0	1.305	27	0 14:36	1.30

Outfall Loading Summary *********

Outfall Node	Flow Freq. Pcnt.	Avg. Flow CFS	Max. Flow CFS	Total Volume 10^6 gal
D01_CHAN	99.88	17.60	17.70	11.361
System	99.88	17.60	17.70	11.361

Link Flow Summary

Link	Туре	Maximum Flow CFS	Time Occu days	of Max rrence hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
A01_UNK_B13_CUL	CONDUIT	0.00	0	00:00	0.00	0.00	0.18
A02_CB_A01_UNK	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A03_CB_A02_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A04_CB_A03_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A05_CB_A04_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A06_CB_A05_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
B01_MH_D03_CHAN	CONDUIT	17.70	0	14:34	3.52	0.04	0.22
B02_CUL_B01_MH	CONDUIT	17.70	0	14:35	14.94	0.11	0.22
B03_CUL_B02_CUL	CONDUIT	17.70	0	14:35	5.56	0.03	0.18
B04_MH_B03_CUL	CONDUIT	17.70	0	14:24	10.61	0.78	0.52
B05_MH_B04_MH	CONDUIT	16.61	0	14:23	11.76	0.67	0.75
B06_CB_B05_MH	CONDUIT	15.90	0	14:23	16.55	0.44	0.53
B07_CB_B06_CB	CONDUIT	15.90	0	14:23	20.20	0.41	0.46

B08_CB_B07_CB	CONDUIT	15.90	0	14:34	16.52	0.56	0.54
B09_MH_B08_CB	CONDUIT	15.90	0	14:23	17.68	0.46	0.51
B10_MH_b_B09_MH	CONDUIT	5.39	0	00:47	4.35	0.85	0.66
B11_MH_B10_MH_a	CONDUIT	7.29	0	00:18	3.47	0.05	1.00
B12_CB_B11_MH	CONDUIT	5.40	0	00:09	8.20	0.95	1.00
B13_CUL_B09_MH	CONDUIT	9.16	0	14:34	15.15	0.87	0.72
B14_CUL_B13_CUL	CONDUIT	7.30	0	14:26	9.05	0.06	0.29
B15_CUL_B14_CUL	CONDUIT	7.30	0	14:35	15.97	0.78	0.56
B16_CUL_B15_CUL	CONDUIT	7.30	0	14:33	7.01	0.06	0.28
B17_CB_B16_CUL	CONDUIT	7.30	0	14:34	20.72	0.93	0.60
B18_CUL_B17_CB	CONDUIT	6.50	0	00:00	11.56	1.04	0.78
C02_CB_B05_MH	CONDUIT	0.71	0	00:12	2.47	0.13	0.57
C03_CB_C02_CB	CONDUIT	0.71	0	00:07	5.57	0.10	0.23
C04_CB_C03_CB	CONDUIT	0.71	0	00:01	6.56	0.13	0.23
C05_CB_C04_CB	CONDUIT	0.71	0	00:19	4.92	0.13	0.24
C06_CB_C05_CB	CONDUIT	0.71	0	00:05	5.42	0.11	0.22
D02_CHAN_D01_CHAN	CONDUIT	17.70	0	16:24	3.79	0.04	0.21
D03_CHAN_D02_CHAN	CONDUIT	17.70	0	14:41	3.48	0.04	0.22
STO_1_ORIFICE_B17_CB	CONDUIT	1.30	0	14:33	3.58	0.07	0.47
OR1	ORIFICE	1.30	0	14:36			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.75	0	00:20			1.00
OR2_RISER	ORIFICE	4.65	0	00:46			0.70

Flow Classification Summary

Conduit	Adjusted /Actual Length	 Dry	Fracti Up Dry	on of Down Dry	Time i Sub Crit	n Flow Sup Crit	Class Up Crit	Down Crit	Avg. Froude Number	Avg. Flow Change
A01_UNK_B13_CUL	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A02_CB_A01_UNK	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A03_CB_A02_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A04_CB_A03_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A05_CB_A04_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A06_CB_A05_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.82	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.33	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.05	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.00	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.64	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.91	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.63	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.03	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.82	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.01	0.02	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.26	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.24	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.15	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.32	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.69	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.84	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.31	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.10	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.41	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.87	0.0000

D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.79	0.0000
STO_1_ORIFICE_B17_CB	1.00	0.00	0.00	0.00	0.04	0.96	0.00	0.00	1.04	0.0000

		Hours Full		Hours Above Full	Hours Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B11_MH_B10_MH_a B12_CB_B11_MH B18_CUL_B17_CB	23.69 23.67 0.01	23.69 23.67 0.01	23.69 23.67 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01

Analysis begun on: Mon May 09 18:08:33 2016 Analysis ended on: Mon May 09 18:08:41 2016 Total elapsed time: 00:00:08

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ _____ Tamarack Basin - Proposed Condition 2-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Type Interval Data Source Name _____ INTENSITY 15 min. Design 2-year * * * * * * * * * * * * Node Summary ********** InvertMax.PondedExternalTypeElev.DepthAreaInflow External Name _____
 A01_UNK
 JUNCTION
 239.24
 5.00
 5000.0
 Yes

 A02_CB
 JUNCTION
 244.01
 4.05
 5000.0

 A03_CB
 JUNCTION
 253.10
 4.15
 5000.0

 A04_CB
 JUNCTION
 253.52
 4.18
 5000.0

 A05_CB
 JUNCTION
 253.64
 7.01
 5000.0

 A06_CB
 JUNCTION
 292.11
 11.18
 5000.0

 B01_MH
 JUNCTION
 37.39
 8.44
 0.0

 B02_CUL
 JUNCTION
 42.64
 5.00
 5000.0

B03_CUL	JUNCTION	53.47	5.00	5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
B05_MH	JUNCTION	56.60	5.80	5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
B09_MH	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
C02_CB	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
C05_CB	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02_CHAN	JUNCTION	33.07	4.00	0.0	
D03_CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary ********

Name	From Node	To Node	Туре	Length	%Slope 1	Roughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	2.3333	0.0450

D03_CHAN_D02_C	HAND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_	B17_CBSTO_1_ORI	FICE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10 MH b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02_CB_A01_UNK	CIRCULAR	0.67	0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	6.37
B11_MH_B10_MH_a	CIRCULAR	6.00	28.27	1.50	6.00	1	159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C03_CB_C02_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.96
C04_CB_C03_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C05_CB_C04_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.50
D02_CHAN_D01_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.50
D03_CHAN_D02_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.79	0.25	1.	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	17.259	5.624
External Outflow	17.063	5.560
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.178	0.058
Continuity Error (%)	0.106	

Routing Time Step Summary			
Minimum Time Step	:	0.50	sec
Average Time Step	:	0.50	sec
Maximum Time Step	:	2.45	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	2.00	

* * * * * * * * * * * * * * * * * * *

Node Depth Summary ****

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time Occu days	of Max rrence hr:min
A01_UNK	JUNCTION	0.29	0.29	239.53	0	01:32
A02_CB	JUNCTION	0.25	0.25	244.26	0	00:25
A03_CB	JUNCTION	0.15	0.15	253.25	0	00:21
A04_CB	JUNCTION	0.32	0.32	253.84	0	00:53
A05_CB	JUNCTION	0.67	0.67	254.31	0	00:20
A06_CB	JUNCTION	0.12	0.12	292.23	0	00:47
B01_MH	JUNCTION	0.61	0.62	38.01	0	09:08
B02_CUL	JUNCTION	0.47	0.47	43.11	0	08:41
B03_CUL	JUNCTION	0.51	0.52	53.99	0	08:19
B04_MH	JUNCTION	0.86	0.86	54.86	0	07:03
B05_MH	JUNCTION	0.59	0.60	57.20	0	07:11
B06_CB	JUNCTION	0.48	0.48	62.38	0	07:20
B07_CB	JUNCTION	0.46	0.46	76.27	0	07:05
B08_CB	JUNCTION	0.54	0.54	82.74	0	07:07
B09_MH	JUNCTION	0.49	0.49	89.79	0	07:20
B10_MH_a	JUNCTION	7.24	7.36	98.45	0	01:17
B10_MH_b	JUNCTION	0.64	0.66	91.75	0	01:33
B11_MH	JUNCTION	6.42	6.54	98.45	0	00:54
B12_CB	JUNCTION	0.46	0.46	108.37	0	00:09
B13_CUL	JUNCTION	0.47	0.48	98.05	0	07:20
B14_CUL	JUNCTION	0.29	0.30	101.51	0	00:00
B15_CUL	JUNCTION	0.44	0.44	102.98	0	07:13
B16_CUL	JUNCTION	0.28	0.28	109.10	0	07:14
B17_CB	JUNCTION	0.46	0.47	109.59	0	00:00
B18_CUL	JUNCTION	0.47	0.51	109.82	0	00:00

JUNCTION	0.37	0.37	68.17	0	00:22
JUNCTION	0.15	0.15	89.10	0	00:09
JUNCTION	0.18	0.18	91.13	0	00:01
JUNCTION	0.17	0.17	97.09	0	80:00
JUNCTION	0.16	0.16	105.49	0	00:07
JUNCTION	0.63	0.64	33.71	0	09:12
JUNCTION	0.61	0.62	35.56	0	08:01
JUNCTION	0.13	0.13	113.73	0	07:14
OUTFALL	0.53	0.53	32.29	0	08:02
STORAGE	0.74	0.74	114.34	0	07:16
	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL STORAGE	JUNCTION 0.37 JUNCTION 0.15 JUNCTION 0.17 JUNCTION 0.16 JUNCTION 0.63 JUNCTION 0.61 JUNCTION 0.13 OUTFALL 0.53 STORAGE 0.74	JUNCTION0.370.37JUNCTION0.150.15JUNCTION0.180.18JUNCTION0.170.17JUNCTION0.160.16JUNCTION0.630.64JUNCTION0.610.62JUNCTION0.130.13OUTFALL0.530.53STORAGE0.740.74	JUNCTION0.370.3768.17JUNCTION0.150.1589.10JUNCTION0.180.1891.13JUNCTION0.170.1797.09JUNCTION0.160.16105.49JUNCTION0.630.6433.71JUNCTION0.610.6235.56JUNCTION0.130.13113.73OUTFALL0.530.5332.29STORAGE0.740.74114.34	JUNCTION0.370.3768.170JUNCTION0.150.1589.100JUNCTION0.180.1891.130JUNCTION0.170.1797.090JUNCTION0.160.16105.490JUNCTION0.630.6433.710JUNCTION0.610.6235.560JUNCTION0.130.13113.730OUTFALL0.530.5332.290STORAGE0.740.74114.340

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time Occu days	of Max rrence hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal
A01_UNK	JUNCTION	0.91	1.40	0	00:18	0.590	0.905
A02_CB	JUNCTION	0.00	0.49	0	00:21	0.000	0.314
A03_CB	JUNCTION	0.00	0.49	0	00:23	0.000	0.314
A04_CB	JUNCTION	0.00	0.49	0	00:20	0.000	0.314
A05_CB	JUNCTION	0.00	0.49	0	00:03	0.000	0.315
A06 CB	JUNCTION	0.49	0.49	0	00:00	0.315	0.315
B01_MH	JUNCTION	0.00	8.70	0	09:08	0.000	5.565
B02_CUL	JUNCTION	0.00	8.70	0	07:29	0.000	5.565
B03_CUL	JUNCTION	0.00	8.70	0	07:01	0.000	5.566
B04_MH	JUNCTION	0.42	8.70	0	07:00	0.271	5.566
В05_МН	JUNCTION	0.00	8.28	0	07:00	0.000	5.296
B06 CB	JUNCTION	0.00	7.93	0	06:59	0.000	5.066
B07_CB	JUNCTION	0.00	7.93	0	07:20	0.000	5.066
B08_CB	JUNCTION	0.00	7.93	0	07:03	0.000	5.066
В09_МН	JUNCTION	0.61	7.93	0	07:20	0.397	5.067
B10_MH_a	JUNCTION	0.00	3.56	0	00:47	0.000	1.568
B10_MH_b	JUNCTION	0.00	2.46	0	01:17	0.000	1.546
B11_MH	JUNCTION	0.00	2.46	0	00:19	0.000	1.588
B12_CB	JUNCTION	2.46	2.46	0	00:00	1.588	1.588
B13_CUL	JUNCTION	0.01	4.85	0	07:02	0.003	3.129
B14_CUL	JUNCTION	0.00	3.45	0	07:14	0.000	2.224
B15_CUL	JUNCTION	0.00	3.45	0	07:10	0.000	2.224
B16_CUL	JUNCTION	0.00	3.45	0	07:13	0.000	2.225
B17_CB	JUNCTION	0.00	3.45	0	07:09	0.000	2.225
B18_CUL	JUNCTION	2.78	2.78	0	00:00	1.796	1.796
C02_CB	JUNCTION	0.00	0.36	0	00:09	0.000	0.231
C03_CB	JUNCTION	0.00	0.36	0	00:02	0.000	0.231
C04_CB	JUNCTION	0.00	0.36	0	00:48	0.000	0.231
C05_CB	JUNCTION	0.00	0.36	0	00:07	0.000	0.231
C06_CB	JUNCTION	0.36	0.36	0	00:00	0.231	0.231
D02_CHAN	JUNCTION	0.00	8.70	0	08:20	0.000	5.562
D03_CHAN	JUNCTION	0.00	8.70	0	07:10	0.000	5.564
STO_1_ORIFICE	JUNCTION	0.00	0.67	0	07:16	0.000	0.428
D01_CHAN	OUTFALL	0.00	8.70	0	08:02	0.000	5.560
STORAGE_1	STORAGE	0.67	0.67	0	00:00	0.432	0.432

Surcharging occurs when water rises above the top of the highest conduit.

of Max urrence	Maxir Outfl
hr:min	(
07:16	0.
 ax/	
ull oth	
.19	
.33	
.30	
.49	
.52	
.48	
.15	
.16	
.12	
.34	
.49	
.36	
.31	
36	
	.48 .15 .16 .12 .34 .49 .36 .31 .36

CONDUIT	7.93	0	07:03	14.71	0.23	0.34
CONDUIT	2.46	0	01:34	3.53	0.39	0.42
CONDUIT	3.56	0	00:47	2.73	0.02	1.00
CONDUIT	2.46	0	00:19	6.95	0.43	0.73
CONDUIT	4.85	0	07:20	13.18	0.46	0.48
CONDUIT	3.45	0	07:02	7.56	0.03	0.19
CONDUIT	3.45	0	07:14	13.38	0.37	0.36
CONDUIT	3.45	0	07:10	5.46	0.03	0.18
CONDUIT	3.45	0	07:13	17.93	0.44	0.37
CONDUIT	3.08	0	00:00	9.54	0.49	0.47
CONDUIT	0.36	0	00:22	2.49	0.06	0.39
CONDUIT	0.36	0	00:09	4.55	0.05	0.16
CONDUIT	0.36	0	00:02	5.34	0.06	0.16
CONDUIT	0.36	0	00:48	4.00	0.06	0.17
CONDUIT	0.36	0	00:07	4.43	0.05	0.16
CONDUIT	8.70	0	08:02	3.13	0.02	0.15
CONDUIT	8.70	0	08:20	2.83	0.02	0.16
CONDUIT	0.67	0	07:09	3.43	0.04	0.30
ORIFICE	0.67	0	07:16			1.00
ORIFICE	0.00	0	00:00			0.00
ORIFICE	0.74	0	00:48			1.00
ORIFICE	1.72	0	01:17			0.36
	CONDUIT CONDUIT	CONDUIT 7.93 CONDUIT 2.46 CONDUIT 3.56 CONDUIT 2.46 CONDUIT 2.46 CONDUIT 4.85 CONDUIT 3.45 CONDUIT 3.45 CONDUIT 3.45 CONDUIT 3.45 CONDUIT 3.66 CONDUIT 0.36 CONDUIT 0.67 ORIFICE 0.67 ORIFICE 0.67 ORIFICE 0.74 ORIFICE 1.72	CONDUIT 7.93 0 CONDUIT 2.46 0 CONDUIT 3.56 0 CONDUIT 2.46 0 CONDUIT 2.46 0 CONDUIT 2.46 0 CONDUIT 3.45 0 CONDUIT 3.68 0 CONDUIT 0.36 0 CONDUIT 8.70 0 CONDUIT 0.67 0 ORIFICE 0.67 0 ORIFICE 0.74 0 ORIFICE 1.72 <	CONDUIT7.93007:03CONDUIT2.46001:34CONDUIT3.56000:47CONDUIT2.46000:19CONDUIT2.46000:19CONDUIT4.85007:20CONDUIT3.45007:120CONDUIT3.45007:114CONDUIT3.45007:110CONDUIT3.45007:13CONDUIT3.08000:00CONDUIT0.36000:22CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:02CONDUIT0.36000:01CONDUIT0.36000:02CONDUIT0.36000:07CONDUIT0.36000:07CONDUIT0.36000:07CONDUIT0.36000:07CONDUIT0.36000:07CONDUIT0.36000:07CONDUIT0.67007:09ORIFICE0.67007:16ORIFICE0.74000:48ORIFICE1.72001:17	CONDUIT 7.93 0 07:03 14.71 CONDUIT 2.46 0 01:34 3.53 CONDUIT 3.56 0 00:47 2.73 CONDUIT 2.46 0 00:19 6.95 CONDUIT 4.85 0 07:02 7.56 CONDUIT 3.45 0 07:14 13.38 CONDUIT 3.45 0 07:10 5.46 CONDUIT 3.45 0 07:13 17.93 CONDUIT 3.45 0 07:13 17.93 CONDUIT 3.66 00:00 9.54 CONDUIT 0.36 00:02 5.34 CONDUIT 0.36 00:02 5.34 CONDUIT 0.36 00:07 4.43 CONDUIT 0.36 00:07 4.43 CONDUIT 0.67 07:09 3.43 CONDUIT 0.67 07:09 3.43 CONDUIT 0.67 07:09 3.43 CONDUIT 0.67 07:09 3.43 ORIF	CONDUIT 7.93 0 07:03 14.71 0.23 CONDUIT 2.46 0 01:34 3.53 0.39 CONDUIT 3.56 0 00:47 2.73 0.02 CONDUIT 2.46 0 00:19 6.95 0.43 CONDUIT 4.85 0 07:02 13.18 0.46 CONDUIT 3.45 0 07:10 13.18 0.46 CONDUIT 3.45 0 07:12 13.18 0.46 CONDUIT 3.45 0 07:10 5.46 0.03 CONDUIT 3.45 0 07:13 17.93 0.44 CONDUIT 3.08 0 00:00 9.54 0.49 CONDUIT 0.36 0 00:22 2.49 0.06 CONDUIT 0.36 0 00:02 5.34 0.06 CONDUIT 0.36 0 00:07 4.43 0.05 CONDUIT 0.36 00:02 5.34 0.06 CONDUIT 0.36 000:017 4

Flow Classification Summary

Conduit	Adjusted /Actual Length	 Dry	Fracti Up Dry	on of Down Dry	Time i Sub Crit	in Flow Sup Crit	Class Up Crit	 Down Crit	Avg. Froude Number	Avg. Flow Change
A01_UNK_B13_CUL	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.47	0.0000
A02_CB_A01_UNK	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.15	0.0000
A03_CB_A02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.62	0.0000
A04_CB_A03_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.01	0.0000
A05_CB_A04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.90	0.0000
A06_CB_A05_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.05	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.76	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.73	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.23	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.87	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	5.04	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.84	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.22	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.90	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.01	0.86	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.82	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.17	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.55	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.27	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.33	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.29	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.25	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.21	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.05	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.35	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.84	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.74	0.0000
				Hours	Hours					
-----------------	-----------	------------	----------	-------------	----------					
		Hours Full		Above Full	Capacity					
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited					
B11_MH_B10_MH_a	23.23	23.23	23.23	0.01	0.01					

Analysis begun on: Mon May 09 18:17:20 2016 Analysis ended on: Mon May 09 18:17:29 2016 Total elapsed time: 00:00:09

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ _ _ _ _ _ _ _____ Tamarack Basin - Proposed Condition 100-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Data Source Type Interval Name _____ 100-year INTENSITY 15 min. Design * * * * * * * * * * * * Node Summary ********** InvertMax.PondedExternaTypeElev.DepthAreaInflow External Name _____
 A01_UNK
 JUNCTION
 239.24
 5.00
 5000.0
 Yes

 A02_CB
 JUNCTION
 244.01
 4.05
 5000.0

 A03_CB
 JUNCTION
 253.10
 4.15
 5000.0

 A04_CB
 JUNCTION
 253.52
 4.18
 5000.0

 A05_CB
 JUNCTION
 253.64
 7.01
 5000.0

 A06_CB
 JUNCTION
 292.11
 11.18
 5000.0

 B01_MH
 JUNCTION
 37.39
 8.44
 0.0

 B02_CUL
 JUNCTION
 42.64
 5.00
 5000.0

B03_CUL	JUNCTION	53.47	5.00	5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
B05_MH	JUNCTION	56.60	5.80	5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
B09_MH	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
C02_CB	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
C05_CB	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02_CHAN	JUNCTION	33.07	4.00	0.0	
D03_CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary ********

Name	From Node	To Node	Туре	Length	%Slope 1	Roughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	2.3333	0.0450

D03_CHAN_D02_C	HAND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_	B17_CBSTO_1_ORI	FICE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10 MH b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02_CB_A01_UNK	CIRCULAR	0.67	0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	6.37
B11_MH_B10_MH_a	CIRCULAR	6.00	28.27	1.50	6.00	1	159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C03_CB_C02_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.96
C04_CB_C03_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C05_CB_C04_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.50
D02_CHAN_D01_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.50
D03_CHAN_D02_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.79	0.25	1.	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	40.339	13.145
External Outflow	40.027	13.043
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.293	0.096
Continuity Error (%)	0.049	

Routing Time Step Summary			
Minimum Time Step	:	0.50	sec
Average Time Step	:	0.50	sec
Maximum Time Step	:	1.07	sec
Percent in Steady State	:	0.00	
Average Iterations per Ste	ep :	2.00	

* * * * * * * * * * * * * * * * * *

Node Depth Summary ****

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time Occu days	of Max rrence hr:min
A01_UNK	JUNCTION	0.48	0.49	239.73	0	01:17
A02_CB	JUNCTION	0.33	0.33	244.34	0	00:03
A03_CB	JUNCTION	0.23	0.23	253.33	0	00:03
A04_CB	JUNCTION	0.60	0.60	254.12	0	00:02
A05_CB	JUNCTION	1.16	2.88	256.52	0	00:01
A06_CB	JUNCTION	0.19	0.19	292.30	0	00:02
B01_MH	JUNCTION	0.95	0.95	38.34	0	17:20
B02_CUL	JUNCTION	0.72	0.72	43.36	0	17:21
B03_CUL	JUNCTION	0.82	0.82	54.29	0	17:25
B04_MH	JUNCTION	1.48	1.49	55.49	0	17:14
В05_МН	JUNCTION	0.99	1.00	57.60	0	17:14
B06_CB	JUNCTION	0.76	0.76	62.66	0	17:14
B07_CB	JUNCTION	0.73	0.73	76.54	0	17:10
B08_CB	JUNCTION	0.88	0.88	83.08	0	17:14
В09_МН	JUNCTION	0.78	0.78	90.08	0	17:37
B10_MH_a	JUNCTION	7.83	7.89	98.98	0	00:46
B10_MH_b	JUNCTION	1.10	1.11	92.20	0	00:47
B11_MH	JUNCTION	7.01	7.07	98.98	0	00:46
B12_CB	JUNCTION	4.42	5.76	113.67	0	00:18
B13_CUL	JUNCTION	1.49	1.54	99.11	0	23:36
B14_CUL	JUNCTION	0.48	0.51	101.72	0	00:00
B15_CUL	JUNCTION	0.74	0.74	103.28	0	17:16
B16_CUL	JUNCTION	0.47	0.47	109.29	0	17:00
B17_CB	JUNCTION	0.85	0.85	109.97	0	17:01
B18_CUL	JUNCTION	0.91	0.95	110.26	0	00:00
C02_CB	JUNCTION	0.46	0.46	68.26	0	00:18
C03_CB	JUNCTION	0.23	0.23	89.18	0	00:09
C04_CB	JUNCTION	0.27	0.28	91.23	0	00:01
C05_CB	JUNCTION	0.26	0.26	97.18	0	00:06
C06_CB	JUNCTION	0.24	0.24	105.57	0	00:06
D02_CHAN	JUNCTION	0.96	0.96	34.03	0	17:05
D03_CHAN	JUNCTION	0.95	0.95	35.89	0	17:02

STO_1_ORIFICE	JUNCTION	0.19	0.19	113.79	0	16:59
D01_CHAN	OUTFALL	0.84	0.85	32.61	0	17:05
STORAGE_1	STORAGE	2.64	2.69	116.29	0	16:59

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * *

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time Occu days	of Max arrence hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal
A01 UNK	JUNCTION	2.14	3.33	0	00:03	1.384	2.154
A02 CB	JUNCTION	0.00	1.19	0	00:03	0.000	0.770
A03 CB	JUNCTION	0.00	1.19	0	00:02	0.000	0.770
A04 CB	JUNCTION	0.00	1.21	0	00:02	0.000	0.770
A05 CB	JUNCTION	0.00	1.19	0	00:02	0.000	0.771
A06 CB	JUNCTION	1.19	1.19	0	00:00	0.771	0.771
 B01 MH	JUNCTION	0.00	20.34	0	17:25	0.000	13.051
B02_CUL	JUNCTION	0.00	20.34	0	17:19	0.000	13.052
B03 CUL	JUNCTION	0.00	20.34	0	17:14	0.000	13.053
B04_MH	JUNCTION	1.09	20.34	0	17:10	0.703	13.054
B05_MH	JUNCTION	0.00	19.25	0	17:09	0.000	12.352
B06_CB	JUNCTION	0.00	18.42	0	17:10	0.000	11.817
B07_CB	JUNCTION	0.00	18.42	0	17:10	0.000	11.817
B08_CB	JUNCTION	0.00	18.42	0	17:03	0.000	11.818
В09_МН	JUNCTION	1.38	18.42	0	17:37	0.894	11.819
B10_MH_a	JUNCTION	0.00	9.04	0	00:18	0.000	3.557
B10_MH_b	JUNCTION	0.00	5.53	0	00:46	0.000	3.533
B11_MH	JUNCTION	0.00	7.17	0	00:16	0.000	3.576
B12_CB	JUNCTION	5.53	5.53	0	00:00	3.576	3.576
B13_CUL	JUNCTION	0.03	11.50	0	17:04	0.017	7.414
B14_CUL	JUNCTION	0.00	8.14	0	17:16	0.000	5.249
B15_CUL	JUNCTION	0.00	8.14	0	17:00	0.000	5.250
B16_CUL	JUNCTION	0.00	8.14	0	17:01	0.000	5.250
B17_CB	JUNCTION	0.00	8.14	0	16:59	0.000	5.251
B18_CUL	JUNCTION	6.67	6.67	0	00:00	4.312	4.312
C02_CB	JUNCTION	0.00	0.83	0	00:08	0.000	0.536
C03_CB	JUNCTION	0.00	0.83	0	00:01	0.000	0.536
C04_CB	JUNCTION	0.00	0.83	0	00:06	0.000	0.536
C05_CB	JUNCTION	0.00	0.83	0	00:06	0.000	0.537
C06_CB	JUNCTION	0.83	0.83	0	00:00	0.537	0.537
D02_CHAN	JUNCTION	0.00	20.34	0	17:02	0.000	13.045
D03_CHAN	JUNCTION	0.00	20.34	0	17:20	0.000	13.049
STO_1_ORIFICE	JUNCTION	0.00	1.47	0	16:59	0.000	0.939
D01_CHAN	OUTFALL	0.00	20.34	0	17:05	0.000	13.042
STORAGE_1	STORAGE	1.47	1.47	0	00:00	0.951	0.951

Node Surcharge Summary ****

Surcharging occurs when water rises above the top of the highest conduit.

		Hours	Max. Height Above Crown	Min. Depth Below Rim
Node	Туре	Surcharged	Feet	Feet
A05_CB B11_MH	JUNCTION JUNCTION	23.97 23.70	1.906 1.068	4.127 3.032

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	CFS	days hr:min	10^6 gal	Feet
B12_CB	0.01	0.41	0 00:18	0.000	5.76

Storage Unit	Average	Avg	E&I	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 ft3	Full	Loss	1000 ft3	Full	days hr:min	CFS
STORAGE_1	1.620	34	0	1.653	35	0 16:59	1.47

Outfall Node	Flow Freq. Pcnt.	Avg. Flow CFS	Max. Flow CFS	Total Volume 10^6 gal
D01_CHAN	99.88	20.20	20.34	13.042
System	99.88	20.20	20.34	13.042

Link Flow Summary

* * * * * * * * * * * * * * * * * * *

Link	Ма Гуре	aximum Flow CFS	Time o Occur days f	of Max rrence nr:min	Maximum Veloc ft/sec	Max/ Full Flow 1	Max/ Full Depth
A01_UNK_B13_CUL (CONDUIT	3.33	0	01:17	1.92	0.07	0.51
A02_CB_A01_UNK C	CONDUIT	1.19	0	00:03	10.91	0.26	0.54
A03_CB_A02_CB 0	CONDUIT	1.19	0	00:03	8.57	0.26	0.43
A04_CB_A03_CB 0	CONDUIT	1.19	0	00:02	3.83	1.17	0.83
A05_CB_A04_CB 0	CONDUIT	1.21	0	00:02	3.69	1.45	0.90
A06_CB_A05_CB (CONDUIT	1.19	0	00:02	12.14	0.18	0.64
B01_MH_D03_CHAN C	CONDUIT	20.34	0	17:20	3.66	0.04	0.24
B02_CUL_B01_MH C	CONDUIT	20.34	0	17:25	15.57	0.13	0.24
B03_CUL_B02_CUL C	CONDUIT	20.34	0	17:19	5.80	0.03	0.19
B04_MH_B03_CUL C	CONDUIT	20.34	0	17:14	10.83	0.90	0.58
в05_МН_в04_МН с	CONDUIT	19.25	0	17:10	12.31	0.78	0.83
B06_CB_B05_MH C	CONDUIT	18.42	0	17:09	17.09	0.52	0.59

B07_CB_B06_CB	CONDUIT	18.42	0	17:10	20.97	0.48	0.50
B08_CB_B07_CB	CONDUIT	18.42	0	17:10	17.09	0.65	0.59
B09_MH_B08_CB	CONDUIT	18.42	0	17:03	18.39	0.54	0.55
B10_MH_b_B09_MH	CONDUIT	5.53	0	00:47	4.38	0.87	0.67
B11_MH_B10_MH_a	CONDUIT	9.04	0	00:18	3.50	0.06	1.00
B12_CB_B11_MH	CONDUIT	5.55	0	00:09	8.21	0.98	1.00
B13_CUL_B09_MH	CONDUIT	11.50	0	17:37	15.35	1.09	1.00
B14_CUL_B13_CUL	CONDUIT	8.14	0	17:04	10.30	0.07	0.50
B15_CUL_B14_CUL	CONDUIT	8.14	0	17:16	16.33	0.87	0.61
B16_CUL_B15_CUL	CONDUIT	8.14	0	17:00	7.21	0.07	0.30
B17_CB_B16_CUL	CONDUIT	8.14	0	17:01	20.91	1.03	0.66
B18_CUL_B17_CB	CONDUIT	6.72	0	00:00	11.38	1.08	0.88
C02_CB_B05_MH	CONDUIT	0.83	0	00:12	3.19	0.15	0.63
C03_CB_C02_CB	CONDUIT	0.83	0	00:08	5.83	0.12	0.25
C04_CB_C03_CB	CONDUIT	0.83	0	00:01	6.87	0.15	0.25
C05_CB_C04_CB	CONDUIT	0.83	0	00:06	5.14	0.15	0.26
C06_CB_C05_CB	CONDUIT	0.83	0	00:06	5.68	0.13	0.24
D02_CHAN_D01_CHAN	CONDUIT	20.34	0	17:05	3.93	0.04	0.23
D03_CHAN_D02_CHAN	CONDUIT	20.34	0	17:02	3.62	0.04	0.24
STO_1_ORIFICE_B17_CB	CONDUIT	1.47	0	16:59	3.55	0.08	0.52
OR1	ORIFICE	1.47	0	16:59			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.75	0	00:19			1.00
OR2_RISER	ORIFICE	4.79	0	00:46			0.71

	Adjusted		Fracti	on of	Time i	n Flow	Class	 Down	Avg.	Avg.
Conduit	Length	Dry	0p Dry	Down Dry	Sub Crit	Sup Crit	Op Crit	Crit	Number	Change
A01 IINK B13 CIII.	1 00	0 00	0 00	0 00	1 00	0 00	0 00	0 00	0.24	0 0000
$\Delta 02$ CB $\Delta 01$ UNK	1 00	0 00	0 00	0 00	0 00	1 00	0 00	0 00	2 04	0 0000
A03 CB A02 CB	1 00	0.00	0.00	0.00	0.00	1 00	0.00	0 00	3 20	0 0000
A04 CB A03 CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.85	0.0000
A05 CB A04 CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.73	0.0000
A06 CB A05 CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.45	0.0000
B01 MH D03 CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.81	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.84	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.34	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.96	0.0000
В05_МН_В04_МН	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.85	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.53	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.83	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.53	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.93	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.81	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.01	0.02	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.11	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.96	0.04	0.00	0.00	0.58	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.03	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.31	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.41	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.51	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.39	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.31	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.27	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.11	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.42	0.0000

D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.88	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.79	0.0000
STO_1_ORIFICE_B17_CB	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.96	0.0000

Conduit Surcharge Summary ******

		Hours Full		Hours Above Full	Hours Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
A04 CB A03 CB	0.01	0.01	0.01	23.97	0.01
A05_CB_A04_CB	0.01	0.01	0.01	23.98	0.01
B11_MH_B10_MH_a	23.70	23.70	23.70	0.01	0.01
B12_CB_B11_MH	23.70	23.70	23.70	0.01	0.01
B13_CUL_B09_MH	22.71	22.71	22.71	23.80	22.71
B17_CB_B16_CUL	0.01	0.01	0.01	23.47	0.01
B18_CUL_B17_CB	0.01	0.01	0.01	24.00	0.01

Analysis begun on: Mon May 09 18:18:17 2016 Analysis ended on: Mon May 09 18:18:26 2016 Total elapsed time: 00:00:09

APPENDIX C

COOPERS BEACH – MITIGATION AS BUILT

May 5, 2011

AOA-3985

Kathy Curry City of Sammamish 801 228th Avenue SE Sammamish, WA 98075

REFERENCE: Cooper's Beach – 42x E. Lake Sammamish Shore Lane NE, Sammamish, WA (Corps # NWS-2009-476 Heen/Leseberg)

SUBJECT: Revised Mitigation As-built - Baseline Assessment Report

Dear Kathy:

This report has been prepared to document baseline conditions following installation of the wetland and shoreline mitigation area at the Cooper's Beach project site, and has been revised to address the comments presented in your March 3, 2011 e-mail to Evan Maxim (see Section 1.0 below). Also included in this report are the vegetation sample plots and photo-points that will be reviewed as part of the five year monitoring program.

1.0 PROJECT SUMMARY

Installation of the wetland mitigation area at the Cooper's Beach project site was generally completed in January 2011 according to the *Shoreline Restoration, Wetland Restoration, Clearing and Grading Permit* Plan (revised June 15, 2010), prepared by The Watershed Company. Site visits for the initial baseline assessment were conducted by AOA and occurred on January 13, and February 3, 2011. Following the initial baseline review, the mitigation area was slightly revised to ensure compliance with SMC 21A.50.351(3)(b). Under this code section, no more than 25% of the total lake frontage may be used for shoreline access.

As depicted on the current as-built plan, the mitigation area has been revised such that the existing bulkhead to remain is now 60 feet in total length (i.e., 25% of the total 240 feet of lake frontage). The remaining 180 feet of shoreline has been planted and will remain in a natural condition. In addition, the northern edge of the mitigation area has been revised slightly to ensure a minimum 45-foot buffer (Photos 1 and 2).

Kathy Curry May 5, 2011 Page 2 of 8

Photo 1: Revised maximum 60-foot long bulkhead to remain.

Photo 2: Revised log along northern edge of mitigation area (note darker bark coloration depicting revised location).

Kathy Curry May 5, 2011 Page 3 of 8

The large logs that have been placed along the 45-foot buffer boundary in lieu of fencing have been staked into the ground with re-bar to ensure that they will remain in place (Photo 3). In addition, the required critical areas sign on the 45-foot buffer boundary has also been installed (Photo 4).

Photo 3: Rebar stake through log along buffer boundary.

Photo 4: Installed critical area sign.

Kathy Curry May 5, 2011 Page 4 of 8

It is our understanding that the origin of the one remaining pipe in the northern portion of the site that discharges into the lake is likely from a rockery drain (Comment 1.e). The origin of this pipe will be confirmed during construction of the house and a plan will be designed to divert all water currently carried in this feature into the mitigation area during house construction.

The existing standpipe and drain line located along the northern edge of the mitigation area will be left in place for perpetuity or until such time as the upstream sediment problems are fixed (Comment 1.f). Since sediment from an off-site upstream ditch continues to erode and enter the on-site mitigation area, periodic maintenance may be required. It is our understanding that it is the subject property owner's intention to attempt to rectify this off-site condition. If the erosion is stabilized and the sediment source is eliminated or significantly reduced, then the standpipe and drain line could be removed.

The only plant substitution approved by The Watershed Company was that deer fern was substituted for lady fern. The revised as-built drawing for the site (**Figure 1**) depicts the actual location of the graded ponds and large woody debris placement. Grading was generally conducted per the approved plan, with some minor modifications in the southwest corner of the mitigation area to preserve two existing red alder trees. In addition, at our recommendation several of the conifers located within ponded areas were moved into drier portions of the mitigation site.

This as-built figure also includes the final total plant quantities and the location of the vegetation sample plots and photo-points. Dimensions were added to the as-built figure that reflect the approved mitigation boundaries and minor changes made in the field to ensure code compliance.

2.0 PERFORMANCE MONITORING

This report summarizes the baseline conditions encountered during our January 13, 2011 site review. The data collected during future site visits will be compared to the data collected during the baseline assessment.

Monitoring field reviews followed by preparation and submittal of annual summary reports will continue for a period of at least five years. This report, as well as future reports, will include: a) photo-documentation, b) estimates of percent vegetative cover, plant survival and undesirable species, c) wildlife usage, d) water quality, hydrology, and site stability, and e) an overall qualitative assessment of project success.

2.1 VEGETATION SAMPLE PLOTS AND PHOTO-POINT LOCATIONS

During the baseline assessment, three vegetation sample plots and three photopoint locations were established. These locations will continue to be monitored throughout the five-year performance monitoring period. Within the vegetation sample plot locations, all plant species will be recorded as well as relative percent Kathy Curry May 5, 2011 Page 5 of 8

cover of the dominant species within the vegetative strata. Photos will be taken throughout the monitoring period to document the general appearance and progress in plant community establishment. Review of the photos over time will provide a visual representation of success of the planting plan.

Attachment 1 contains photographs from the established photo-point locations.

2.2 VEGETATION DATA FROM SAMPLE PLOTS

VEGETATION SAMPLE PLOT 1 (Wetland Buffer)	
Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Douglas fir (Pseudotsuga menziesii)	1
Red flowering currant (Ribes sanguineum)	9
Tall Oregongrape (Mahonia aquifolium)	24
Red-osier dogwood (Cornus sericea)	3
Deer fern (Blechnum spicant)	5

SUMMARY OF PLOT 1 CONDITIONS

- Woody areal coverage of installed woody plants~20%
- Survival rate of installed plants: 100%
- No herbaceous vegetation coverage plot entirely mulched.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival (see Section 2.5 below).

VEGETATION SAMPLE PLOT 2 (Southwest Wetland).

Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Sitka willow (Salix sitchensis)	1
Sitka spruce (Picea sitchensis)	1
Nootka rose (Rosa nutkana)	4
Salmonberry (Rubus spectabilis)	5
Small-fruited bulrush (Scirpus microcarpus)	~20%
Watercress (Rorippa nasturtium-aquaticum)	~5%
Velvet grass (Holcus lanatus)	~5%

SUMMARY OF PLOT 2 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%
- Herbaceous coverage is ~30%.
- No significant invasive coverage (no control of velvet grass necessary).
- MAINTENANCE: Continue on-going routine maintenance.

• SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

Plant Species	Baseline
Nootka rose (Rosa nutkana)	4
Red-osier dogwood (Cornus sericea)	11
Deer fern (<i>Blechnum spicant</i>)	4
Watercress (Rorippa nasturtium-aquaticum)	~25%
Dagger-leaf rush (Juncus ensifolius)	~25%
Mannagrass (<i>Glyceria</i> sp.)	~5%

VEGETATION SAMPLE PLOT 3 (Southeast Wetland)

SUMMARY OF PLOT 3 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%.
- Herbaceous coverage ~55%.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

2.3 WATER QUALITY AND HYDROLOGY

During each monitoring event, an assessment will be made of the water regime within the mitigation area to ensure that hydrological conditions within the wetland and buffer are suitable to support the desired native plant communities. General observations will also be made of the extent and depth of soil saturation or inundation.

Water quality will be assessed qualitatively; unless it is evident there is a serious problem. In such an event, water samples will be taken and analyzed in a laboratory for suspected pollutants. Results will be reported quantitatively. Qualitative assessments of water quality include:

- oil sheen or other surface films,
- abnormal color or odor,
- stressed or dead vegetation or aquatic fauna,
- turbidity.

Observations and evaluations will be made of slope and soil stability in the mitigation area. Any erosion or slumping of soils will be recorded and reported so that corrective measures may be taken.

At the time of the baseline field investigation, soils throughout the created wetland were generally saturated to the surface with shallow ponding observed within the

Kathy Curry May 5, 2011 Page 7 of 8

graded depressions. Water quality appeared good and no significant erosion or other soil stability problems were observed within the mitigation area.

2.4 WILDLIFE

Wildlife species observed in the wetland and buffer areas (either by direct or direct means) will be identified and recorded during the monitoring events. Direct observations include actual sightings, while indirect observations include tracks, scat, nests, burrows, song, or other indicative signs.

Wildlife signs or observations at the Cooper's Beach site during the baseline review included the following: black-tailed deer (browse and scat), mallard, mole (uplift mounds), and American coot.

3.0 SUCCESS CRITERIA & CURRENT STATUS

The approved performance standards for the project as developed by The Watershed Company included:

- 100 percent survival of all planting during the first year of monitoring, 100 percent survival of trees during years 2-5, and an 80 percent survival of shrubs during years 2-5 of monitoring.
- 80 percent survival of groundcover and emergent vegetation in year 2
- 75 cover standard of groundcover and emergent vegetation by year 5

It is assumed based on the approved maintenance requirements that invasive species will be controlled at levels below 15% coverage. At the time of the January 2011 baseline monitoring there was 100% survival of all planted species and invasive species coverage was well below the 15% coverage threshold. Therefore all of success criteria are currently being met.

4.0 SUMMARY & MONITORING SCHEDULE

Overall, the site is performing well and is currently meeting the defined success criteria for the project. With proper on-going maintenance, the site should continue to establish successfully.

Assuming approval by the City, the next long-term monitoring event is scheduled for the late spring of 2011. The next report will then be prepared following the fall 2011 site visit. Monitoring will continue twice yearly, with the submittal of annual reports.

Should you have any questions or would like to schedule a site review, please call Simone Oliver or me at (425) 333-4535.

Kathy Curry May 5, 2011 Page 8 of 8

Sincerely,

ALTMANN OLIVER ASSOCIATES, LLC

ÐV

John Altmann Ecologist

Attachments

- Photographs
 Figure 1 As-built
- Roger MacPherson CC:

				FROLECT 3985
TREES				
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
PSEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
THUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS		TOTAL		
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	ut
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	Z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	Ψ
HOLODISCUS DISCOLOR	OCEAN SPRAY	7	I GAL.	Ā
MAHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	Z III
PHYSOCARPUS CAPITATUS	NINEBARK	29	I GAL.	< ₽
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	πç
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL.	z s
ROSA NUTKANA	NOOTKA ROSE	34	I GAL.	은 풍
RUBUS SPECTABILIS	SALMONBERRY	25	I GAL.	
SALIX LASIANDRA	PACIFIC WILLOW	8	I GAL	© ₹¥
SAL IX SITCHENSIS	SITKA WILLOW	19	I GAL	É É É
SAMBICIS RACEMOSA	PED EL DEPREPRY	10	I GAL	2 20
VACCINIUM OVATUM	EVERGREEN HUCKI EBERRY	10		L + QB
PERENNIALS/GROUN	DCOVER		i or e.	NA A A A A A A A A A A A A A A A A A A
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	AS DE
BLECHUM SPICANT	DEER FERN	98	4" POTS	
GAULTHERIA SHALLON	SALAL	30	I GAL.	ΩĞΨŽ
MAHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	BOXX
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	目の本の
EMERGENTS				
		TOTAL	CIZE (CDA CINC	
		BOO	D CIL IN POTS & IS! OC	4944
UNCIG ENGLEOLIUG	DAGGER LEAVED RIGH	240	IC CU. IN POTS & IC C.C.	
	CMALL EPUITED BUI PUGH	270	IC CU. IN POIS & IO C.C.	
SCIPPIS I ACISTRIS	HAPD-STEM BUILDIGH	315	IC CU. IN POIS @ 18 C.C.	Anch
SCIRFUS LACUSTRIS	HARD-STEIN BULKUSH	515	10 CU. IN FOIS @ 24 U.C.	C
	NOTES			s, LL
		ATION PROVID		iate
ALE .	I. BASE INFORM	MATION PROVIL	JED BT MACPHERSON	SOC (425)
		IN & DESIGN, (4	425) 591-5555.	
	Z. SHE PLAN A	HED COMPANY	KIDKI AND HA (425)	er ,
		TED COMPANT,	, $NIRNLAND$, NA , (423)	40.11.
	22-5242.			05- O5-
90 \		N WETLAND DE	STOPATION CLEADING	anı 05-
	AND GRADIN	G PERMIT' DAT	ED 6/15/2010	AB-
	DRAWINGS L	7 BY THE WAT	RSHED COMPANY	A POB
	210 0 11 100 1			0 0

				REALECT 3985
TREES				
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	2 2 0 2 2 8 0 2 0 2 0
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
PSEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
THUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS		TOTAL		
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	ui.
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	Z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	Ψ
HOLODISCUS DISCOLOR	OCEAN SPRAY	7	I GAL.	₹
MAHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	z
PHYSOCARPUS CAPITATUS	NINEBARK	29	IGAL.	< ₩
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	ē ģ
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL	z s
ROSA NUTKANA	NOOTKA ROSE	34	I GAL	2 3
RUBUS SPECTABILIS	SALMONBERRY	25	IGAL	
SALIX LAGIANDRA	PACIFIC WILLOW	8	I GAL	© ₹_
SALLY SITCHENGIS	SITEA WILLOW	19	I GAL	Ε ΣΈ
SAMELICIE PACEMOGA	DED EL DEDBEDDY	10	I GAL	2 20
VACCINIUM OVATIM	EVED ODEEN HIVYI EBEDDY	10	I GAL	L'HOB
PERENNIALS/GROUN	DCOVER	TOTAL		HARE DEAC LAKE H, WA
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	v⊢€
BLECHUM SPICANT	DEER FERN	98	4" POTS	
GAULTHERIA SHALLON	SALAL	30	I GAL.	ΩŪΨΣ
MAHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	BOXY
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	目 24 2
EMERGENTS				
SCIENTIEIC NAME	COMMON NAME	TOTAL	SIZE/SPACING	antes
FLEOCHARIS PALISTRIS	SPIKERIGH	BOO	IO CIL IN POTS @ 18" OC	4
UNCIS ENSIEN IUS	DAGGER-I EAVED PIGH	240	IO CIL IN POTS @ 18" OC	
SCIERIS MICROCAPPIS	SMALL -EPUITED BUL PUSH	220	IC CIL IN POTS @ 18" CC	
SCIRPUS LACUSTRIS	HARD-STEM BULRUSH	315	10 CU. IN POTS @ 24" 0.C.	And
				LC
	NOTES			es, L
	I. BASE INFORM	ATION PROVID	DED BY MACPHERSON	ciat symmetry
ALE .	CONSTRUCTIO	ON & DESIGN (425) 391-3333.	SSO like (42
\frown	2. SITE PLAN A	ND ORIGINAL T	DESIGN PREPARED BY	° N
/	THE WATERS	HED COMPANY	KIRKLAND, WA. (425)	Ver awg
N	+ 822-5242.		-,,,	-illo
	3. BASED ON A	PPROVED DRA	WING SHORELINE	nn (
90	RESTORATIO	N, WETLAND RE	ESTORATION, CLEARING	* °
	AND GRADIN	G PERMIT' DAT	TED 6/15/2010,	Altr Box 57
	DRAWINGS I-	7 BY THE WAT	ERSHED COMPANY.	<u>к</u> м
				(1)

PLANT LIST				
REES		TOTAL		200-01-
CIENTIFIC NAME	COMMON NAME	PROJECT ATY.	SIZE/SPACING	T AN
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
SEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
HUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS		TOTAL		
CIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	щ
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	۳
IOLODISCUS DISCOLOR	OCEAN SPRAY	7	I GAL.	<
1AHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	N II
PHYSOCARPUS CAPITATUS	NINEBARK	29	I GAL.	1 R
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	₽ ¥
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL.	N S
ROSA NUTKANA	NOOTKA ROSE	34	I GAL.	E E
RUBUS SPECTABILIS	SALMONBERRY	25	I GAL.	AC I
BALIX LASIANDRA	PACIFIC WILLOW	8	I GAL.	1 ₹4
ALIX SITCHENSIS	SITKA WILLOW	19	I GAL.	Σ ΣC
SAMBUCUS RACEMOSA	RED ELDERBERRY	10	I GAL.	E IA
ACCINIUM OVATUM	EVERGREEN HUCKLEBERRY	П	I GAL.	
PERENNIAL SIGROUNT	DCOVER			₽₹₽₹
ENERGYES		TOTAL		°5 m J ±,
CIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	- SF
BLECHUM SPICANT	DEER FERN	98	4" POTS	ШЩҚҚ
SAULTHERIA SHALLON	SALAL	30	I GAL.	₩ Ω Ω Ω Ω Ω Σ Ω Σ Ω Σ Ω Σ Ω Σ Ω
1AHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	₹ño@
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	T 040
EMERGENTS		dinin		
CIENTIFIC NAME	COMMON NAME	PRO FOT OTY	SIZE/SPACING	ada
LEOCHARIS PALUSTRIS	SPIKERUSH	800	IO CU. IN POTS @ 18" O.C.	4
IUNCUS ENSIFOLIUS	DAGGER-LEAVED RUSH	240	IO CU. IN POTS @ 18" O.C.	A
CIRPUS MICROCARPUS	SMALL-FRUITED BULRUSH	220	IO CU. IN POTS @ 18" O.C.	A viron
CIRPUS LACUSTRIS	HARD-STEM BULRUSH	315	10 CU. IN POTS @ 24" O.C.	And
				LC
	NOTES			tes, I
	I. BASE INFORM	1ATION PROVID	DED BY MACPHERSON	DCI8
	CONSTRUCTIO	DN & DESIGN, (4	425) 391-3333.	Office (
	2. SITE PLAN A	ND ORIGINAL D	DESIGN PREPARED BY	ч A
t/ \	THE WATERS	HED COMPANY,	KIRKLAND, WA, (425)	1VC
N	822-5242.			01 05-11
	3. BASED ON A	PPROVED DRA	WING SHORELINE	Cumut D5-C
	RESTORATIO	N, WETLAND RE	STORATION, CLEARING	E B
	AND GRADIN	O PERMIT' DAT		Alt POBox
	DRAWINGS 1-	IDI IHE MAIL	ENDRED COMPANY.	34

Photo-point 1: View looking south.

Photo-point 1: View looking southwest.

Photo-point 1: View looking west.

Photo-point 2: View looking east.

Photo-point 2: View looking northeast.

Photo-point 2: View looking north.

Photo-point 3: View looking south.

Photo-point 3: View looking southwest.

Photo-point 3: View looking north.

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:01 AM 'williamrissberger@comcast.net' RE: ELST corrections

Dear William,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: williamrissberger@comcast.net [mailto:williamrissberger@comcast.net]
Sent: Thursday, January 26, 2017 4:46 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Valderrama, Ramiro <rvalderr2001@yahoo.com>
Subject: ELST corrections

January 26, 2017 Lindsey Ozbolt

Associate Planner City of Sammamish Department of Community Development LOzbolt@sammamish.us 425.295.0527

Lindsey,

Per our meeting with Kelly Donahue, King County Department of Natural Resources, I am sending you this letter to document two unacceptable errors at location 355 in the ELST 60% build plan. They are:

- The proposed wood guardrail extending from 352 to 355 along the West side of the proposed trail is at least 3 feet too far west at point 355. It eliminates all vehicle access to my home and three neighbors during construction. It also eliminates access for basic emergency and commercial trucks to my home and my neighbors after construction is complete.
- The same proposed wood guardrail extends approximately 11 feet too far to its Northern termination at 355. It eliminates access to my home and my neighbors during construction. It also eliminates access for basic emergency and commercial trucks to my home and my neighbors after construction is complete.

These errors must be corrected since I am sure you do not intend to block access to my home. The proposed wood guardrail will have to be moved East and shortened. It needs to follow the track of the existing wood guardrail or be East of it. I have attached 2 images to illustrate where errors are located and why they are unacceptable.

Please let me know the proper steps I can take to insure these errors are corrected in the final build plan. Regards,

Bill

William Rissberger 1627 East Lake Sammamish PL SE Sammamish, WA 98075 <u>williamrissberger@comcast.net</u> cc: Ramiro Valderrama, <u>RVALDERR2001@yaho</u>o.com

William Rissberger 206-484-2759

Proposed Wood Barrier

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:00 AM 'wuffer@comcast.net' RE: Jim Wolfe Trail Comments

Dear Jim,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: wuffer@comcast.net [mailto:wuffer@comcast.net]
Sent: Thursday, January 26, 2017 4:30 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Jim Wolfe Trail Comments

Hi Lindsey,

I am attaching ten pages of PDF files with my comments and some diagrams and pix. Please let me know that you got all ten. Good luck with your work overload. Thanks, Jim

1

Review of Sammamish Trail Plans Near Location 457

Submitted By: Jim Wolfe, 1111 E. Lk. Sammamish Pkwy NE

Submitted To: Lindsey Ozbolt, Associate Planner, City of Sammamish

Date: 1/26/2017

Item One: Ownership of Parking Lot

On the King County Tract Maps you will find parcel number **357530TRCT**. This parcel is jointly owned by myself and the two neighbors on either side of me. (Jim Creevey—1103 and Ty Hill—1119) This is our driveway and parking area. It is highlighted in yellow in this map:

Note that this parcel is 25' from the centerline of the RR right of way. The current stakes put up by the County in this area indicate a 50' right of way, which is wrong.

Item Two: Carport

I have had a carport and storage shed combination which I have been using for at least 25 years. It is pictured here:

This carport houses two antique cars---1950 Willys Wagon and Jeepster. The shed has equipment which has to go into and out of my recording studio which is located in my house. The carport is built on a poured concrete foundation wall with a curb. The curb, at its nearest point to the centerline of the trail is 13 feet.

Here is a picture showing a side view of the curb with the 13' marked in blue:

Note that the broken concrete upon which the poured foundation rests could be removed back to the 13' from centerline mark and that the structure would still be stable. This is also true for the parking area on the north side of Stair #82 which go from the parking lot to the trail. This would allow you to build a wall which starts at 10' from the centerline and which is up to 2' thick and still have room to leave my carport/shed. You could back fill from the broken concrete to the new wall. There is no need to remove the carport/shed. Keeping them where they are would not impact the trail in any way.

Item Three: Stair #82

On the 60% plans the county shows the elimination of my stairway which goes from my parking lot to the trail (Stair #82) as well as designing a 90 degree turn in the new stairs from the trail to my home (Stair #81). Neither of these design decisions are necessary and both would put my business at risk.

As stated earlier, I have a home recording studio and I bring equipment in and out of the house constantly. One recording machine which is currently stored in the shed next to the carport is a 24 track recorder which weighs around 500 pounds.

This machine has to be hauled down to my studio periodically. It would be nearly impossible to take it down without the current wide stairway from the parking lot to the trail. (Stair #82) In addition, on an almost daily basis musicians bring down heavy guitar amplifiers and drum kits. The existing wide stairway was made that way for a reason, and it is necessary for my business that it not be removed.

In addition, from time to time I need to bring in an MCI recording console pictured at the left. It weighs more than 600 pounds and is over six feet long. There is no way this console could ever be taken down the stairs with the 90 degree turn. (Stair #81) And the width of the upper stairs (Stair #82) makes negotiating the transport of this console possible.

Stairway discussion continued:

The edge of the bottom riser on Stair #82 going from the parking lot down to the trail is more than 15 feet away from the centerline. This would leave room for at least a 3 foot landing at the bottom of the stairs and that landing would still be more than 12 away from the centerline. There is no need or reason to remove these stairs—and from the discussion above you can see that removal of these stairs would have a severe financial impact on my home business.

Regarding Stair #81:

In addition, there is room for a stairway without a ninety degree turn to go from the trail down to my home (stair #81). There is plenty of linear space for a building code designed stairway to be installed there. From the previous discussion you can see that the currently designed stairway with the ninety degree turn would make it impossible for me to move large, heavy and expensive equipment in and out of my home recording business, which, again, would have a devastating effect on my main source of income.

In addition, because of the nearly constant transportation of heavy musical equipment into and out of my home recording studio, it is important for my clients and hired musicians to have access to my home and enough room for transporting their equipment *during the construction phase of this project* as well as when the trail is complete.

Anything that impedes this flow of equipment would have a severe negative impact on my business and my ability to make a living and would thus produce extreme hardship for me.

Item Four: Discussion of Parking Requirements

Here is a picture of our driveway and parking lot looking toward the south.

As you can see, there is not a lot of room to maneuver cars in there. My neighbors to the north (Hill family) currently have 4 cars and there are 6 cars owned by those living in my home. Creevey, at the end of the driveway, owns 2 cars. So that's 12 full time cars before any guests or clients come.

Any trail design that allows any less parking than currently available would have a devastating effect on our ability to come and go and also would make it impossible for my clients and musicians to have any place to park to unload equipment. The next part of this discussion will be about the wall on our parking lot side of the trail and how it impacts the parking situation. (Wall #35)

Item Five: Discussion of Wall #35

Wall #35 is currently shown to be a structural earth wall. For purposes of maximizing our final parking area that wall needs to be as vertical as possible for the whole length of our driveway---that is, adjacent to my home and Hill's home.

To maximize our parking area, a Soldier Pile wall would work better since it can be vertical and not subtract useful space from our parking area.

In addition, as previously discussed, the existing broken concrete foundation could be removed as far back as the curb on our parking area (and also the curb on my carport) and this would allow a Soldier Pile wall to be constructed and then back filled to the line of the existing curb. This would allow you to have a fence at the top of the new wall and still allow our cars to park with our wheels up to the existing curb and the bodies of the cars to hang out past the curb and still not be touching your fence.

The following picture gives you a good idea what I'm talking about:

You can see the mark at 13 feet from the centerline of the trail. (Incidentally, I am an engineer and actually ran a line from two of your pink centerline stakes and measured from the straight line, so the 13 foot dimension is accurate within a couple inches.) Our cars currently hang out past the curb. If the curb was left in place and a car hung out 3 feet past the curb, the bumper of the car would still be 10 from the centerline of the trail. This would give you room for a fence on top of your Soldier Pile wall without our cars touching it.
Jim Wolfe Review of Sammamish Trail Plans near 457—Page 8

Item Six: Discussion of Stream

I have noted the location of this stream to several people with the county in the past but just today I had a discussion with one of the wetland consultants to whom the route of this stream is a mystery.

The stream which I am discussing comes under the parkway and shows up on our property in the parking area just to the north of the garage. It then goes underground in a pretty straight path towards the lake and may be heard bubbling next to the trail (on the east side) just about exactly west of where it appears in the parking lot.

Then it takes a mysterious path to its final destination on the beach in front of my house. From where it may be heard bubbling up near the Hill's home, it runs south in a buried culvert parallel to the trail under the broken concrete that supports the parking area.

It takes a turn to the west somewhere around 456 + 60 and continues underground toward the lake. It comes out on the beach in front of my house and fills a pond which continuously flows into the lake.

I have lived in my home since 1978 and this stream has never dried up.

Care will have to be taken not to disturb the flow of this stream. At one time the stream backed up on the lake side due to sand and rocks being washed into the pipe in which the stream flows and my back yard flooded. Due to the current configuration of ponds in front of my residence this backing up can no longer happen.

Item Seven: Electricity in the parking area

There is currently power in the parking area. This power comes from my house and shows up at my carport. However I have no clear idea of how the electrical wires are routed under the old rail bed. I believe this power was put in when the water lines were installed, however I'm not sure. It is something that will need to be considered when the heavy equipment moves in.

Jim Wolfe Review of Sammamish Trail Plans near 457—Page 9

Item Eight: Water and Sewer

Our water supply starts up on the parkway and is routed to a distribution box in our parking area, just to the south of the tan shed. This box is often overgrown with blackberry bushes and is not obvious. From there, the high pressure lines cross the parking area and travel under the rail bed and supply Creevey and myself. I mention that these are high pressure lines because both Creevey and I use pressure reducing valves down at our residences, but the lines in the parking lot are upstream from the PRVs.

In the past we have had problems with large construction equipment causing one of these supply lines to rupture and we incurred quite a bit of expense in fixing the problem.

It hasn't been an issue for many years, but the heavy equipment that will be used for trail construction might prove to be a problem, expecially if the exact location of the water lines is not mapped out exactly.

In addition, we are on a pumping sewer system and so waste runs back under the old rail bed and up to the main sewer lines along the parkway. I know that this happens everywhere on the east side, but I just want to be on record as having some concern that the sewer lines not be disturbed, just as I am concerned with the electrical and water.

Item Nine: Clearing and Grubbing

I understand that the CG line will have to extend around the new stairway from the trail to my residence (Stair #81), however there is no need to have the CG line come down into my yard nearly as far as it is currently shown. I have several trees within the current CG line that I would like to preserve.

In fact the current drawing shows the CG line at the bottom of Stair 81 to be 30 feet from the centerline and your property only extends 25 feet in that direction.

In addition, on the parking lot side of the trail the CG line is shown as over 20 feet from the centerline. There is no reason for this much width along our parking area.

Jim Wolfe Review of Sammamish Trail Plans near 457—Page 10

Item 10: Unnamed Stream #13

The City of Sammamish has regulations about trails crossing wetland buffers. The buffer for Unnamed Stream #13 includes all of the area next to my property where the trail runs. I would like a clarification from the City and the County as to what the requirements are for the trail passing through a stream buffer and want to see how the County addresses the City's requirements.

That concludes my Review of the Sammamish Trail Plans.

I may be reached by phone at:

425-241-7234

I may be reached by email at:

wuffer@comcast.net

I may be reached by mail at:

1111 E. Lk. Sammamish Pkwy NE Sammamish WA 98074

I hope that I have clearly discussed the many problems I have with the current 60% trail design.

I would like to be contacted by a representative of the County to discuss some of these items in person at my property where it is easy to see the adverse consequences that the current 60% design would have on my business and my life.

Thank you for your consideration,

JIM WOLFE

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 11:00 AMTo:'jalschul@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Joan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Joan Alschuler [mailto:jalschul@gmail.com] Sent: Thursday, January 26, 2017 4:28 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

As a cyclist, I am so happy to learn of trails that are paved and thus safer for cyclists like me who like to ride on the safest surfaces possible due to 2 replaced hips. I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Joan Alschuler 23836 NE 126th PL Redmond, WA 98053 608-239-5080

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:00 AM 'Fred Mattison' RE: King County Trail File #SSDP2016-00415..Comments

Dear Fred,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Fred Mattison [mailto:FredMattison@msn.com]
Sent: Thursday, January 26, 2017 4:16 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: King County Trail File #SSDP2016-00415..Comments

Hi Lindsey,

I reviewed the plans for the East Lake Sammamish Trail and have the following comments:

1) Tamarack and Many! other parcels in the area to the east of Louis Thompson Hill Road were created by King County prior to

the City of Sammamish being formed.

2) There was no overall drainage system or treatment system built to address the runoff from these areas that currently direct

runoff into Lake Sammamish.

3) The property owners have all been charged surface water management fees for years while no/minimal management of the

surface water from this area around Tamarack Louis Thompson Hill Road has occurred.

4) With the Tamarack Modeling/surface water management study being complete as of November, 2016 (see attached) and King

County's plan being dated September, 2016, it is clear that the drainage system that collects water near the trail, East Lake

Sammamish Parkway and limited drainage uphill near the Louis Thompson Hill Road has not been considered in the sizing of

the culvert/pipe from East Lake Sammamish Parkway to Lake Sammamish at station 436 + 30 where a 12" HDPE pipe is

scheduled to be installed. This pipe/outfall does not address the drainage challenges of the Tamarack area and future

density/parcels to be developed in the next 2- 10 years.

5) To develop the trail with a substandard drainage pipe running under it to the lake is a major step backwards.

6) Please do not settle for the current pipe sizing that does not address the current and future drainage needs of the area east of

Lake Sammamish Parkway at Louis Thompson Hill Road when the City of Sammamish has just completed several

runoff/drainage studies in the area.

7) It is time for King County to update and correct the drainage system rather than the City being responsible for the cost of this

improvement.

Thank You for all of your efforts that are in the best interest of the City of Sammamish and it's residents.

Call text or email if you need clarification.

We have been residents here for over 30 years. (prior to Sammamish)

Thank You!

Fred Mattison 21319 SE 1ST

Sammamish, WA 98074 206-947-4639 phone fredmattison@msn.com email

DATE	NOVEMBER 17, 2016
То	BEN RESSLER, PROJECT ENGINEER, CITY OF SAMMAMISH
CC	
FROM	Robert Parish, PE, Project Manager, Osborn Consulting, Inc. Josh Van Wie, PE, Project Engineer, Osborn Consulting, Inc.
SUBJECT	TAMARACK DRAINAGE IMPROVEMENT PROJECT – MODELING MEMORANDUM

INTRODUCTION

The Tamarack subdivision is located on the west side of the City of Sammamish near Lake Sammamish. The subdivision contains properties in the area near NE 4th Street between 208th Avenue NE and 212th Avenue NE.

A portion of the storm runoff from the Tamarack subdivision flows west, and is combined with flows from residential properties located between the Tamarack subdivision and the intersection of East Lake Sammamish Parkway and Louis Thompson Road NE. This combined area is referred to as the "Project Basin" in this report. The Project Basin is located within the larger Monohon Drainage Basin. The remaining flows from the Tamarack subdivision not included in the Project Basin flow either north to George Davis Creek in the Inglewood Basin, or flow south to contribute flow to Zackuse Creek. The areas flowing north and south were not studied as part of this report.

The Project Basin contributes flow to Lake Sammamish through a culvert at the intersection of East Lake Sammamish Parkway and Louis Thompson Road that is connected with an open channel to the lake. The basin is approximately 52 acres in size, and includes a system of storm drains, culverts, and ditches. Properties in the basin are zoned as R-4 residential, and land cover consists primarily of single family residential houses. Topography ranges in elevation from approximately 40 feet to 460 feet with slopes up to approximately 30% in the steepest areas.

The goal of this study is to use hydrologic and hydraulic modeling to assess the existing flows reaching Lake Sammamish and potential changes in peak flow due to future development in the Tamarack subdivision. Modeling was performed using the Western Washington Hydrology Model (WWHM) and the EPA Storm Water Management Model (SWMM) through the PCSWMM platform.

SUBBASIN DELINEATION

The Project Basin was divided into 8 subbasins for performing modeling calculations. Subbasin boundaries were delineated using King County and City of Sammamish GIS data including elevation contours, streams, drainage pipes, culverts, manholes, and catch basins. Subbasins were divided by choosing specific points in the stormwater conveyance system and separating out the land area that contributes flow to each point.

Site visits were performed to verify subbasin boundaries. Subbasin boundaries were confirmed by locating high points at the edge of subbasins and by visually locating pipes or culverts that redirected flow to create a basin boundary. The subbasin delineations can be seen in **Figure 1**.

Subbasin 4 is currently undeveloped, and consists of forested area. The remaining subbasins are developed, with the majority of lots built out as single family residential. A few individual undeveloped lots exist in Subbasins 2, 6, and 7.

WWHM MODEL

WWHM was used for computing runoff in each subbasin for three scenarios. The three scenarios included existing conditions, proposed conditions after drainage improvements, and future fully developed conditions. Additionally, WWHM was used to size several flow control facility options. Input data required for WWHM includes impervious and pervious cover, slopes, and soil types.

Slopes for each subbasin were calculated using GIS elevation contours. Slopes for the eight subbasins ranged from 6 to 29 percent, with an average slope of 17 percent. Soil information was taken from the Natural Resources Conservation Service Web Soil Survey, which compiles soil survey data from various sources. Soils in the Project Basin consist primarily of glacial outwash soils, which make up 86 percent of the basin. Some areas of glacial till are also present at the highest and lowest elevations in the basin. WWHM requires soils to be categorized as type A/B, type C, or saturated soils. Soil categories were assigned using the Stormwater Management Manual for Western Washington, which classifies the outwash soils in the basin as type A/B and the till soils as type C. Detailed soil information is provided in **Table 1**.

Existing Conditions

Existing impervious areas were calculated using aerial imagery databases available in ArcGIS software. The most recent imagery available was from July, 2013. Impervious areas were traced using ArcGIS, and roadway impervious areas were separated from parcel impervious areas. Impervious cover on parcels was assumed to be 70 percent building area and 30 percent driveway area based on aerial photographs. Separation of individual buildings, driveways, and other impervious is beyond the scope of this work. Pervious areas were assumed to be 100 percent lawn in developed subbasins. In Subbasin 4, which is undeveloped, pervious areas were assumed to be 100 percent forest based on aerial imagery and site visit observations.

Under existing conditions, runoff from Subbasins 7 and 8 is collected in an 8-inch drainage system located at NE 4th Street and is released to an open channel that passes through Subbasin 4. Soils in Subbasin 4 consist of glacial outwash, and are expected to have a higher infiltration capacity than till soils. Runoff from basins 7 and 8 was routed through Subbasin 4 using a lateral flow basin in WWHM to estimate the infiltration and remaining runoff that continues through Subbasin 4 to the outfall.

Proposed Conditions after Drainage Improvements

The proposed drainage improvements will collect surface runoff from Subbasins 7 and 8 and convey flows through the proposed pipes to the existing storm drains in Louis Thompson Road. In the proposed conditions model, runoff from subbasins 7 and 8 was routed directly to the outlet of Subbasin 4 rather than being routed onto the surface of Subbasin 4 through lateral basins. This eliminates the potential for infiltration that occurs under existing conditions as flows from Subbasins 7 and 8 pass through the natural open channel in Subbasin 4.

Future Fully Developed Conditions

Fully developed conditions were modeled to determine the total increase in flow that may occur in the system over time. Impervious areas were calculated assuming parcels will redevelop individually and increase impervious cover to the maximum allowable level. Developments in the Project Basin are required to use level 2 flow control standards according to the City of Sammamish flow control map. Under these standards, redevelopments with greater than 5,000 square feet new or replaced impervious surface are required to install flow control. For the WWHM model, it was assumed that any existing lots with less than 5,000 square feet impervious would redevelop and add impervious area to reach 5,000 square feet. This added a total of 2.12 acres of impervious area for an increase in impervious cover of approximately 4 percent over the entire Project Basin. In reality, future increases in impervious area may require construction of flow control facilities, particularly if the new impervious cover is in a critical drainage or erosion area. The Samm amish Municipal Code (SMC) outlines additional requirements for these areas in SMC 13.20.040. For the sake of this work, it was more conservative to assume that no flow control would be required in the future to estimate the greatest potential increase in flow through the system. A summary of existing and proposed conditions is provided in **Table 1**.

Subbasin 4 currently consists of a single large tract of land. The tract is expected to be subdivided and developed into residential lots in the future. The subdivision of the land for development will require installation of flow control meeting the level 2 standards for peak flows and flow durations. Subbasin 4 was modeled as forest, assuming that flow control will maintain predeveloped flows in the subbasin.

Table 1 Summary of WWHM Parameters						
Subbasin	Total Area (AC)	Existing Percent Impervious	Future Percent Impervious	Slope	Percent Outwash Soil	Percent Till Soil
1	2.15	38%	38%	6%	29%	71%
2	1.61	33%	48%	9%	62%	38%
3	14.07	49%	51%	19%	100%	0%
4	5.82	2%	0%	14%	100%	0%
5	2.70	48%	58%	17%	100%	0%
6	16.25	34%	41%	13%	100%	0%
7	2.22	40%	47%	29%	42%	58%
8	4.51	39%	44%	22%	85%	15%

Flow Control Facility Options

Several flow control options were modeled to determine required detention facility sized at different locations in the Project Basin. Flow control facilities were designed so flows to the basin outfall were less than or equal to existing flows for storm events ranging from the 2-year to 100-year events. The following facility options were investigated:

- Standard flow control vault downstream of Subbasins 7 and 8.
- Infiltration vault downstream of Subbasins 7 and 8
- Standard flow control vault downstream of Subbasin 4, assuming Subbasin 4 does not develop in the future.
- Standard flow control vault downstream of Subbasins 3 through 8, assuming Subbasin 4 does not develop in the future.

• Standard flow control vault downstream of Subbasins 3 through 8, assuming Subbasin 4 develops in the future and Subbasins 7 and 8 are piped to the outlet of Subbasin 4.

SWMM MODEL

SWMM was used to model flow from WWHM through the pipes and open channels in the lower part of the Project Basin. The drainage system for the model was constructed using survey data, record drawings, and field measurements. Pipes modeled in this study include the mainline pipes that extend from the downstream ends of Subbasins 3, 4, and 6 and continue toward Lake Sammamish through several open channel sections. The open channel sections include the ditch along Louis Thompson Road, and two channel sections near the Lake Sammamish outfall. A portion of the 8-inch drainage system in Subbasin 8 was also included. The model is meant primarily to provide an estimate of peak flows and velocities in the downstream end of the system. Because of the model's intended use, the full drainage system through the Project Basin was not included in the model.

Pipe invert elevations and lengths were taken primarily from survey data and record drawings. Survey data was used for the majority of pipes and culverts along Louis Thompson Road and for the pipes along NE 4th Street in Subbasin 8. Several areas of missing data were encountered for the pipes along Louis Thompson Road where existing manholes could not be located. Based on survey notes and site visits, it appears that existing manholes may have been paved over with asphalt. In these cases, pipe data was taken from record drawings. One area with missing data includes the pipes on the south side of Louis Thompson Road near the intersection with East Lake Sammamish Parkway NE. Record drawings show the system extending to the south along East Lake Sammamish Parkway NE and not connecting into the main drainage system. However, no pipes along East Lake Sammamish Parkway NE could be verified during the site visit, and it appears possible that the existing pipes do connect to the main system. The model was built assuming the pipes are connected to provide a more conservative estimate of flows. However, it should be noted that the future development will not alter the destination of any flows in the basin. The pipes used in the SWMM model can be seen in **Figure 3**.

Open channel and ditch areas were observed in the field to determine the bottom width, approximate side slope, and estimated channel roughness. Observations were taken at the ditch on the north side of Louis Thompson Drive and at the open channel section between East Lake Sammamish Parkway NE and the East Lake Sammamish Trail to the west of the roadway. The open channel that extends from the trail to Lake Sammamish could not be observed because the channel passes through private property that could not be accessed at the time of the site visit. Parameters for this channel were assigned using engineering judgement based upon the site photographs included as part of the Cooper Beach – Mitigation As built Memorandum (see attached).

Two existing detention systems were included in the model. One is a detention pond located at the Subbasin 5 outlet that provides flow control for the residences near the intersection of 207th Avenue NE and NE 3rd Street. The second is an inline detention pipe located in the 205th Avenue NE right-of-way near the intersection with Louis Thompson Road. Parameters for both detention systems and their orifices were taken from record drawings.

Flows for the SWMM model were taken from WWHM results for 100-year peak runoff. Flow from each subbasin was applied as a constant flow at the appropriate model node. Flows from Subbasin 3 were split between two nodes because a portion of flow from the subbasin does not reach the conveyance system until near the downstream end. The total flow was divided based on contributing area, with 80 percent assigned to the main drainage line and 20 percent assigned to the farthest downstream node in the subbasin.

SHEAR STRESS CALCULATIONS

Shear stresses for the open channel at the Lake Sammamish outfall were calculated to determine the potential for erosion. The predicted shear stress for each scenario was calculated using equations developed for channel design by the Federal Highway Administration (Kilgore, 2005). The following equations were used for calculating shear stress applied by the modeled flow and permissible shear stress on the channel soil and vegetation:

 $\tau_0 = \gamma R S_0$ (Applied shear stress, FHWA Equation 2.3)

$$\tau_p = \frac{\tau_{p,soil}}{(1-C_f)} \left(\frac{n}{n_s}\right)^2$$
 (Permissible shear stress, FHWA Equation 4.7)

Values for flow rates, velocities and depths, and slopes were taken from the WWHM and SWMM models and used to calculate shear stress. Values for the grass cover factor and roughness were taken from the FHWA document or other literature sources. The bed material grain size where 75% of material is finer (i.e. D₇₅) was estimated to be 2 inches. This estimate was based on observations of the upstream channel near the trail and photos of the constructed channel provided in the Cooper Beach – Mitigation As built Memorandum.

MODELING RESULTS

The peak flow results predicted by WWHM are provided in **Table 2**. Peak flows for the proposed drainage improvements increased only downstream of Subbasin 4. This is because flows from Subbasins 7 and 8 will no longer partially infiltrate into the channel in Subbasin 4, but will bypass the subbasin through the proposed drainage system. Peak flows for future fully developed conditions were greater than existing conditions due to increased impervious cover. Subbasins 2, 5, and 6 had flow increases of greater than 10 percent at the 100-year event. Subbasin 4 is predicted to have no significant change in flow due to expected installation of flow control during future development. This will ultimately depend on the design of the future development.

Table 2 WWHM Modeled Peak Flows**						
	Flows by Subbasin (CFS)					
Scenario	1	2	3	4,7,8*	5	6
Existing 2-year	0.42	0.27	2.38	0.12	0.50	2.35
Existing 100-year	1.09	0.71	6.81	3.47	1.00	5.88
Proposed 2-year	0.42	0.27	2.38	2.05	0.50	2.35
Proposed 100-year	1.09	0.71	6.81	5.13	1.00	5.88
Future 2-year	0.42	0.36	2.52	2.15	0.57	2.73
Future 100-year	1.09	0.83	6.88	5.25	1.11	6.55

*For existing conditions, Subbasins 7 and 8 were modeled as lateral basins with total flow measured at the outlet of subbasin 4. For proposed conditions, Subbasins 7 and 8 were routed to the outlet of Subbasin 4 to simulate the proposed drainage system that will bypass Subbasin 4.

** These flows assumed no proposed detention

A comparison of flow durations for existing conditions and proposed drainage improvements is shown in **Figure 5**. Flows durations are expected to exceed the existing conditions . This exceedance is a result

of the flows from Subbasins 7 and 8 being piped directly to the outlet of Subbasin 4, rather than being allowed to partially infiltrate in Subbasin 4. The exceedance in flow durations create an erosion concern for the small wetland and downstream channel sections near the Lake Sammamish outfall. Flow control to match existing durations will be needed as part of the proposed drainage improvements in order to protect the downstream channel.

Figure 5: Flow durations for existing conditions and proposed drainage improvements. Flow control will be required during the design phase to match existing durations.

The peak flows and velocities predicted by SWMM for the ditch and open channel sections are listed in **Table 3**. Flows at the Lake Sammamish outfall are estimated to increase from 17.7 CFS under existing conditions to 22.1 CFS under future conditions during the 100-yr event. This constitutes a 25 percent increase in flow at the outfall. The primary reason for the increase is that runoff from Subbasins 7 and 8 will not be infiltrated as it flows over Subbasin 4. A smaller portion of the increase is caused by a higher percentage of impervious cover in all subbasins.

Velocities along Louis Thompson Road are near 10 feet per second for both existing and future conditions at the 100-year event. The high velocities are caused by steep slopes in the roadside ditch and a grass lined channel without rock material to provide increased roughness. Existing velocities in the open channel sections near Lake Sammamish are predicted to be 3.8 feet per second at the 100-year event, and are predicted to increase slightly with the higher volume of flow in the future.

Table 3 SWMM Modeled Peak Flows and Velocities				
Location	Existing 100 year Peak Flow	Existing 100 year Velocity	Future 100 year Peak Flow	Future 100 year Velocity
Ditch along Louis Thompson Road NE	7.3 cfs	9.0 ft/s	8.1 cfs	10.3 ft/s
Open Channel between East Lake Sammamish Parkway NE and pedestrian trail	17.7 cfs	6.0 ft/s	22.1 cfs	5.8 ft/s
Open Channel between pedestrian trail and Lake Sammamish outfall	17.7 cfs	3.8 ft/s	22.1 cfs	4.0 ft/s

The permissible shear stress at the outfall channel was calculated to be 1.27 lb/sf. Calculated shear stresses for each storm event under existing and proposed conditions are shown in **Table 4**. The shear stresses are not expected to increase dramatically, and all predicted shear stresses are below the permissible shear stress. Because the permissible shear stress is based on site photos rather than field observations, there is room for refining the permissible stress calculation. Additional study is recommended during the design phase to investigate any potential erosive channel concerns and verify the level of shear stress that is appropriate for the channel. However, because of the relatively minor change in shear stress due to increased flows, the future conditions are expected to be similar to the existing conditions. If the existing channel is functioning without erosion concerns, then the future conditions will not likely create additional concern.

Table 4 Modeled Shear Stress at Outfall Channel				
Scenario	Flow	Velocity	Shear Stress	
Existing 2-year	6.7 cfs	2.9 ft/s	0.57 lb/sf	
Existing 100-year	17.7 cfs	3.8 ft/s	0.88 lb/sf	
Future 2-year	9.4 cfs	3.2 ft/s	0.67 lb/sf	
Future 100-year	22.1 cfs	4.0 ft/s	0.98 lb/sf	

FLOW CONTROL OPTIONS

An approach to match the existing peak flows is to provide a detention or infiltration system. The flow control options are summarized below in **Table 5**. Length and width options for each vault were standardized to 20 feet wide and 7 feet deep to provide an easier comparison between options.

Detention Option #1 & #2: For future developed conditions, flows from Subbasins 7 and 8 before entering Subbasin 4 can be reduced to a minimal level by installing a very large detention vault on the order of 850 feet long (for a standard vault: Detention Option #1) to 500 feet long (for an infiltration vault: Detention Option #2). However, even with one of these large-sized vaults, the peak flows at the Lake Sammamish outfall are predicted to increase at the 2-year and 100-year events. This is due to the modeled overall future increase in impervious cover through the other basins. In addition to not meeting the goal of matching existing flows at the Lake Sammamish outfall, these options are not likely be feasible due to the high cost and impractical size of the facilities. This option would not be further considered.

Detention Option #3: A similar reduction in flow could be obtained by installing a 50-foot long vault at the outlet of Subbasin 4. This option assumes that flows from Subbasins 7 and 8 are not piped across Subbasin 4 but are allowed to flow in an open channel that allows infiltration. As with Option #1 and #2, peak flows at the Lake Sammamish outfall are predicted to increase at the 2-year and 100-year events. This is due to the modeled overall future increase in impervious cover through the other basins. This option is feasible, but would not meet the goal of matching existing flows at the Lake Sammamish outfall. This option would not be further considered.

Detention Option #4 & #5: Two options for installing a vault downstream of Subbasins 3 through 8 are able to provide a reduction in peak flows to the Lake Sammamish outfall. These options would collect flow from over 90 percent of the total basin area. Detention Option #4 could be as small as 50-feet long if flows from Subbasins 7 and 8 are not piped across Subbasin 4 but are allowed to flow in an open channel that allows infiltration.

Detention Option #5 assumes that Subbasins 7 and 8 are piped down the hill through Subbasin 4, requiring a 200-foot long vault to provide an adequate reduction in peak flows to the Lake Sammamish outfall.

Table 5 Flow Control Facility Summary					
Flow Control Location	Vault Type	Size	Future 2 year Peak Flow at Lake Sammamish Outfall	Future 100 year Peak Flow at Lake Sammamish Outfall	
Detention Option #1 Downstream of Subbasins 7 & 8	Standard	850ft L x 20ft W x 7ft H	10.1 cfs*	23.4 cfs*	
Detention Option #2 Downstream of Subbasins 7 & 8	Infiltration Vault	500ft L x 20ft W x 7ft H	10.1 cfs*	23.4 cfs*	
Detention Option #3 Downstream of Subbasin 4, assuming Subbasins 7 & 8 are not piped through Subbasin 4	Standard	50ft L x 20ft W x 7ft H	10.7 cfs*	23.9 cfs*	
Detention Option #4 Downstream of Subbasins 3,4,5,6,7,8, assuming Subbasins 7 & 8 are not piped through Subbasin 4	Standard	50ft L x 20ft W x 7ft H	5.79 cfs	17.2 cfs	
Detention Option #5 Downstream of Subbasins 3,4,5,6,7,8, assuming Subbasins 7 & 8 are piped through Subbasin 4	Standard	200ft L x 20ft W x 7ft H	5.88 cfs	17.1 cfs	

* These flows exceed the existing flow at the Lake Sammamish outfall

CONCLUSION

This modeling study developed runoff estimates for 8 subbasins in the Project Basin for existing conditions, proposed drainage improvements, and future fully developed conditions. The proposed drainage improvements are not expected to trigger flow control requirements because new or replaced impervious surface will not be added. However, peak flows and flow durations are expected to increase at the Lake Sammamish outfall due to the change in conveyance for Subbasins 7 and 8 to be conveyed through storm drains rather than an open channel on Subbasins 4 that provides some infiltration. An additional increase in peak flows will occur at the outfall due to an expected increased impervious cover throughout the Project Basin as individual properties redevelop. Peak flows are expected to increase by as much as 25 percent at the outfall for future fully developed conditions.

Several flow control options were investigated to match or decrease peak flows to the outfall under future fully developed conditions with Subbasins 7 and 8 piped to Louis Thompson Road. Assuming that runoff will not be piped across Subbasins 4, then the most feasible option is a 50-foot long by 20-foot wide by 7-foot deep detention vault that would collect runoff from Subbasins 3 through 8, or roughly 90 percent of the Project Basin's total area. This vault would provide a reduction in peak flows to the outfall. The vault would need to be installed in the right-of-way somewhere near the intersection of Louis Thompson Road NE and 205th Avenue NE.

Flow control facilities have been sized to match or provide a reduction from existing peak flows at the Lake Sammamish outfall. If design progresses, flow durations should also be considered so that erosive flows at lower flow rates do not create a concern.

Detention will be required for any developments or redevelopments that trigger flow control requirements. To ensure that increases in impervious cover are mitigated in the future, the City should investigate whether updates to the existing drainage code would be beneficial.

The existing wetland area near the Lake Sammamish outfall must be protected according to drainage code requirements. This will include controlling the wetland's hydroperiod to maintain habitat for wetland plant and animal communities. A hydrologic assessment will be required during the design phase to ensure the proposed drainage improvements will match the existing volume and pattern of water stored in the wetland. This assessment would require a review of the exiting condition to approximate how much water the wetland currently receives.

Additionally, it is recommended that the condition of the existing open channel be investigated prior to design and construction in Subbasin 4 to review wetland condition and erosion concerns and to document existing conditions.

References

Kilgore, R.T. and Cotton, G.K., 2005, "Design of Roadside Channels with Flexible Linings," U.S. Department of Transportation, Federal Highway Administration, FHWA-NHI-05-114, Hydraulic Engineering Circular No. 15, Third Edition.

APPENDIX A FIGURES

Ν

Figure 1: Project Basins

Tamarack Drainage Improvement Project Sammamish, WA

250

500

CONSULTING

INCORPORATED

Tamarack Drainage Improvement Project Sammamish, WA

APPENDIX B

MODELING DOCUMENTATION

PROJECT REPORT

Tamarack Project Basin Proposed Drainage Improvements

General Model Information

Project Name:	Tamarack - Durations Existing
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/23/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

Low	Flow Thr	eshold for POC1:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC1:	50 Year
Low	Flow Thr	eshold for POC2:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC2:	50 Year
Low	Flow Thr	eshold for POC3:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC3:	50 Year
Low	Flow Thr	eshold for POC4:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC4:	50 Year
Low	Flow Thr	eshold for POC5:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC5:	50 Year
1			
Low	Flow Thr	eshold for POC6:	50 Percent of the 2 Year
High	Flow Thr	eshold for POC6:	50 Year
Low	Flow Thr	eshold for POC6:	50 Percent of the 2 Year50 Year50 Percent of the 2 Year50 Year
High	Flow Thr	eshold for POC6:	
Low	Flow Thr	eshold for POC7:	
High	Flow Thr	eshold for POC7:	

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Subbasin 2	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25

Element Flows To: Surface Interflow Groundwater Subbasin 3 Detention Subbasin 3 Detention

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7

Element Flows To: Surface Interflow Groundwater Subbasin 5 Detention

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod Element Flows To:	acre 5.73	
Sunace	Internow	C

Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	3.96
Element Flows To:	
Outlet 1	Outlet 2
Basin 4 - Perv Lateral	Flow

Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.33 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .86 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep 2.25 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .59 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow
Subbasin 3B Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.44
Pervious Total	1.44
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.65 0.28
Impervious Total	1.38
Basin Total	2.82

Element Flows To: Surface Interflow

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15
Flement Flows To:	

Element Flows TO.		
Surface	Interflow	Groundwater

Subbasin 2	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Subbasin 3A Bypass	No
Dypass.	INO
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25
Element Flows To:	

Element Flows To: Surface Interflow Tank 1 Tank 1

Subbasin 4	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.73
Pervious Total	5.73
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.06 0.02 0.01
Impervious Total	0.09
Basin Total	5.82
Floment Flower Ter	

Element Flows To: Surface Interflow

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7
Element Flows To: Surface Inter Trapezoidal Pond 1 Trap	flow ezoidal Pond 1

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Subbasin 7 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.59 0.86
Pervious Total	1.45
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.62 0.26
Impervious Total	0.88
Basin Total	2.33
Flement Flows To:	

Element Flows To: Surface Interflow

Subbasin 8	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 2.33 2.25
Pervious Total	4.58
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.78 0.85 0.36
Impervious Total	2.99
Basin Total	7.57
Element Flows To: Surface	Interflow

Basin 3B Bypass: Yes GroundWater: No Pervious Land Use acre A B, Lawn, Steep 1.44 **Pervious Total** 1.44 Impervious Land Use acre ROADS STEEP 0.45 ROOF TOPS FLAT DRIVEWAYS STEEP 0.65 0.28 Impervious Total 1.38 **Basin Total** 2.82

Element Flows To: Surface Interflow

Routing Elements Predeveloped Routing

Subbasin 5 Detention

Bottom Length: Bottom Width: Depth: Volume at riser head: Side slope 1: Side slope 2: Side slope 3:		24.00 ft. 24.00 ft. 8 ft. 0.1096 a 0.292 Tc 0.292 Tc 0.292 Tc	cre-feet.) 1) 1) 1) 1
Discharge Structure Riser Height: Riser Diameter: Orifice 1 Diameter: Orifice 2 Diameter: Element Flows To: Outlet 1	Outle	0.292 TC 7 ft. 24 in. 5.75 in. 1 in. t 2	Elevation:0 ft. Elevation:6.5 ft.

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.013	0.000	0.000	0.000
0.0889	0.013	0.001	0.267	0.000
0.1778	0.013	0.002	0.378	0.000
0.2667	0.013	0.003	0.463	0.000
0.3556	0.013	0.004	0.535	0.000
0.4444	0.013	0.005	0.598	0.000
0.5333	0.013	0.007	0.655	0.000
0.6222	0.013	0.008	0.707	0.000
0.7111	0.013	0.009	0.756	0.000
0.8000	0.013	0.010	0.802	0.000
0.8889	0.013	0.012	0.845	0.000
0.9778	0.013	0.013	0.887	0.000
1.0667	0.013	0.014	0.926	0.000
1.1556	0.014	0.015	0.964	0.000
1.2444	0.014	0.017	1.000	0.000
1.3333	0.014	0.018	1.036	0.000
1.4222	0.014	0.019	1.070	0.000
1.5111	0.014	0.020	1.102	0.000
1.6000	0.014	0.022	1.134	0.000
1.6889	0.014	0.023	1.166	0.000
1.7778	0.014	0.024	1.196	0.000
1.8667	0.014	0.025	1.225	0.000
1.9556	0.014	0.027	1.254	0.000
2.0444	0.014	0.028	1.282	0.000
2.1333	0.014	0.029	1.310	0.000
2.2222	0.014	0.031	1.337	0.000
2.3111	0.014	0.032	1.364	0.000
2.4000	0.014	0.033	1.390	0.000
2.4889	0.014	0.034	1.415	0.000
2.5778	0.014	0.036	1.440	0.000
2.6667	0.015	0.037	1.465	0.000
2.7556	0.015	0.038	1.489	0.000

2.8444	0.015	0.040	1.513	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
2.9333	0.015	0.041	1.536	
3.0222	0.015	0.043	1.559	
3.1111	0.015	0.044	1.582	
3.2000	0.015	0.045	1.605	
3.2889	0.015	0.047	1.627	
3.3778	0.015	0.048	1.649	
3.4667	0.015	0.049	1.670	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$
3.5556	0.015	0.051	1.691	
3.6444	0.015	0.052	1.712	
3.7333	0.015	0.054	1.733	
3.8222	0.015	0.055	1.754	
3.9111	0.015	0.056	1.774	
4.0000	0.015	0.058	1.794	
4.0889 4.1778 4.2667 4.3556 4.4444 4.5333 4.6222 4.7111	0.016 0.016 0.016 0.016 0.016 0.016 0.016	0.059 0.061 0.062 0.063 0.065 0.066 0.068	1.814 1.833 1.853 1.872 1.891 1.910 1.928 1.947	$\begin{array}{c} 0.000\\ 0.$
4.7111	0.016	0.009	1.947	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$
4.8000	0.016	0.071	1.965	
4.8889	0.016	0.072	1.983	
4.9778	0.016	0.074	2.001	
5.0667	0.016	0.075	2.019	
5.1556	0.016	0.077	2.037	
5.2444	0.016	0.078	2.054	
5.3333	0.016	0.080	2.072	
5.4222	0.016	0.081	2.089	0.000
5.5111	0.017	0.083	2.106	0.000
5.6000	0.017	0.084	2.123	0.000
5.6889	0.017	0.086	2.140	0.000
5.7778	0.017	0.087	2.156	0.000
5.8667	0.017	0.089	2.173	0.000
5.9556	0.017	0.090	2.189	0.000
6.0444	0.017	0.092	2.205	0.000
6.1333	0.017	0.093	2.222	0.000
6.2222	0.017	0.095	2.238	0.000
6.3111	0.017	0.096	2.254	0.000
6.4000	0.017	0.098	2.269	0.000
6.4889	0.017	0.100	2.285	0.000
6.5778	0.017	0.101	2.308	0.000
6.6667	0.017	0.103	2.327	$\begin{array}{c} 0.000\\ 0.$
6.7556	0.017	0.104	2.345	
6.8444	0.018	0.106	2.363	
6.9333	0.018	0.108	2.380	
7.0222	0.018	0.109	2.467	
7.1111	0.018	0.111	3.198	
7.2000	0.018	0.112	4.316	
7.2889	0.018	0.114	5.685	
7.3778 7.4667 7.5556 7.6444 7.7333 7.8222 7.9111	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.114 0.116 0.117 0.129 0.121 0.122 0.124 0.126	7.207 8.785 10.32 11.71 12.90 13.83 14.51	0.000 0.000 0.000 0.000 0.000 0.000 0.000

8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Subbasin 3 Detention

Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.06670.0040.0000.0700.0000.13330.0060.0000.0990.0000.20000.0080.0010.1220.0000.26670.0090.0010.1400.0000.33330.0100.0020.1570.0000.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.0000	0.000	0.000	0.000	0.000
0.13330.0060.0000.0990.0000.20000.0080.0010.1220.0000.26670.0090.0010.1400.0000.33330.0100.0020.1570.0000.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.0667	0.004	0.000	0.070	0.000
0.20000.0080.0010.1220.0000.26670.0090.0010.1400.0000.33330.0100.0020.1570.0000.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.1333	0.006	0.000	0.099	0.000
0.26670.0090.0010.1400.0000.33330.0100.0020.1570.0000.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.2000	0.008	0.001	0.122	0.000
0.33330.0100.0020.1570.0000.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.2667	0.009	0.001	0.140	0.000
0.40000.0110.0030.1720.0000.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.3333	0.010	0.002	0.157	0.000
0.46670.0120.0040.1860.0000.53330.0130.0040.1990.000	0.4000	0.011	0.003	0.172	0.000
0.5333 0.013 0.004 0.199 0.000	0.4667	0.012	0.004	0.186	0.000
	0.5333	0.013	0.004	0.199	0.000
0.6000 0.014 0.005 0.211 0.000	0.6000	0.014	0.005	0.211	0.000
0.6667 0.014 0.006 0.222 0.000	0.6667	0.014	0.006	0.222	0.000
0.7333 0.015 0.007 0.233 0.000	0.7333	0.015	0.007	0.233	0.000
0.8000 0.016 0.008 0.243 0.000	0.8000	0.016	0.008	0.243	0.000
0.8667 0.016 0.009 0.253 0.000	0.8667	0.016	0.009	0.253	0.000
0.9333 0.017 0.011 0.263 0.000	0.9333	0.017	0.011	0.263	0.000
1.0000 0.017 0.012 0.272 0.000	1.0000	0.017	0.012	0.272	0.000
1.0667 0.018 0.013 0.281 0.000	1.0667	0.018	0.013	0.281	0.000
1.1333 0.018 0.014 0.290 0.000	1.1333	0.018	0.014	0.290	0.000
1.2000 0.018 0.015 0.298 0.000	1.2000	0.018	0.015	0.298	0.000
1.2667 0.019 0.017 0.306 0.000	1.2667	0.019	0.017	0.306	0.000
1.3333 0.019 0.018 0.314 0.000	1.3333	0.019	0.018	0.314	0.000
1.4000 0.019 0.019 0.322 0.000	1.4000	0.019	0.019	0.322	0.000
1.4667 0.020 0.021 0.330 0.000	1.4667	0.020	0.021	0.330	0.000
1.5333 0.020 0.022 0.337 0.000	1.5333	0.020	0.022	0.337	0.000
1.6000 0.020 0.023 0.344 0.000	1.6000	0.020	0.023	0.344	0.000
1.6667 0.021 0.025 0.352 0.000	1.0007	0.021	0.025	0.352	0.000
1.7333 U.U21 U.U26 U.359 U.UUU	1.7333	0.021	0.026	0.359	0.000
	1.8000	0.021	0.028	0.305	0.000
1.0007 0.021 0.029 0.372 0.000	1.0007	0.021	0.029	0.372	0.000
1.9555 0.022 0.050 0.579 0.000	1.9333	0.022	0.030	0.379	0.000
2.0000 0.022 0.032 0.303 0.000	2.0000	0.022	0.032	0.300	0.000
2.0007 0.022 0.035 0.392 0.000	2.0007	0.022	0.035	0.392	0.000
2.1335 0.022 0.035 0.396 0.000	2.1333	0.022	0.035	0.390	0.000
2.2000 0.022 0.030 0.404 0.000	2.2000	0.022	0.030	0.404	0.000
2.2007 0.022 0.030 0.410 0.000	2.2007	0.022	0.030	0.410	0.000
2 4000 0.023 0.039 0.410 0.000 2 4000 0.023 0.041 0.422 0.000	2.0000	0.023	0.033	0.410	0.000
2 4667 0 023 0 041 0.422 0.000	2.4667	0.023	0.041	0.428	0.000
2 5333 0 023 0 044 0 434 0 000	2.7007	0.023	0.040	0.420	0.000
2.6000 0.023 0.046 0.439 0.000	2.6000	0.023	0.046	0.439	0.000

2.6667	0.023	0.047	0.445	0.000
2.8000	0.023	0.049	0.456	0.000
2.8667	0.023	0.052	0.461	0.000
2.9333	0.023	0.053	0.467	0.000
3.0000	0.023	0.055	0.472	0.000
3.0667	0.023	0.057	0.477	0.000
3 2000	0.023	0.058	0.402	0.000
3.2667	0.023	0.061	0.492	0.000
3.3333	0.023	0.063	0.497	0.000
3.4000	0.023	0.064	0.502	0.000
3.4667	0.023	0.066	0.507	0.000
3.5333	0.023	0.068	0.512	0.000
3.6667	0.023	0.009	0.517	0.000
3.7333	0.022	0.072	0.526	0.000
3.8000	0.022	0.074	0.531	0.000
3.8667	0.022	0.075	0.536	0.000
3.9333	0.022	0.077	0.540	0.000
4.0000	0.022	0.078	0.545	0.000
4 1333	0.022	0.000	0.549	0.000
4.2000	0.021	0.083	0.558	0.000
4.2667	0.021	0.084	0.563	0.000
4.3333	0.021	0.085	0.567	0.000
4.4000	0.020	0.087	0.572	0.000
4.4007	0.020	0.088	0.570	0.000
4.6000	0.019	0.091	0.584	0.000
4.6667	0.019	0.092	0.589	0.000
4.7333	0.019	0.093	0.593	0.000
4.8000	0.018	0.095	0.597	0.000
4.0007	0.018	0.090	0.605	0.000
5.0000	0.017	0.098	0.609	0.000
5.0667	0.017	0.100	0.978	0.000
5.1333	0.016	0.101	1.648	0.000
5.2000	0.016	0.102	2.508	0.000
5.2007 5.3333	0.015	0.103	3.500 4.609	0.000
5.4000	0.014	0.105	5.768	0.000
5.4667	0.013	0.106	6.945	0.000
5.5333	0.012	0.107	8.097	0.000
5.6000	0.011	0.107	9.185	0.000
5.0007 5.7333	0.010	0.100	10.17	0.000
5.8000	0.003	0.109	11.74	0.000
5.8667	0.006	0.110	12.31	0.000
5.9333	0.004	0.110	12.76	0.000
6.0000	0.000	0.111	13.13	0.000
0.0007	0.000	0.000	13.68	0.000

Mitigated Routing

Tank 1		
Dimensions		
Depth:	6 ft.	
Tank Type:	Circular	
Diameter:	6 ft.	
Length:	171 ft.	
Discharge Structure		
Riser Height:	5 ft.	
Riser Diameter:	24 in.	
Orifice 1 Diameter:	3.17 in.	Elevation:0 ft.
Element Flows To:		
Outlet 1	Outlet 2	

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0667	0.004	0.000	0.070	0.000
0.1333	0.006	0.000	0.099	0.000
0.2000	0.008	0.001	0.122	0.000
0.2007	0.009	0.001	0.140	0.000
0.3333	0.010	0.002	0.157	0.000
0.4000	0.017	0.003	0.172	0.000
0.4007	0.012	0.004	0.100	0.000
0.6000	0.014	0.005	0.100	0.000
0.6667	0.014	0.006	0.222	0.000
0.7333	0.015	0.007	0.233	0.000
0.8000	0.016	0.008	0.243	0.000
0.8667	0.016	0.009	0.253	0.000
0.9333	0.017	0.011	0.263	0.000
1.0000	0.017	0.012	0.272	0.000
1.0667	0.018	0.013	0.281	0.000
1.1333	0.018	0.014	0.290	0.000
1.2000	0.018	0.015	0.298	0.000
1.2667	0.019	0.017	0.306	0.000
1.3333	0.019	0.018	0.314	0.000
1.4000	0.019	0.019	0.322	0.000
1.4007	0.020	0.021	0.330	0.000
1.5333	0.020	0.022	0.337	0.000
1.0000	0.020	0.025	0.344	0.000
1.0007	0.021	0.025	0.352	0.000
1 8000	0.021	0.020	0.355	0.000
1.8667	0.021	0.020	0.372	0.000
1.9333	0.022	0.030	0.379	0.000
2.0000	0.022	0.032	0.385	0.000
2.0667	0.022	0.033	0.392	0.000
2.1333	0.022	0.035	0.398	0.000
2.2000	0.022	0.036	0.404	0.000
2.2667	0.022	0.038	0.410	0.000
2.3333	0.023	0.039	0.416	0.000
2.4000	0.023	0.041	0.422	0.000
2.4667	0.023	0.043	0.428	0.000

2.5333	0.023	0.044	0.434	0.000
2.6000	0.023	0.046	0.439	0.000
2.0007	0.023	0.047	0.445	0.000
2 8000	0.023	0.040	0.456	0.000
2.8667	0.023	0.052	0.461	0.000
2.9333	0.023	0.053	0.467	0.000
3.0000	0.023	0.055	0.472	0.000
3.0667	0.023	0.057	0.477	0.000
3.1333	0.023	0.058	0.482	0.000
3.2000	0.023	0.060	0.487	0.000
3.2667	0.023	0.061	0.492	0.000
3.3333	0.023	0.063	0.497	0.000
3.4000	0.023	0.064	0.502	0.000
3.4007	0.023	0.000	0.507	0.000
3,6000	0.023	0.000	0.512	0.000
3 6667	0.023	0.000	0.522	0.000
3.7333	0.022	0.072	0.526	0.000
3.8000	0.022	0.074	0.531	0.000
3.8667	0.022	0.075	0.536	0.000
3.9333	0.022	0.077	0.540	0.000
4.0000	0.022	0.078	0.545	0.000
4.0667	0.022	0.080	0.549	0.000
4.1333	0.021	0.081	0.554	0.000
4.2000	0.021	0.083	0.558	0.000
4.2007	0.021	0.004	0.505	0.000
4.3333	0.021	0.005	0.507	0.000
4.4667	0.020	0.088	0.576	0.000
4.5333	0.020	0.090	0.580	0.000
4.6000	0.019	0.091	0.584	0.000
4.6667	0.019	0.092	0.589	0.000
4.7333	0.019	0.093	0.593	0.000
4.8000	0.018	0.095	0.597	0.000
4.8667	0.018	0.096	0.601	0.000
4.9333	0.018	0.097	0.000	0.000
5.0000	0.017	0.098	0.009	0.000
5 1333	0.017	0.100	1 648	0.000
5.2000	0.016	0.102	2.508	0.000
5.2667	0.015	0.103	3.508	0.000
5.3333	0.014	0.104	4.609	0.000
5.4000	0.014	0.105	5.768	0.000
5.4667	0.013	0.106	6.945	0.000
5.5333	0.012	0.107	8.097	0.000
5.6000	0.011	0.107	9.185	0.000
5.6667	0.010	0.108	10.17	0.000
5.7333	0.009	0.109	11.03	0.000
5 8667	0.008	0.109	12 31	0.000
5.9333	0.004	0.110	12.01	0.000
6.0000	0.000	0.111	13.13	0.000
6.0667	0.000	0.000	13.68	0.000

Trapezoidal Pond 1

Bottom Length:	24.00 ft.
Bottom Width:	24.00 ft.
Depth:	8 ft.
Volume at riser head:	0.1096 acre-feet.
Side slope 1:	0.292 To 1
Side slope 2:	0.292 To 1
Side slope 3:	0.292 To 1
Side slope 4:	0.292 To 1
Discharge Structure	
Riser Height:	7 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	5.75 in. Elevation:0 ft.
Orifice 2 Diameter:	1 in. Elevation:6.5 ft.
Element Flows To:	
Outlet 1	Outlet 2

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.013	0.000	0.000	0.000
0.0889	0.013	0.001	0.267	0.000
0.1778	0.013	0.002	0.378	0.000
0.2667	0.013	0.003	0.463	0.000
0.3556	0.013	0.004	0.535	0.000
0.4444	0.013	0.005	0.598	0.000
0.5333	0.013	0.007	0.655	0.000
0.6222	0.013	0.008	0.707	0.000
0.7111	0.013	0.009	0.756	0.000
0.8000	0.013	0.010	0.802	0.000
0.8889	0.013	0.012	0.845	0.000
0.9778	0.013	0.013	0.887	0.000
1.0667	0.013	0.014	0.926	0.000
1.1556	0.014	0.015	0.964	0.000
1.2444	0.014	0.017	1.000	0.000
1.3333	0.014	0.018	1.036	0.000
1.4222	0.014	0.019	1.070	0.000
1.5111	0.014	0.020	1.102	0.000
1.6000	0.014	0.022	1.134	0.000
1.6889	0.014	0.023	1.166	0.000
1.///8	0.014	0.024	1.196	0.000
1.8667	0.014	0.025	1.225	0.000
1.9556	0.014	0.027	1.254	0.000
2.0444	0.014	0.028	1.282	0.000
2.1333	0.014	0.029	1.310	0.000
2.2222	0.014	0.031	1.337	0.000
2.3111	0.014	0.032	1.364	0.000
2.4000	0.014	0.033	1.390	0.000
2.4889	0.014	0.034	1.415	0.000
2.5778	0.014	0.036	1.440	0.000
2.6667	0.015	0.037	1.465	0.000
2.7556	0.015	0.038	1.489	0.000
2.8444	0.015	0.040	1.513	0.000
2.9333	0.015	0.041	1.536	0.000
3.0222	0.015	0.043	1.559	0.000
3.1111	0.015	0.044	1.582	0.000

3.2000	0.015	0.045	1.605	$0.000 \\ 0.000 \\ 0.000$
3.2889	0.015	0.047	1.627	
3.3778	0.015	0.048	1.649	
3.4667	0.015	0.049	1.670	0.000
3.5556	0.015	0.051	1.691	
3.0444 3.7333 3.8222	0.015 0.015 0.015	0.052 0.054 0.055	1.733 1.754	0.000
3.9111	0.015	0.056	1.774	0.000
4.0000	0.015	0.058	1.794	
4.0889	0.016	0.059	1.814	$0.000 \\ 0.000$
4.1778	0.016	0.061	1.833	
4.2667	0.016	0.062	1.853	0.000
4.3556	0.016	0.063	1.872	0.000
4.4444 4.5333	0.016 0.016	0.065	1.891 1.910	0.000
4.0222 4.7111 4.8000	0.016	0.068	1.920 1.947 1.965	0.000
4.8889	0.016 0.016	0.072	1.983	0.000
5.0667	0.016	0.075	2.019	0.000
5.1556	0.016	0.077	2.037	0.000
5.2444	0.016	0.078	2.054	0.000
5.3333	0.016	0.080	2.072	0.000
5.4222	0.016	0.081	2.089	0.000
5.5111	0.017	0.083	2.106	0.000
5.6889 5.7778	0.017	0.084 0.086 0.087	2.123 2.140 2.156	0.000
5.8667 5.9556	0.017 0.017 0.017	0.089 0.090	2.173 2.189	0.000
6.0444	0.017	0.092	2.205	0.000
6.1333	0.017	0.093	2.222	0.000
6.2222	0.017	0.095	2.238	0.000
6.3111	0.017	0.096	2.254	0.000
6.4889 6.5778	0.017 0.017 0.017	0.098 0.100 0.101	2.269 2.285 2.308	0.000
6.6667 6.7556	0.017 0.017 0.017	0.103 0.104	2.327 2.345	0.000
6.8444	0.018	0.106	2.363	$0.000 \\ 0.000$
6.9333	0.018	0.108	2.380	
7.0222	0.018	0.109	2.467	0.000
7.1111	0.018	0.111	3.198	0.000
7.2000	0.018	0.112	4.316	0.000
7.2889	0.018	0.114	5.685	
7.3778	0.018	0.116	7.207	
7.4667 7.5556	0.018 0.018	0.117 0.117 0.119	8.785 10.32	0.000 0.000
7.6444	0.018	0.121	11.71	0.000
7.7333	0.018	0.122	12.90	0.000
7.8222	0.018	0.124	13.83	0.000
7.9111	0.018	0.126	14.51	0.000
8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.34 Total Impervious Area: 0.81

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.4167965 year0.56731610 year0.67789525 year0.83055250 year0.954007

1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.416796
5 year	0.567316
10 year	0.677895
25 year	0.830552
50 year	0.954007
100 year	1.086099
-	

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

leal	Freuevelopeu	wiitiyat
1949	0.612	0.612
1950	0.594	0.594
1951	0.375	0.375
1952	0.249	0.249
1953	0.279	0.279
1954	0.341	0.341
1955	0.379	0.379
1956	0.346	0.346
1957	0.439	0.439
1958	0.321	0.321

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	0.300 0.393 0.348 0.274 0.376 0.324 0.459 0.282 0.596 0.613 0.414 0.386 0.470 0.559 0.243 0.459 0.556 0.338 0.425	$\begin{array}{c} 0.300\\ 0.393\\ 0.348\\ 0.274\\ 0.376\\ 0.324\\ 0.459\\ 0.282\\ 0.596\\ 0.613\\ 0.414\\ 0.386\\ 0.470\\ 0.559\\ 0.243\\ 0.459\\ 0.243\\ 0.459\\ 0.243\\ 0.459\\ 0.356\\ 0.338\\ 0.425\\ 0.510\end{array}$
1979	0.518	0.518
1980	0.717	0.717
1981	0.403	0.403
1982	0.637	0.637
1983	0.436	0.436
1984	0.289	0.289
1985	0.394	0.394
1986	0.366	0.366
1987	0.487	0.487
1988	0.277	0.277
1989	0.423	0.423
1990	1.046	1.046
1991	0.764	0.764
1992	0.309	0.309
1993	0.288	0.288
1994	0.258	0.258
1995	0.356	0.356
1996	0.561	0.561
1997	0.430	0.430
1998	0.377	0.377
1999	0.920	0.920
2000	0.410	0.410
2001	0.408	0.408
2002	0.554	0.554
2003	0.525	0.555
2003	0.325	0.323
2004	0.856	0.856
2005	0.352	0.352
2006	0.349	0.349
2007	0.987	0.987
2008	0.711	0.711
2009	0.468	0.468

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredeveloped Mitigated11.045820.98670.9867

~	0.3007	0.3007
3	0.9201	0.9201

4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 20 21 22 32 4 5 6 7 8 9 30 31 23 33 4 5 6 37 8 9 0 11 12 34 5 6 7 8 9 20 12 23 22 22 22 22 22 22 22 22 22 22 22 22	0.8561 0.7635 0.7165 0.7114 0.6369 0.6132 0.6116 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4696 0.4685 0.4595 0.4595 0.4590 0.4494 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.3933 0.3861 0.3767 0.3759 0.3748 0.3662 0.3559 0.3559 0.3525 0.3487 0.3483 0.3461 0.3406 0.3377 0.3242	0.8561 0.7635 0.7165 0.7114 0.6369 0.6132 0.6132 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4695 0.4595 0.4595 0.4590 0.4494 0.4394 0.4358 0.4304 0.4251 0.4234 0.4141 0.4077 0.4025 0.3944 0.3933 0.3861 0.3767 0.3759 0.3748 0.3662 0.3559 0.3525 0.3487 0.3483 0.3461 0.3406 0.3377 0.3242
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	0.3461 0.3406 0.3377 0.3242 0.3207 0.3093 0.3002 0.2886 0.2876 0.2824 0.2786 0.2767 0.2740 0.2740 0.2579 0.2488 0.2429	0.3461 0.3406 0.3377 0.3242 0.3207 0.3093 0.3002 0.2886 0.2876 0.2824 0.2786 0.2767 0.2740 0.2579 0.2488 0.2429

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.2084	1243	1243	100	Pass
0.2159	1126	1126	100	Pass
0.2235	985	985	100	Pass
0.2310	885	885	100	Pass
0.2385	786	786	100	Pass
0.2461	697	697	100	Pass
0.2536	625	625	100	Pass
0.2611	571	571	100	Pass
0.2686	515	515	100	Pass
0.2762	474	474	100	Pass
0.2837	443	443	100	Pass
0.2912	403	403	100	Pass
0.2988	379	379	100	Pass
0.3063	352	352	100	Pass
0.3138	321	321	100	Pass
0.3214	297	297	100	Pass
0.3289	274	274	100	Pass
0.3364	250	250	100	Pass
0.3440	229	229	100	Pass
0.3515	210	210	100	Pass
0.3590	190	190	100	Pass
0.3666	182	182	100	Pass
0.3741	172	172	100	Pass
0.3816	162	162	100	Pass
0.3892	148	148	100	Pass
0.3967	137	137	100	Pass
0.4042	124	124	100	Pass
0.4117	116	116	100	Pass
0.4193	110	110	100	Pass
0.4268	103	103	100	Pass
0.4343	100	100	100	Pass
0.4419	94	94	100	Pass
0.4494	93	93	100	Pass
0.4569	92	92	100	Pass
0.4645	87	87	100	Pass
0.4720	79	79	100	Pass
0.4795	/3	73	100	Pass
0.4871	67	67	100	Pass
0.4946	6U 50	6U 50	100	Pass
0.5021	50 55	50 55	100	Pass
0.5097	55	55	100	Pass
0.5172	24 40	54 40	100	Pass
0.5247	40	40	100	Pass
0.5322	40	40	100	Pass
0.0090	44	44 12	100	Pass
0.5475	43	43	100	Pass Dass
0.0040	+ <u>-</u> 35	+ <u>-</u> 25	100	Pase
0.5024	33	33	100	1 000 Dace
0.5033	30	30	100	n ass Dace
0.5850	29	29	100	Pass
0.5925	28	28	100	Pass
0.6000	26	26	100	Pass

0.6076	24	24	100	Pass
0.6151	22	22	100	Pass
0.6226	22	22	100	Pass
0.6302	20	20	100	Pass
0.6377	19	19	100	Pass
0.6452	19	19	100	Pass
0.6528	19	19	100	Pass
0.6603	19	19	100	Pass
0.6678	19	19	100	Pass
0.6753	17	17	100	Pass
0.6829	17	17	100	Pass
0.6904	16	16	100	Pass
0.6979	15	15	100	Pass
0.7055	15	15	100	Pass
0.7130	13	13	100	Pass
0.7205	12	12	100	Pass
0.7261	12	12	100	Pass
0.7300	11	11	100	Pass
0.7431	10	10	100	Pass
0.7507	10	10	100	Pass Dass
0.7562	8	2 8	100	Pass
0.7037	8	8	100	Pass
0.7808	8	8	100	Pass
0.7883	8	8	100	Pass
0 7958	7	7	100	Pass
0.8034	7	7	100	Pass
0.8109	7	7	100	Pass
0.8184	7	7	100	Pass
0.8260	6	6	100	Pass
0.8335	5	5	100	Pass
0.8410	5	5	100	Pass
0.8486	5	5	100	Pass
0.8561	5	5	100	Pass
0.8636	3	3	100	Pass
0.8712	3	3	100	Pass
0.8787	3	3	100	Pass
0.8862	3	3	100	Pass
0.8938	3	3	100	Pass
0.9013	3	3	100	Pass
0.9088	3	3	100	Pass
0.9163	3	3	100	Pass
0.9239	2	2	100	Pass
0.9314	2	∠ 2	100	Pass
0.9309	2	2 2	100	Pass
0.9400	2	2 2	100	Pass
0.3340	~	4	100	rass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

	FIUW(CIS
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

	1100(013)
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

leal	Freuevelopeu	wiitiyat
1949	0.378	0.378
1950	0.399	0.399
1951	0.247	0.247
1952	0.164	0.164
1953	0.189	0.189
1954	0.231	0.231
1955	0.249	0.249
1956	0.246	0.246
1957	0.270	0.270
1958	0.210	0.210
1959	0.210	0.210

1960	0.247	0.247
1961	0.224	0.224
1962	0.181	0.181
1963	0.243	0.243
1964	0.224	0.224
1965	0.285	0.285
1966 1967 1968	0.186 0.405 0.403	0.186 0.405
1969	0.254	0.254
1970	0.247	0.247
1971	0.300	0.300
1972	0.366	0.366
1973 1974 1975	0.169 0.290 0.275	0.169 0.290
1975 1976 1977	0.229	0.229
1978	0.287	0.287
1979	0.355	0.355
1980	0.452	0.452
1981	0.256	0.256
1982	0.387	0.287
1982	0.387	0.387
1983	0.287	0.287
1984	0.193	0.193
1985	0.248	0.248
1986	0.230	0.230
1987	0.322	0.322
1988	0.195	0.195
1989	0.308	0.308
1990	0.703	0.703
1991	0.489	0.489
1992	0.201	0.201
1993	0.213	0.213
1994	0.187	0.187
1995	0.229	0.229
1996	0.395	0.395
1997	0.278	0.278
1998	0.246	0.246
1999	0.574	0.574
2000	0.258	0.258
2001	0.270	0.270
2001 2002 2003	0.279 0.333 0.340	0.333 0.340
2004	0.543	0.543
2005	0.216	0.216
2006	0.226	0.226
2007	0.692	0.692
2008	0.460	0.460
2009	0.331	0.331

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 **Rank** Predeveloped Mitigated 1 0 7030 0 7030

0.7030
0.6916
0.5737
0.5428

5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 3 24 25 26	0.4887 0.4598 0.4521 0.4053 0.4035 0.3990 0.3949 0.3871 0.3783 0.3659 0.3551 0.3400 0.3219 0.3085 0.3004 0.2896 0.2871 0.2870 0.2849 0.2793	0.4887 0.4598 0.4521 0.4053 0.3990 0.3949 0.3783 0.3659 0.3551 0.3400 0.3219 0.3085 0.3004 0.2896 0.2871 0.2870 0.2849 0.2793
20 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	0.2793 0.2780 0.2749 0.2705 0.2578 0.2561 0.2541 0.2487 0.2476 0.2472 0.2469 0.2464 0.2464 0.2458 0.2427 0.2312 0.2302 0.2294 0.2294 0.2290 0.2259 0.2245 0.2235 0.2198 0.2159	0.2793 0.2780 0.2749 0.2705 0.2561 0.2541 0.2472 0.2476 0.2472 0.2469 0.2464 0.2464 0.2458 0.2427 0.2312 0.2302 0.2294 0.2290 0.2259 0.2245 0.2235 0.2198 0.2159
50 51 52 53 54 55 56 57 58 59 60 61	0.2133 0.2102 0.2098 0.2005 0.1951 0.1926 0.1893 0.1867 0.1864 0.1806 0.1694 0.1636	0.2133 0.2102 0.2098 0.2005 0.1951 0.1926 0.1893 0.1867 0.1864 0.1806 0.1694 0.1636

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.1361	1238	1238	100	Pass
0.1411	1100	1100	100	Pass
0.1460	992	992	100	Pass
0.1509	887	887	100	Pass
0.1558	786	786	100	Pass
0.1607	701	701	100	Pass
0.1656	622	622	100	Pass
0.1705	557	557	100	Pass
0.1755	512	512	100	Pass
0.1804	471	471	100	Pass
0.1853	442	442	100	Pass
0.1902	409	409	100	Pass
0.1951	377	377	100	Pass
0.2000	347	347	100	Pass
0.2050	319	319	100	Pass
0.2099	293	293	100	Pass
0.2148	266	266	100	Pass
0.2197	246	246	100	Pass
0.2246	221	221	100	Pass
0.2295	202	202	100	Pass
0.2344	185	185	100	Pass
0.2394	174	174	100	Pass
0.2443	161	161	100	Pass
0.2492	146	146	100	Pass
0.2541	140	140	100	Pass
0.2590	131	131	100	Pass
0.2639	125	125	100	Pass
0.2689	117	117	100	Pass
0.2738	111	111	100	Pass
0.2787	103	103	100	Pass
0.2836	99	99	100	Pass
0.2885	91	91	100	Pass
0.2934	85	85	100	Pass
0.2983	80	80	100	Pass
0.3033	73	73	100	Pass
0.3082	69	69	100	Pass
0.3131	65	65	100	Pass
0.3180	63	63	100	Pass
0.3229	58	58	100	Pass
0.3278	56	56	100	Pass
0.3328	51	51	100	Pass
0.3377	49	49	100	Pass
0.3426	46	46	100	Pass
0.3475	42	42	100	Pass
0.3524	39	39	100	Pass
0.3573	36	36	100	Pass
0.3622	34	34	100	Pass
0.3672	31	31	100	Pass
0.3721	30	30	100	Pass
0.3770	30	30	100	Pass
0.3819	29	29	100	Pass
0.3868	27	27	100	Pass
0.3917	24	24	100	Pass

0.3966	23	23	100	Pass
0.4016	22	22	100	Pass
0.4065	20	20	100	Pass
0.4114	19	19	100	Pass
0.4163	19	19	100	Pass
0.4212	19	19	100	Pass
0.4261	19	19	100	Pass
0.4311	18	18	100	Pass
0.4360	16	16	100	Pass
0.4409	15	15	100	Pass
0.4458	15	15	100	Pass
0.4507	14	14	100	Pass
0.4556	12	12	100	Pass
0.4605	11	11	100	Pass
0.4655	10	10	100	Pass
0.4704	10	10	100	Pass
0.4753	10	10	100	Pass
0.4802	10	10	100	Pass
0.4851	10	10	100	Pass
0.4900	9	9	100	Pass
0.4950	0	0	100	Pass
0.4999	0 8	O Q	100	Pass Dass
0.5048	С 8	0 8	100	Pass
0.5037	8	8	100	Pass
0.5195	7	7	100	Pass
0.5733	7	7	100	Pass
0.5294	6	6	100	Pass
0.5343	õ	õ	100	Pass
0.5392	õ	õ	100	Pass
0.5441	5	5	100	Pass
0.5490	5	5	100	Pass
0.5539	5	5	100	Pass
0.5588	5	5	100	Pass
0.5638	5	5	100	Pass
0.5687	5	5	100	Pass
0.5736	5	5	100	Pass
0.5785	3	3	100	Pass
0.5834	3	3	100	Pass
0.5883	3	3	100	Pass
0.5933	3	3	100	Pass
0.5982	3	3	100	Pass
0.6031	3	3	100	Pass
0.6080	2	2	100	Pass
0.6129	2	2	100	Pass
0.6178	2	2	100	Pass
0.6227	2	2	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 3

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	2.378656
5 year	3.418804
10 year	4.165974
25 year	5.17525
50 year	5.974148
100 year	6.813226

 Flow Frequency Return Periods for Mitigated. POC #3

 Return Period
 Flow(cfs)

 2 year
 2.378656

 5 year
 3.418804

 10 year
 4.165974

 25 year
 5.17525

 50 year
 5.974148

 100 year
 6.813226

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

IVUI	110001010000	minga
1949	3.131	3.131
1950	3.894	3.894
1951	2.572	2.572
1952	1.864	1.864
1953	2.249	2.249
1954	1.528	1.528
1955	2.461	2.461
1956	2.259	2.259
1957	2.802	2.802
1958	1.530	1.530
1959	1.671	1.671
1960	2.456	2.456
------	----------------	----------------
1961	2.385	2.385
1963	1 485	1 485
1964	1.466	1 866
1965	2.361	2.361
1966	1.958	1.958
1967	3.927	3.927
1968	2.625	2.625
1969	2.214	2.214
1970	1.901	1.901
1971	2.212	2.212
1972	3.043	3.043
1973	1.768	1.768
1974	1.613	1.613
1975	2.801	2.801
1970		1.020
1977	1.047	1.047
1979	2.731	2.751
1980	2.564	2.564
1981	2.886	2.886
1982	4.085	4.085
1983	3.389	3.389
1984	1.441	1.441
1985	2.812	2.812
1986	2.374	2.374
1987	2.605	2.605
1988	2.198	2.198
1909	6 720	6 720
1990	4 633	4 633
1992	2 016	2 016
1993	0.882	0.882
1994	1.011	1.011
1995	2.236	2.236
1996	3.582	3.582
1997	2.845	2.845
1998	1.757	1.757
1999	5.697	5.697
2000	2.598	2.598
2001	2.076	2.076
2002	3.439 1 3/3	3.439 1 343
2003	5 407	5 407
2005	2,319	2,319
2006	2.196	2.196
2007	6.481	6.481
2008	4.449	4.449
2009	3.114	3.114

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 Rank Predeveloped Mitigated

1	6.7202	6.7202
2	6.4813	6.4813
3	5.6972	5.6972
4	5.4074	5.4074

5	4.6332	4.6332
6	4.4492	4.4492
7	4.0852	4.0852
8	3.9267	3.9267
9	3.8940	3.8940
10	3.5825	3.5825
11	3.4391	3.4391
12 13 14 15 16 17 18 19 20 21 22	3.3887 3.1314 3.0427 2.8861 2.8452 2.8120 2.8020 2.8006 2.7309 2.6254	3.3887 3.1314 3.0427 2.8861 2.8452 2.8120 2.8020 2.8006 2.7309 2.6254
23	2.6052	2.6052
24	2.5982	2.5982
25	2.5724	2.5724
26	2.5640	2.5640
27	2.4852	2.4852
28	2.4609	2.4609
29	2.4561	2.4561
30	2.3851	2.3851
31	2.3739	2.3739
32	2.3613	2.3613
33	2.3189	2.3189
34	2.2595	2.2595
35	2.2488	2.2488
36	2.2364	2.2364
37	2.2140	2.2140
38	2.2115	2.2115
39	2.1977	2.1977
40	2.1956	2.1956
41	2.0760	2.0760
42	2.0161	2.0161
43	1.9577	1.9577
44	1.9013	1.9013
45 46 47 48 49 50 51 52 53 53 54 55	1.8659 1.8640 1.8468 1.7676 1.7570 1.6711 1.6247 1.6125 1.5303 1.5283 1.4848	1.8659 1.8640 1.8468 1.7676 1.7570 1.6711 1.6247 1.6125 1.5303 1.5283 1.4848
56	1.4407	1.4407
57	1.3557	1.3557
58	1.3432	1.3432
59	1.2356	1.2356
60	1.0109	1.0109
61	0.8821	0.8821

Duration Flows

The Facility PASSED

1.180312201220100Pass1.286010291029100Pass1.3343923923100Pass1.3847838838100Pass1.4310763763100Pass1.4793709709100Pass1.5766635635100Pass1.5766590590100Pass1.5766502502100Pass1.6243553553100Pass1.7210470470100Pass1.7693437437100Pass1.7693437437100Pass1.8660375375100Pass2.0110287287100Pass2.1076254254100Pass2.1076254254100Pass2.3010189189100Pass2.3976157157100Pass2.3976157157100Pass2.4943131131100Pass2.5426123123100Pass2.5426123123100Pass2.5426123123100Pass2.5426123123100Pass2.5426123123100Pass2.5426123123100Pass2.5426123123100Pas	Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
1.2377 1117 1117 100 Pass 1.2860 1029 1029 100 Pass 1.3343 923 923 100 Pass 1.3827 838 838 100 Pass 1.4793 709 709 100 Pass 1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5276 635 635 100 Pass 1.5276 502 502 100 Pass 1.6243 553 553 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 2.0593 274 274 100 Pass 2.0102 287 287 100 Pass 2.0102 222 222 100 Pass 2.1076 254 254 100 Pass 2.3010 189 198 100 Pass 2.3976 157 157 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass	1.1893	1220	1220	100	Pass
1.2860 1029 1029 100 Pass 1.3343 923 923 100 Pass 1.3347 838 838 100 Pass 1.4310 763 763 100 Pass 1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5760 590 590 100 Pass 1.6243 553 553 100 Pass 1.6726 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 254 100 Pass 2.3010 189 189 100 Pass 2.3976 157 157 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.5909 117 117 100 Pass 2.7359 102 102 100 Pass 2.7359 102 102 100 Pass 2.7359 102 102 100 Pass 2	1.2377	1117	1117	100	Pass
1.3343 923 923 100 Pass 1.3827 838 838 100 Pass 1.4310 763 763 100 Pass 1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5760 590 590 100 Pass 1.6243 553 553 100 Pass 1.6745 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 2.0593 274 274 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.3010 189 189 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.5426 123 123 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.7843 </td <td>1.2860</td> <td>1029</td> <td>1029</td> <td>100</td> <td>Pass</td>	1.2860	1029	1029	100	Pass
1.3827 838 838 100 Pass 1.4793 703 763 100 Pass 1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5276 635 635 100 Pass 1.6243 553 553 100 Pass 1.6726 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8176 405 405 100 Pass 1.9626 306 306 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 254 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3976 157 157 100 Pass 2.5426 123 123 100 Pass 2.5426 123 123 100 Pass 2.7843 96 96 100 Pass 2.7843 <td>1.3343</td> <td>923</td> <td>923</td> <td>100</td> <td>Pass</td>	1.3343	923	923	100	Pass
1.4310 763 763 100 Pass 1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5760 590 590 100 Pass 1.6726 502 502 100 Pass 1.6726 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3976 157 157 100 Pass 2.3976 157 157 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.7843 96 96 100 Pass 2.7843 76 77 77 70 100 2.8809 87 87 100 Pass	1.3827	838	838	100	Pass
1.4793 709 709 100 Pass 1.5276 635 635 100 Pass 1.5760 590 590 100 Pass 1.6243 553 553 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 254 100 Pass 2.3010 189 198 100 Pass 2.3010 189 189 100 Pass 2.3010 189 189 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9976 79 79 100 Pass 3.1709 </td <td>1.4310</td> <td>763</td> <td>763</td> <td>100</td> <td>Pass</td>	1.4310	763	763	100	Pass
1.5276 635 635 100 Pass 1.5760 590 590 100 Pass 1.6243 553 553 100 Pass 1.6726 502 502 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9626 306 306 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 2254 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3976 157 157 100 Pass 2.3493 177 177 100 Pass 2.4459 140 140 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9776 79 79 100 Pass 3.1709 <	1.4793	709	709	100	Pass
1.5760 590 590 100 Pass 1.62243 553 553 100 Pass 1.6726 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.4459 140 140 100 Pass 2.5426 123 123 100 Pass 2.5999 117 117 100 Pass 2.6393 113 113 100 Pass 2.7359 102 102 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.1226 61 61 100 Pass 3.2676 <	1.5276	635	635	100	Pass
1.6243 553 553 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.7693 437 437 100 Pass 1.8660 375 375 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 1.9626 306 306 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2526 198 198 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.1709 77 77 100 Pass 3.1226 61 61 61 100 Pass $3.$	1.5760	590	590	100	Pass
1.6726 502 502 100 Pass 1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3393 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 3.1709 57 57 100 Pass 3.1709 <	1.6243	553	553	100	Pass
1.7210 470 470 100 Pass 1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.943 333 333 100 Pass 2.0593 274 287 100 Pass 2.0593 274 274 100 Pass 2.0593 274 274 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.2262 198 198 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3976 157 157 100 Pass 2.3493 177 177 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.6876 106 106 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.1709 57 57 100 Pass 3.1709 57 57 100 Pass 3.1426	1.6726	502	502	100	Pass
1.7693 437 437 100 Pass 1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 224 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.3493 177 177 100 Pass 2.3493 117 117 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6876 106 100 Pass 2.7843 96 96 100 Pass 2.8209 87 87 100 Pass 2.8209 87 87 100 Pass 2.9293 81 81 100 Pass 3.0743 70 70 100 Pass 3.1709 57 <t< td=""><td>1.7210</td><td>470</td><td>470</td><td>100</td><td>Pass</td></t<>	1.7210	470	470	100	Pass
1.8176 405 405 100 Pass 1.8660 375 375 100 Pass 1.9143 333 333 100 Pass 1.9626 306 306 100 Pass 2.0593 274 274 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 222 222 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.5909 117 117 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.8326 90 90 100 Pass 2.8809 87 87 100 Pass 2.9776 79 79 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.2676 51 51 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.142	1.7693	437	437	100	Pass
1.8660 375 375 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.3493 177 157 100 Pass 2.3493 177 177 100 Pass 2.44459 140 140 100 Pass 2.44459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 3.1709 57 57 100 Pass 3.1793 57 57 100 Pass 3.1793 57 57 100 Pass 3.12676 51 51 100 Pass 3.4126 <t< td=""><td>1.8176</td><td>405</td><td>405</td><td>100</td><td>Pass</td></t<>	1.8176	405	405	100	Pass
1.9143 333 333 100 Pass 1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1076 254 254 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.3493 177 177 100 Pass 2.44459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5426 123 123 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.1709 57 57 100 Pass 3.3159 <t< td=""><td>1.8660</td><td>375</td><td>375</td><td>100</td><td>Pass</td></t<>	1.8660	375	375	100	Pass
1.9626 306 306 100 Pass 2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.3493 177 157 100 Pass 2.3493 117 117 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.5426 123 123 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6393 112 102 100 Pass 2.7359 102 102 100 Pass 2.8809 87 87 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 3.1226 61 61 100 Pass 3.1226 51 51 100 Pass 3.1226 51 51 100 Pass 3.159 45 45 100 Pass 3.6642 4	1.9143	333	333	100	Pass
2.0110 287 287 100 Pass 2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3493 177 177 100 Pass 2.3493 177 177 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9233 81 81 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.1642 43 43 100 Pass 3.4609 38 38 100 Pass 3.66542 2	1.9626	306	306	100	Pass
2.0593 274 274 100 Pass 2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3493 177 177 100 Pass 2.3493 177 157 100 Pass 2.3493 177 157 100 Pass 2.3493 177 157 100 Pass 2.4943 131 131 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.1226 61 61 100 Pass 3.1226 61 61 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4609 38 38 100 Pass 3.66542 28 28 100 Pass 3.7026 26 <td>2.0110</td> <td>287</td> <td>287</td> <td>100</td> <td>Pass</td>	2.0110	287	287	100	Pass
2.1076 254 254 100 Pass 2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7843 96 96 100 Pass 2.826 90 90 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.2676 51 51 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.66542 28	2.0593	274	274	100	Pass
2.1560 238 238 100 Pass 2.2043 222 222 100 Pass 2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.6876 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.2676 51 51 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4409 38 38 100 Pass 3.6576 37 37 <	2.1076	254	254	100	Pass
2.2043 222 222 100 Pass 2.3010 189 198 100 Pass 2.3493 177 177 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6393 112 102 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.8326 90 90 100 Pass 2.8326 90 90 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 72 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2676 51 51 100 Pass 3.3642 43 43 100 Pass 3.4409 38 38 100 Pass 3.6576 <td>2.1560</td> <td>238</td> <td>238</td> <td>100</td> <td>Pass</td>	2.1560	238	238	100	Pass
2.2526 198 198 100 Pass 2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4609 38 38 100 Pass 3.576 37 37 100 Pass 3.66542 28 28 100 Pass 3.66542 28 <t< td=""><td>2.2043</td><td>222</td><td>222</td><td>100</td><td>Pass</td></t<>	2.2043	222	222	100	Pass
2.3010 189 189 100 Pass 2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 2.9776 79 79 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.2193 57 57 100 Pass 3.3642 43 43 100 Pass 3.4609 38 38 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 100 Pass 3.6542 28 28 100 Pass 3.6542 28 28 100 Pass 3.6542 28 2	2.2526	198	198	100	Pass
2.3493 177 177 100 Pass 2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6376 106 106 100 Pass 2.6876 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8809 87 87 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 2.9776 79 79 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1709 57 57 100 Pass 3.2193 57 57 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4126 40 40 100 Pass 3.5576 37 37 100 Pass 3.6659 30 30 100 Pass 3.6542 28 28 10	2.3010	189	189	100	Pass
2.3976 157 157 100 Pass 2.4459 140 140 100 Pass 2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 2.9776 79 79 100 Pass 3.0259 72 72 100 Pass 3.1226 61 61 100 Pass 3.1226 61 61 100 Pass 3.2193 57 57 100 Pass 3.2676 51 51 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.6542 28 28 100 Pass 3.6542 28 26 100 Pass	2.3493	1//	1//	100	Pass
2.4459140140100Pass 2.4943 131131100Pass 2.5426 123123100Pass 2.5909 117117100Pass 2.6393 113113100Pass 2.6393 113113100Pass 2.6376 106106100Pass 2.7359 102102100Pass 2.7843 9696100Pass 2.8326 9090100Pass 2.8809 8787100Pass 2.9293 8181100Pass 2.9776 7979100Pass 3.0259 7272100Pass 3.0743 7070100Pass 3.1226 6161100Pass 3.2193 5757100Pass 3.2676 5151100Pass 3.3642 4343100Pass 3.4126 4040100Pass 3.4126 4040100Pass 3.4609 3838100Pass 3.5576 3737100Pass 3.6542 2828100Pass 3.6542 2826100Pass	2.3976	157	157	100	Pass
2.4943 131 131 100 Pass 2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 1102 102 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.129 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 </td <td>2.4459</td> <td>140</td> <td>140</td> <td>100</td> <td>Pass</td>	2.4459	140	140	100	Pass
2.5426 123 123 100 Pass 2.5909 117 117 100 Pass 2.6393 113 113 100 Pass 2.6393 113 113 100 Pass 2.6876 106 106 100 Pass 2.7359 102 102 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 <td< td=""><td>2.4943</td><td>131</td><td>131</td><td>100</td><td>Pass</td></td<>	2.4943	131	131	100	Pass
2.5909117117100Pass2.6393113113100Pass2.6876106106100Pass2.7359102102100Pass2.78439696100Pass2.83269090100Pass2.88098787100Pass2.92938181100Pass2.92938181100Pass2.97767979100Pass3.02597272100Pass3.02597272100Pass3.12266161100Pass3.17095757100Pass3.21935757100Pass3.36424343100Pass3.41264040100Pass3.50923737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	2.5426	123	123	100	Pass
2.6393113113100Pass2.6876106106100Pass2.7359102102100Pass2.78439696100Pass2.83269090100Pass2.88098787100Pass2.92938181100Pass2.92938181100Pass2.92938181100Pass2.92937272100Pass3.02597272100Pass3.02597272100Pass3.07437070100Pass3.12266161100Pass3.17095757100Pass3.26765151100Pass3.36424343100Pass3.41264040100Pass3.46093838100Pass3.50923737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	2.5909	117	117	100	Pass
2.0876 106 100 100 $Pass$ 2.7359 102 102 100 $Pass$ 2.7843 96 96 100 $Pass$ 2.8326 90 90 100 $Pass$ 2.8326 90 90 100 $Pass$ 2.8809 87 87 100 $Pass$ 2.9293 81 81 100 $Pass$ 2.9293 81 81 100 $Pass$ 2.9776 79 79 100 $Pass$ 3.0259 72 72 100 $Pass$ 3.0743 70 70 100 $Pass$ 3.0743 70 70 100 $Pass$ 3.1226 61 61 100 $Pass$ 3.129 57 57 100 $Pass$ 3.2676 51 51 100 $Pass$ 3.3642 43 43 100 $Pass$ 3.4126 40 40 100 $Pass$ 3.4609 38 38 100 $Pass$ 3.5576 37 37 100 $Pass$ 3.6542 28 28 100 $Pass$ 3.6542 28 26 100 $Pass$	2.6393	113	113	100	Pass
2.7359 102 102 102 100 Pass 2.7843 96 96 100 Pass 2.8326 90 90 100 Pass 2.8809 87 87 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 2.9293 81 81 100 Pass 2.9776 79 79 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4409 38 38 100 Pass 3.5092 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.6542 28 26 100 Pass	2.0070	100	100	100	Pass
2.76439090100Pass2.83269090100Pass2.88098787100Pass2.92938181100Pass2.97767979100Pass3.02597272100Pass3.07437070100Pass3.12266161100Pass3.17095757100Pass3.21935757100Pass3.26765151100Pass3.36424343100Pass3.41264040100Pass3.46093838100Pass3.55763737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	2.7309	102	102	100	Pass
2.03209090100Pass2.88098787100Pass2.92938181100Pass2.97767979100Pass3.02597272100Pass3.07437070100Pass3.12266161100Pass3.17095757100Pass3.21935757100Pass3.26765151100Pass3.36424343100Pass3.41264040100Pass3.46093838100Pass3.55763737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	2.1040	90	90	100	Pass Dass
2.0009 07 07 100 Pass 2.9293 81 81 100 Pass 2.9776 79 79 100 Pass 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2193 57 57 100 Pass 3.2676 51 51 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	2.0320	90	90	100	Pass Dass
2.32930101100Pass2.97767979100Pass3.02597272100Pass3.07437070100Pass3.12266161100Pass3.17095757100Pass3.21935757100Pass3.26765151100Pass3.31594545100Pass3.36424343100Pass3.41264040100Pass3.50923737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	2.0009	07 81	07 Q1	100	rass Doce
2.3770 73 73 73 100 $1ass$ 3.0259 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2193 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	2.9293	70	70	100	Dass
3.0233 72 72 100 Pass 3.0743 70 70 100 Pass 3.1226 61 61 100 Pass 3.1709 57 57 100 Pass 3.2193 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	2.9770	79	79	100	Dass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0233	70	70	100	Dass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1226	61	61	100	Pass
3.2193 57 57 100 Pass 3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5092 37 37 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 1700	57	57	100	Pass
3.2676 51 51 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 2103	57	57	100	Pass
3.2070 31 31 100 Pass 3.3159 45 45 100 Pass 3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5092 37 37 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 2676	51	51	100	Pass
3.3642 43 43 100 Pass 3.4126 40 40 100 Pass 3.4609 38 38 100 Pass 3.5092 37 37 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 3150	45	45	100	Pass
3.41264040100Pass3.46093838100Pass3.50923737100Pass3.55763737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	3 3642	43	43	100	Pass
3.4609 38 38 100 Pass 3.5092 37 37 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 4126	40	40	100	Pass
3.5092 37 37 100 Pass 3.5576 37 37 100 Pass 3.6059 30 30 100 Pass 3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 4609	38	38	100	Pass
3.55763737100Pass3.60593030100Pass3.65422828100Pass3.70262626100Pass	3 5092	37	37	100	Pass
3.60593030100Pass3.65422828100Pass3.70262626100Pass	3 5576	37	37	100	Pass
3.6542 28 28 100 Pass 3.7026 26 26 100 Pass	3 6059	30	30	100	Pass
3.7026 26 26 100 Pass	3 6542	28	28	100	Pass
	3.7026	26	26	100	Pass

3.7509	24	24	100	Pass
3.7992	21	21	100	Pass
3.8476	20	20	100	Pass
3.8959	19	19	100	Pass
3.9442	18	18	100	Pass
3.9926	17	17	100	Pass
4.0409	15	15	100	Pass
4.0892	14	14	100	Pass
4.1376	13	13	100	Pass
4.1859	13	13	100	Pass
4.2342	13	13	100	Pass
4.2825	12	12	100	Pass
4.3309	12	12	100	Pass
4.3792	12	12	100	Pass
4.4275	12	12	100	Pass
4.4759	11	11	100	Pass
4.5242	11	11	100	Pass
4.5725	11	11	100	Pass
4.6209	10	10	100	Pass
4.6692	9	9	100	Pass
4.7175	8	8	100	Pass
4.7659	8	8	100	Pass
4.8142	6	6	100	Pass
4.8625	6	6	100	Pass
4.9109	6	6	100	Pass
4.9592	6	6	100	Pass
5.0075	6	6	100	Pass
5.0558	6	6	100	Pass
5.1042	6	6	100	Pass
5.1525	6	6	100	Pass
5.2008	5	5	100	Pass
5.2492	5	5	100	Pass
5.2975	5	5	100	Pass
5.3430	5 4	C A	100	Pass
5.3942	4	4	100	Pass
5.4425	3	ວ 2	100	Pass
5.4900	3	3	100	Pass
5 5875	3	3	100	Pass
5.6358	3	3	100	Pass
5.6842	3	3	100	Pass
5 7325	2	2	100	Pass
5 7808	2	2	100	Pass
5 8292	2	2	100	Pass
5 8775	2	2	100	Pass
5 9258	2	2	100	Pass
5.9741	2	2	100	Pass
	_	_		

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #3 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Tank 1 POC		809.70				0.00			
Total Volume Infiltrated		809.70	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Predeveloped Landuse Totals for POC #4Total Pervious Area:11.76Total Impervious Area:3.96

Mitigated Landuse Totals for POC #4 Total Pervious Area: 11.76 Total Impervious Area: 3.96

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4 Return Period Flow(cfs)

0.1159
0.338036
0.63464
1.312858
2.165686
3.469708

Flow Frequency Return Periods for Mitigated. POC #4Return PeriodFlow(cfs)2 year2.0522855 year2.7560910 year3.267799

25 year	3.968342
50 year	4.530714
100 year	5.128923

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

i cai	i ieuevelopeu	wiitiyat
1949	0.312	2.935
1950	1.365	2.848
1951	0.308	1.827
1952	0.070	1.231
1953	0.053	1.427
1954	0.166	1.701
1955	0.094	1.842
1956	0.276	1.836
1957	0.076	2.068
1958	0.063	1.564
1959	0.091	1.524

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974	0.193 0.155 0.031 0.109 0.176 0.073 0.068 0.958 0.194 0.077 0.047 0.080 1.027 0.063 0.080 0.126	$\begin{array}{c} 1.902\\ 1.700\\ 1.351\\ 1.853\\ 1.671\\ 2.159\\ 1.429\\ 2.966\\ 3.031\\ 1.979\\ 1.910\\ 2.280\\ 2.681\\ 1.230\\ 2.140\\ 2.115\end{array}$
1976	0.130	1.751
1977	0.019	1.664
1978	0.058	2.123
1979	0.038	2.633
1980	0.098	3.501
1981	0.062	1.974
1982	0.137	2.950
1983	0.079	2.171
1984	0.046	1.450
1985	0.034	1.882
1986	0.112	1.783
1987	0.162	2.395
1988	0.042	1.405
1989	0.040	2.236
1990	2.872	4.849
1991	0.750	3.620
1992	0.063	1.552
1993	0.046	1.583
1994	0.028	1.318
1995	0.179	1.710
1996	0.816	2.901
1997	0.312	2.018
1998	0.060	1.894
1999	1.400	4.367
2000	0.054	1.995
2001	0.018	2.100
2007	0.018	2.100
2002	0.134	2.540
2003	0.075	2.646
2004	0.427	4.161
2005	0.059	1.664
2006	0.204	1.669
2007	3.489	4.725
2008	0.764	3.438
2009	0.270	2.471

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #4 **Rank** Predeveloped Mitigated 1 34888 48489

1	3.4888	4.8489
2	2.8717	4.7247
3	1.3996	4.3672
4	1.3649	4.1611

29 0.1123 2.0004 29 0.1093 2.0183 30 0.0981 1.9948 31 0.0938 1.9793 32 0.0908 1.9736 33 0.0804 1.9098	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	$\begin{array}{c} 1.0265\\ 0.9575\\ 0.8164\\ 0.7644\\ 0.7504\\ 0.4265\\ 0.3125\\ 0.3125\\ 0.3121\\ 0.3083\\ 0.2757\\ 0.2699\\ 0.2036\\ 0.1941\\ 0.1935\\ 0.1761\\ 0.1656\\ 0.1622\\ 0.1548\\ 0.1370\\ 0.1344\\ 0.1298\\ 0.1262\\ 0.1123\end{array}$	3.6199 3.5011 3.4383 3.0308 2.9662 2.9495 2.9355 2.9012 2.8475 2.6812 2.6457 2.6332 2.5396 2.4706 2.3955 2.2797 2.2357 2.1706 2.1593 2.1402 2.1230 2.1154 2.0996 2.0684
	29	0.1093	2.0183
	30	0.0981	1.9948
	31	0.0938	1.9793
	32	0.0908	1.9736
	33	0.0804	1.9098
	40 41 42 43 44 45 46	0.0679 0.0632 0.0630 0.0625 0.0622	1.7830 1.7510 1.7103 1.7007 1.6999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 47 48 49 50 51 51	0.0593 0.0594 0.0583 0.0538 0.0525 0.0468	1.6689 1.6639 1.6636 1.5831 1.5637
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	0.0462	1.5522
	53	0.0456	1.5240
	54	0.0423	1.4500
	55	0.0399	1.4288
	56	0.0377	1.4265
	57	0.0341	1.4051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	0.0311	1.3509
	59	0.0282	1.3181
	60	0.0185	1.2306
	61	0.0178	1.2295

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0580	13242	179473	1355	Fail
0.0000	3008	1/1057	3632	Fail
0.0792	1246	141307	0720	
0.1005	1340	11/030	0739	Fall Fall
0.1218	204	99137	48596	Faii
0.1431	154	83823	54430	Fail
0.1644	124	72209	58233	Fail
0.1857	109	62327	57180	Fail
0.2070	96	54178	56435	Fail
0.2283	88	46927	53326	Fail
0.2496	77	41152	53444	Fail
0 2709	71	36104	50850	Fail
0 2921	60	31570	52616	Fail
0.3134	53	27934	52705	Fail
0.33/7	10 10	2/768	50546	Fail
0.3560	40	21850	10670	Fail
0.3300	44	21039	49079	Foil
0.3773	41	19400	47440	Fall Fail
0.3900	40	17293	43232	ган
0.4199	38	15483	40744	Fail
0.4412	35	13755	39300	Fail
0.4625	33	12329	37360	Fail
0.4838	33	11120	33696	Fail
0.5050	30	10004	33346	Fail
0.5263	30	9050	30166	Fail
0.5476	29	8237	28403	Fail
0.5689	28	7484	26728	Fail
0.5902	26	6757	25988	Fail
0.6115	26	6158	23684	Fail
0.6328	25	5576	22304	Fail
0.6541	23	5080	22086	Fail
0 6754	21	4639	22090	Fail
0.6967	21	4209	20042	Fail
0.0007	21	3850	18333	Fail
0.7302	21	3520	16804	Fail
0.7592	20	2220	16120	Fail
0.7003	20	2000	10139	Foil
0.7010	19	2300	10720	Fall Fail
0.8031	19	2123	14331	Fall
0.8244	18	2494	13855	Fail
0.8457	18	2304	12800	Fail
0.8670	15	2128	14186	Fail
0.8883	14	1962	14014	Fail
0.9096	13	1828	14061	Fail
0.9309	12	1692	14100	Fail
0.9521	12	1578	13150	Fail
0.9734	11	1487	13518	Fail
0.9947	11	1384	12581	Fail
1.0160	11	1296	11781	Fail
1.0373	9	1223	13588	Fail
1.0586	9	1147	12744	Fail
1 0799	ğ	1065	11833	Fail
1 1012	ğ	988	10977	Fail
1 1225	ă	924	10266	Fail
1 1/20	a a	92 7 865	0200	Fail
1.1430	3	916	0066	r all Foil
1.1000	ฮ 0	752	9000	Fall
1.1003	0	100	3412	rall

1.37797 457 6528 Fai 1.3992 6 442 7366 Fai 1.4205 5 421 8420 Fai 1.4418 5 398 7960 Fai 1.4631 5 378 7560 Fai 1.4631 5 378 7560 Fai 1.4844 5 361 7219 Fai 1.5057 5 350 7000 Fai 1.5270 4 336 8400 Fai 1.5696 4 301 7525 Fai 1.5908 4 286 7150 Fai 1.6973 4 2256 6625 Fai 1.6334 4 2256 6425 Fai 1.6760 4 231 5775 Fai 1.6973 4 215 5375 Fai 1.7186 4 203 5075 Fai 1.7825 4 181 4525 Fai 1.8250 4 166 4150 Fai 1.8250 4 166 4150 Fai 1.8463 4 159 3975 Fai 1.8889 4 150 3750 Fai 1.9954 4 122 3050 Fai 1.9954 4 122 3050 Fai 2.0167 4 121 3025 Fai 2.0185 3 108 3600 Fai 2.1231 3 99 3300 Fai 2.1244 3 <td< th=""><th>1.20768710$8875$$1.2289$8$669$$8362$$1.2502$8$629$$7862$$1.2715$8$593$$7412$$1.2928$8$564$$7050$$1.3141$8$533$$6662$$1.3354$8$505$$6312$$1.3567$8$473$$5912$$1.3779$7$457$$6528$$1.3992$6$442$$7366$$1.4205$5$421$$8420$$1.4631$5$378$$7560$$1.4844$5$361$$7219$$1.5057$5$350$$7000$$1.5270$4$336$$8400$$1.5483$4$315$$7875$$1.5696$4$301$$7525$$1.5908$4$286$$7150$$1.6121$4$265$$6625$</th></td<>	1.20768710 8875 1.2289 8 669 8362 1.2502 8 629 7862 1.2715 8 593 7412 1.2928 8 564 7050 1.3141 8 533 6662 1.3354 8 505 6312 1.3567 8 473 5912 1.3779 7 457 6528 1.3992 6 442 7366 1.4205 5 421 8420 1.4631 5 378 7560 1.4844 5 361 7219 1.5057 5 350 7000 1.5270 4 336 8400 1.5483 4 315 7875 1.5696 4 301 7525 1.5908 4 286 7150 1.6121 4 265 6625
--	---

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #4 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #5 Return Period Flow(cfs)

Neturi i enou	11000(013)
2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817
-	

Flow Frequency Return Periods for Mitigated. POC #5 Return Period Flow(cfs)

2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

IEal	Freuevelopeu	wiitiyat
1949	0.624	0.624
1950	0.648	0.648
1951	0.437	0.437
1952	0.351	0.351
1953	0.383	0.383
1954	0.417	0.417
1955	0.462	0.462
1956	0.472	0.472
1957	0.495	0.495
1958	0.397	0.397
1959	0.422	0.422

1960 1961 1962	0.411 0.447 0.380	0.411 0.447 0.380
1963	0.449	0.449
1965	0.434 0.546	0.434 0.546
1966	0.368	0.368
1967 1968	0.675	0.675
1969	0.486	0.486
1970	0.437	0.437
1971	0.505	0.505
1973	0.353	0.353
1974	0.502	0.502
1976	0.375	0.375
1977	0.429	0.429
1978 1979	0.520	0.520
1980	0.698	0.698
1981	0.496	0.496
1982	0.549	0.549
1984	0.384	0.384
1985 1986	0.509	0.509
1987	0.647	0.647
1988	0.423	0.423
1909	0.981	0.981
1991	0.666	0.666
1992 1993	0.375	0.375
1994	0.385	0.385
1995	0.441	0.441
1990	0.814	0.499
1998	0.451	0.451
1999 2000	0.899	0.899
2001	0.498	0.498
2002	0.609	0.609
2003	0.863	0.863
2005	0.431	0.431
2006	0.421 0.989	0.421 0 989
2008	0.693	0.693
2009	0.663	0.663

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #5RankPredevelopedMitigated10.98940.9894 0.9812 0.9812 2 3 4 0.8995 0.8995

0.8626

0.8626

5	0.6975	0.6975
6	0.6926	0.6926
7	0.6751	0.6751
8	0.6702	0.6702
9	0.6658	0.6658
10	0.6628	0.6628
11	0.6479	0.6479
12	0.6478	0.6478
13	0.6472	0.6472
14	0.6248	0.6248
15	0.6239	0.6239
16	0.6143	0.6143
17	0.6118	0.6118
18	0.6085	0.6085
19	0.5513	0.5513
20	0.5487	0.5487
20 21 22	0.5485 0.5463	0.5487 0.5485 0.5463
23	0.5328	0.5328
24	0.5202	0.5202
25	0.5092	0.5092
26	0.5049	0.5049
27	0.5018	0.5018
28	0.4995	0.4995
29	0.4984	0.4984
30	0.4965	0.4965
31	0.4945	0.4945
32	0.4864	0.4864
33	0.4760	0.4760
34	0.4716	0.4716
35 36 37	0.4620 0.4506 0.4489	0.4620 0.4506
38	0.4467	0.4467
39	0.4430	0.4430
40 41 42	0.4411 0.4366 0.4366	0.4366 0.4366
43	0.4343	0.4343
44	0.4312	0.4312
45	0.4289	0.4289
46	0.4230	0.4230
47	0.4216	0.4216
48	0.4212	0.4212
49	0.4171	0.4171
50	0.4107	0.4107
51	0.3971	0.3971
52	0.3920	0.3920
53	0.3846	0.3846
54	0.3844	0.3844
55	0.3833	0.3833
56	0.3804	0.3804
57	0.3751	0.3751
58 59 60	0.3750 0.3681 0.3527	0.3750 0.3681
61	0.3511	0.3511

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.2493	2267	2267	100	Pass
0.2560	2066	2066	100	Pass
0.2627	1900	1900	100	Pass
0.2694	1727	1727	100	Pass
0.2761	1579	1579	100	Pass
0.2827	1458	1458	100	Pass
0.2894	1340	1340	100	Pass
0.2961	1205	1205	100	Pass
0.3028	1110	1110	100	Pass
0.3095	1029	1029	100	Pass
0.3161	958	958	100	Pass
0.3228	893	893	100	Pass
0.3295	824	824	100	Pass
0.3362	761	761	100	Pass
0.3429	711	711	100	Pass
0.3495	664	664	100	Pass
0.3562	609	609	100	Pass
0.3629	577	577	100	Pass
0.3696	541	541	100	Pass
0.3763	498	498	100	Pass
0.3829	458	458	100	Pass
0.3896	428	428	100	Pass
0.3963	398	398	100	Pass
0.4030	375	375	100	Pass
0.4097	351	351	100	Pass
0.4163	325	325	100	Pass
0.4230	299	299	100	Pass
0.4297	283	283	100	Pass
0.4364	262	262	100	Pass
0.4431	246	246	100	Pass
0.4498	227	227	100	Pass
0.4564	213	213	100	Pass
0.4631	196	196	100	Pass
0.4698	191	191	100	Pass
0.4765	182	182	100	Pass
0.4832	170	170	100	Pass
0.4898	160	160	100	Pass
0.4965	151	151	100	Pass
0.5032	139	139	100	Pass
0.5099	132	132	100	Pass
0.5166	123	123	100	Pass
0.5232	113	113	100	Pass
0.5299	107	107	100	Pass
0.5366	100	100	100	Pass
0.5433	99	99	100	Pass
0.5500	94	94	100	Pass
0.5566	90	90	100	Pass
0.5633	82	82	100	Pass
0.5700	77	77	100	Pass
0.5767	74	74	100	Pass
0.5834	70	70	100	Pass
0.5901	68	68	100	Pass
0.5967	66	66	100	Pass

0.6034	65	65	100	Pass
0.6101	61	61	100	Pass
0.6168	55	55	100	Pass
0.6235	52	52	100	Pass
0.6301	47	47	100	Pass
0.6368	44	44	100	Pass
0.6435	42	42	100	Pass
0.6502	37	37	100	Pass
0.6569	36	36	100	Pass
0.6635	29	29	100	Pass
0.6702	24	24	100	Pass
0.6769	20	20	100	Pass
0.6836	20	20	100	Pass
0.6903	18	18	100	Pass
0.6969	17	17	100	Pass
0.7036	14	14	100	Pass
0.7103	14	14	100	Pass
0.7170	12	12	100	Pass
0.7237	11	11	100	Pass
0.7303	10	10	100	Pass
0.7370	10	10	100	Pass
0.7437	10	10	100	Pass
0.7504	10	10	100	Pass
0.7571	10	10	100	Pass
0.7638	10	10	100	Pass
0.7704	9	9	100	Pass
0.7771	8	8	100	Pass
0.7838	8	8	100	Pass
0.7905	8	8	100	Pass
0.7972	8	8	100	Pass
0.8038	$\frac{1}{7}$	1	100	Pass
0.8105	$\frac{1}{7}$	$\frac{1}{7}$	100	Pass
0.8172	$\frac{1}{7}$	$\frac{1}{7}$	100	Pass
0.8239	1	1	100	Pass
0.8306	6	ю С	100	Pass
0.0372	6	0	100	Pass
0.0439	6	0	100	Pass
0.0000	6	6	100	Pass
0.0073	5	0	100	Pass
0.0040	5	5	100	Pass
0.0700	5	5	100	Pass Dass
0.0773	5	5	100	Pass Dass
0.0040	5	5	100	r ass Daee
0.0507	5	5	100	r ass Daee
0.0374	4	4	100	Paee
0.90-0	4	ч 4	100	Paee
0.0101	-	-7	100	1 433

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #5 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		193.34				0.00			
Total Volume Infiltrated		193.34	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Predeveloped Landuse Totals for POC #6 Total Pervious Area: 10.41 Total Impervious Area: 5.47

Mitigated Landuse Totals for POC #6 Total Pervious Area: 10.41 Total Impervious Area: 5.47

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #6 **Return Period** 2 year 2 349287

2 year	2.349287
5 year	3.13595
10 year	3.71691
25 year	4.52232
50 year	5.176234
100 year	5.878212

Flow Frequency Return Periods for Mitigated. POC #6Return PeriodFlow(cfs)2 year2.3492875 year3.1359510 year3.71691

4.52232
5.176234
5.878212

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

loui	i i cacvelopea	minga
1949	2.974	2.974
1950	3.487	3.487
1951	2.180	2.180
1952	1.508	1.508
1953	1.768	1.768
1954	2.007	2.007
1955	2.138	2.138
1956	2.064	2.064
1957	2.224	2.224
1958	1.863	1.863
1959	1.989	1.989

1960	2.068	2.068
1962	1.677	1.677
1963	2.033	2.033
1964	1.932	1.932
1965	2.373	2.373
1966	1.594	1.594
1967	3.474	3.474
1968	3.343	3.343
1969	2.079	2.079
1970	2.091	2.091
1971	2.019	2.519
1972	3.220 1.613	3.220 1.613
1973	2 327	2 327
1975	2 560	2.560
1976	1.873	1.873
1977	1.901	1.901
1978	2.597	2.597
1979	3.297	3.297
1980	3.201	3.201
1981	2.258	2.258
1982	3.215	3.215
1983	2.641	2.641
1904 1085	1.004	1.004
1985	1 946	1 946
1987	3.029	3.029
1988	1.861	1.861
1989	2.774	2.774
1990	6.208	6.208
1991	3.953	3.953
1992	1.614	1.614
1993	1.806	1.806
1994	1.693	1.693
1995	2.020	2.020
1990	2 418	2 418
1998	2 155	2 155
1999	4.529	4.529
2000	2.180	2.180
2001	2.550	2.550
2002	2.668	2.668
2003	2.582	2.582
2004	4.331	4.331
2005	1.803	1.803
2000 2007	1.941	1.941
2007	0.317 3.876	0.317 3.876
2009	3 066	3 066
-000	0.000	0.000

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #6RankPredeveloped Mitigated16.317126.20816.20816.2081 2 3 4

4.5290

4.3308

4.5290 4.3308

5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27	3.9528 3.8459 3.4743 3.3949 3.3428 3.2971 3.2282 3.2147 3.2014 3.0662 3.0286 2.9743 2.7736 2.6678 2.6406 2.5967 2.5824 2.5603 2.5496 2.5187 2.4175 2.3734	3.9528 3.8459 3.4873 3.4743 3.3949 3.3428 3.2971 3.2282 3.2147 3.2014 3.0662 3.0286 2.9743 2.7736 2.6678 2.6406 2.5967 2.5824 2.5603 2.5496 2.5187 2.4175 2.3734
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	2.3270 2.2581 2.2238 2.1969 2.1800 2.1797 2.1551 2.1377 2.0905 2.0790 2.0683 2.0642 2.0325 2.0280 2.0067 1.9892 1.9459 1.9459 1.9405 1.9320 1.9013 1.8945 1.8728	2.3270 2.2581 2.2238 2.1969 2.1800 2.1797 2.1551 2.1377 2.0905 2.0790 2.0683 2.0642 2.0325 2.0280 2.0067 1.9892 1.9459 1.9459 1.9455 1.9320 1.9013 1.8945 1.8728
50 51 52 53 54 55 56 57 58 59 60 61	1.8632 1.8008 1.8056 1.8034 1.7678 1.6927 1.6765 1.6541 1.6139 1.6128 1.5936 1.5084	1.8632 1.8008 1.8056 1.8034 1.7678 1.6927 1.6765 1.6541 1.6139 1.6128 1.5936 1.5084

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
1.1746	1423	1423	100	Pass
1.2151	1277	1277	100	Pass
1.2555	1128	1128	100	Pass
1.2959	1021	1021	100	Pass
1.3363	913	913	100	Pass
1.3767	811	811	100	Pass
1.4172	721	721	100	Pass
1.4576	654	654	100	Pass
1.4980	585	585	100	Pass
1.5384	524	524	100	Pass
1.5788	491	491	100	Pass
1.6193	459	459	100	Pass
1.6597	434	434	100	Pass
1.7001	394	394	100	Pass
1.7405	363	363	100	Pass
1.7809	326	326	100	Pass
1.8214	304	304	100	Pass
1.8618	282	282	100	Pass
1.9022	263	263	100	Pass
1.9426	238	238	100	Pass
1.9830	216	216	100	Pass
2.0235	197	197	100	Pass
2.0639	179	179	100	Pass
2.1043	163	163	100	Pass
2.1447	152	152	100	Pass
2.1851	136	136	100	Pass
2.2256	129	129	100	Pass
2.2660	125	125	100	Pass
2.3064	117	117	100	Pass
2.3468	113	113	100	Pass
2.3872	104	104	100	Pass
2.4277	95	95	100	Pass
2.4681	92	92	100	Pass
2.5085	89	89	100	Pass
2.5489	83	83	100	Pass
2.5893	75	75	100	Pass
2.6298	68	68	100	Pass
2.6702	63	63	100	Pass
2.7106	55	55	100	Pass
2.7510	55	55	100	Pass
2.7914	51	51	100	Pass
2.8319	49	49	100	Pass
2.8723	46	46	100	Pass
2.9127	45	45	100	Pass
2.9531	42	42	100	Pass
2.9935	40	40	100	Pass
3.0340	35	35	100	Pass
3.0744	33	33	100	Pass
3.1148	32	32	100	Pass
3.1552	30	30	100	Pass
3.1956	30	30	100	Pass
3.2361	26	26	100	Pass
3.2765	25	25	100	Pass

3.3169	24	24	100	Pass
3.3573	23	23	100	Pass
3.3977	22	22	100	Pass
3.4382	21	21	100	Pass
3.4786	18	18	100	Pass
3.5190	16	16	100	Pass
3.5594	16	16	100	Pass
3.5998	16	16	100	Pass
3.6403	14	14	100	Pass
3.0807	14	14	100	Pass
3.7211	14	14	100	Pass
3,7015	10	10	100	Pass
3.8020	12	12	100	Pass Dass
3 8828	10	10	100	Pass
3 9232	10	10	100	Pass
3 9636	9	9	100	Pass
4.0041	9	9	100	Pass
4.0445	8	8	100	Pass
4.0849	7	7	100	Pass
4.1253	7	7	100	Pass
4.1657	7	7	100	Pass
4.2062	7	7	100	Pass
4.2466	7	7	100	Pass
4.2870	7	7	100	Pass
4.3274	7	7	100	Pass
4.3678	5	5	100	Pass
4.4083	5	5	100	Pass
4.4487	5	5	100	Pass
4.4891	5	5	100	Pass
4.5295	4	4	100	Pass
4.5699	4	4	100	Pass
4.6104	4	4	100	Pass
4.6508	4	4	100	Pass
4.0912	4	4	100	Pass
4.7310	4	4	100	Pass Dass
4.7720	4	4	100	Pass
4.0125	4	4	100	Pass
4 8933	4	4	100	Pass
4 9337	4	4	100	Pass
4 9741	3	3	100	Pass
5.0146	3	3	100	Pass
5.0550	3	3	100	Pass
5.0954	3	3	100	Pass
5.1358	3	3	100	Pass
5.1762	3	3	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #6 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC #7 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #8 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #11 was not reported because POC must exist in both scenarios and both scenarios must have been run.
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 START RUN IN RESUME END GLOE	model NTERP (E BAL	simulati 1948 10 OUTPUT LE 0 RUN	on 01 VEL 1	END 3 0	2009 09 UNI) 30 T SYS	TEM	1				
FILES <file></file>	<un#></un#>	<	F	ile Name						>**;	k k	
WDM MESSU	26 25 27 28 30 31 35 36 37 32 34 33	Tamara PreTam PreTam POCTam POCTam POCTam POCTam POCTam POCTam POCTam	ck – Du arack – arack –	rations Ex Durations Durations Durations Durations Durations Durations Durations Durations Durations Durations Durations	sisting. Existi Existi Existi Existi Existi Existi Existi Existi Existi Existi Existi	wdm .ng.ME .ng.L6 .ng1.d .ng2.d .ng6.d .ng7.d .ng8.d .ng3.d .ng5.d .ng4.d	S 1 2 lat lat lat lat lat lat					
END FILE	22											
OPN SEQU INGF PF PF PF IN IN IN PF PF PF PF CCC CCC CCC CCC CCC CCC CCC	JENCE RP SRLND SRLND APLND APLND APLND APLND APLND APLND APLND CHRES	8 17 2 4 6 9 3 7 16 40 41 42 43 1 2 39 501 502 506 507 508 503 505 504 1 2 6 7 8 3 5 04 1 2 6 7 8 3 5 4	INDELT	00:15								
DISPLY	Z-INFO	1	4		* * 4	D T T TT	DIGI	DT7 1	D 11 E	DIGO		
# - 1	+>	T Subbasin	itie 1	>*	MAX	ЪТЛГ	DIGI	FТГŢ	PYR 1	DIG2	FIL2 30	yrnd 9
2 6		Subbasin Subbasin	2 6		MAX MAX				1 1	2 2	31 35	9 9

END PRINT-INFO

PWAT-PARM1 <pls> PV # - # CSI 8 17 9 40 41 42 43 39 END PWAT-PAR</pls>	WATER var: NO RTOP U: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iable month ZFG VCS V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ly paramet UZ VNN V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ter value IFW VIRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	flags *** VLE INFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* HWT *** 0 0 0 0 0 0 0 0 0	
PWAT-PARM2 <pls> # - # *** 8 17 9 40 41 42 43 39 END PWAT-PAR</pls>	PWATER *FOREST 0 0 0 0 0 0 0 0 0 0 8 M2	input info LZSN 5 4.5 5 4.5 4.5 4.5 5 5	: Part 2 INFILT 0.8 0.03 0.8 0.03 0.03 0.03 0.8 2	** LSUR 400 400 400 400 400 400 400	* SLSUR 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15	KVARY 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.3	AGWRC 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
PWAT-PARM3 <pls> # - # *** 8 17 9 40 41 42 43 39 END PWAT-PAH PARMA</pls>	PWATER *PETMAX 0 0 0 0 0 0 0 0 0 0 RM3	input info PETMIN 0 0 0 0 0 0 0 0 0 0 0 0 0	: Part 3 INFEXP 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** INFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* DEEPFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BASETP 0 0 0 0 0 0 0 0 0	AGWETP 0 0 0 0 0 0 0 0 0
PWAT-PARM4 <pls> # - # 8 17 9 40 41 42 43 39 END PWAT-PAH</pls>	PWATER : CEPSC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 RM4	input info: UZSN 0.5 0.25 0.5 0.5 0.15 0.15 0.5 0.5	Part 4 NSUR 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	INTFW 0 6 0 0 6 6 0 0 0	IRC 0.7 0.5 0.7 0.7 0.3 0.3 0.7 0.7	LZETP 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	* * *
PWAT-STATE1 <pls> *** # - # *** 8 17 9 40 41 42 43 39 END PWAT-STA</pls>	* Initial ran from * CEPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	conditions 1990 to en SURS 0 0 0 0 0 0 0 0 0 0 0 0	at start d of 1992 UZS 0 0 0 0 0 0 0 0 0 0	of simula (pat 1-11 IFWS 0 0 0 0 0 0 0 0 0 0 0	tion -95) RUN 2 12S 3 2.5 3 2.5 2.5 3 3 3 3	21 *** AGWS 1 1 1 1 1 1 1 1	GWVS 0 0 0 0 0 0 0 0 0
END PERLND							

IMPLND GEN-INFO

<pls< th=""><th>>< #</th><th>Name-</th><th>></th><th>Un:</th><th>it-sys</th><th>tems</th><th>Pri</th><th>nter</th><th>* * *</th><th></th></pls<>	>< #	Name-	>	Un:	it-sys	tems	Pri	nter	* * *	
# -	Ħ			User	t-se in	out	Engl	Metr	* * *	
2 4 6 3 7 16 END GEN *** Sec	ROADS ROOF DRIVE ROADS DRIVE ROADS I-INFO Stion IV	S/MOD TOPS/FI EWAYS/MO S/STEEP EWAYS/SI /MOD LAI	LAT DD TEEP T	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	27 27 27 27 27 27 27	0 0 0 0 0		
ACTIVIT	Ϋ́									
<pls # - 2 4 6 3 7 16 END ACT</pls 	> ***** # ATMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	******** SNOW IV 0 0 0 0 0 0	** Activ NAT SLD 1 0 1 0 1 0 1 0 1 0 1 0	e Sect IWG 0 0 0 0 0 0	IQAL IQAL 0 0 0 0 0 0 0	* * * * *	* * * * *	****	* * * * * *	*****
PRINT-I	NFO									
<ils # - 2 4 6 3 7 16 END PRI</ils 	> ***** # ATMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**** Pri SNOW IV 0 0 0 0 0 0	nt-flag NAT SLD 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	s **** IWG 0 0 0 0 0 0	***** IQAL 0 0 0 0 0 0 0	PIVL * 1 1 1 1 1	PYR ***** 9 9 9 9 9 9	**		
IWAT-PA	ARM1									
<pls # - 2 4 6 3 7 16 END IWF</pls 	> IWA7 # CSNO 0 0 0 0 0 0 0 0 0 0 0 0 0	FER vari RTOP V 0 0 0 0 0 0 1	able mo VRS VNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nthly RTLI 0 0 0 0 0 0 0	param *	eter **	value	e flag	gs **;	r
IWAT-PA	ARM2									
<pls # - 2 4 6 3 7 16 END IWA</pls 	> # *** AT-PARM2	IWATER LSUR 400 400 400 400 400 400 2	input i SLSUR 0.05 0.01 0.05 0.1 0.1 0.05	nfo: 1	Part 2 NSUR 0.1 0.1 0.1 0.1 0.1 0.1	F	* 0.08 0.1 0.08 0.05 0.05 0.05	* *		
IWAT-PA	ARM3									
<pre></pre>	> # ***PF	IWATER ETMAX 0 0 0 0 0 0 3	input i PETMIN 0 0 0 0 0 0 0	nfo: 1	Part 3		*	**		
IWAT-ST <pls< td=""><td>TATE1</td><td>Initial</td><td>conditi</td><td>ons at</td><td>t star</td><td>t of</td><td>simul</td><td>atio</td><td>n</td><td></td></pls<>	TATE1	Initial	conditi	ons at	t star	t of	simul	atio	n	
# -	# ***	RETS	SURS							

2		0	0
4		0	0
6		0	0
3		0	0
7		0	0
16		0	0
END	IWAT-STATE1		

END IMPLND

SCHEMATIC

<-Source->	<area/>	<-Targe	≥t->	MBLK	* * *
<name> #</name>	<-factor->	<name></name>	#	Tbl#	* * *
Basin 4,7,8 Imperv Lateral	* * *				
$\frac{1}{16}$	0 6911	PERLND	39	50	
Subbagin 8 - Dery Lateral	$F_{\Delta W} \Delta / B^{**}$		57	50	
		סדים אח	20	30	
PERLIND 40	0.4000		20	24	
PERLIND 40	0.4066	PERLIND	39	34	
PERLND 40	0.4066	PERLND	39	38	
Subbasin 3A***					
PERLND 9	5.75	RCHRES	2	2	
PERLND 9	5.75	RCHRES	2	3	
IMPLND 3	1.79	RCHRES	2	5	
IMPLND 4	2.6	RCHRES	2	5	
TMPLND 7	1 11	RCHRES	2	5	
Subbagin $5***$		110111120	-	0	
	1 20	DCUDEC	1	2	
PERLIND 9	1.39	RCHRES	1	2	
PERLIND 9	1.39	RCHRES	1	3	
IMPLND 3	0.52	RCHRES	T	5	
IMPLND 4	0.55	RCHRES	1	5	
IMPLND 7	0.24	RCHRES	1	5	
Subbasin 7 - Perv Lateral	Flow A/B***				
PERLND 43	0.103	PERLND	39	30	
PERLND 43	0.103	PERLND	39	34	
PERLND 43	0 103	PERLND	39	38	
Subbagin 7 - Dery Lateral	Flow C***		57	50	
DEDIND 41		סדא דסיזיס	20	20	
PERLIND 41	0.1501	PERLIND	29	30	
PERLIND 41	0.1501	PERLND	39	34	
PERLND 41	0.1501	PERLND	39	38	
Subbasin 8 - Perv Lateral	Flow C***				
perlnd 42	0.3927	PERLND	39	30	
PERLND 42	0.3927	PERLND	39	34	
PERLND 42	0.3927	PERLND	39	38	
Subbasin 1***					
PERLND 8	0 3 9	COPY	501	12	
PERLND 8	0.39	COPY	501	13	
	0.95	CODV	501	12	
PERLIND 17	0.95	COPI	501 F 01	12	
PERLND 17	0.95	COPY	501	13	
IMPLND 2	0.35	COPY	501	15	
IMPLND 4	0.32	COPY	501	15	
IMPLND 6	0.14	COPY	501	15	
Subbasin 2***					
PERLND 8	0.67	COPY	502	12	
PERLND 8	0.67	COPY	502	13	
PERLND 17	0.41	COPY	502	12	
DERLAND 17	0 41	COPY	502	13	
	0.11	CODV	502	15	
IMPLIND Z	0.42	COPI	502	15	
IMPLND 4	0.08	COPI	502	15	
IMPLND 6	0.04	COPY	502	15	
Subbasin 6***					
PERLND 8	10.37	COPY	506	12	
PERLND 8	10.37	COPY	506	13	
PERLND 17	0.04	COPY	506	12	
PERLND 17	0.04	COPY	506	13	
TMPLND 2	1 77	COPY	506	15	
	2.7,7 2 KQ	COPY	506	15	
	2.55	COPY	506	15	
	⊥.⊥⊥	CUPI	200	T D	
DASIN 4 - Perv Lateral F10	W	CODI		1.0	
PERLND 39	5.73	COPY	504	12	
PERLND 39	5.73	COPY	504	13 13	

Subbasin 7 - Perv Lateral Flow C*** 0.86 COPY 0.86 COPY 507 12 PERLND 41 perlnd 41 0.86 507 13 COPY Subbasin 8 - Perv Lateral Flow C*** COPY perlnd 42 2.25 508 12 PERLND 42 2.25 COPY 508 13 Subbasin 3B*** 12 13 15 15 COPY perlnd 9 503 1.44 PERLND 9 IMPLND 3 IMPLND 4 1.44 COPY 503 0.45 COPY 503 0.65 COPY 503 503 IMPLND 7 0.28 15 COPY *****Routing***** RCHRES 1 1 COPY 505 16 1 COPY 503 16 RCHRES 2 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * * * * in out Subbasin 5 Deten-049111280Subbasin 3 Deten-052111280 1 1 2 1 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO

 # # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR

 1
 4
 0
 0
 0
 0
 0
 1
 9

 2
 4
 0
 0
 0
 0
 0
 0
 1
 9

 * * * * * * * * * END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section *** 2 2 2 2 2 2 * * * 0 1 0 0 0 1 0 0 1 2 2 2 2 2 2 END HYDR-PARM1

```
HYDR-PARM2
```

1	+ -	#	FTABNO	LEN	DELTH	STCOR	KS	DB50		* * *
<>	- — — - 1	><	>< 1	:>< 0 01	>	>	><>< ۵ 5	<		* * *
-	2		2	0.01	0.0	0.0	0.5	0.0		
ENI	D HY	YDR-	PARM2							
HYI	DR-I	INIT			с <u>і</u>					
1	КСНІ + _	KES #	INITIAL C	onditions	Ior each b	AYDR SECTION	On Tritial		of OUT	
1	Ť	*	** ac-ft	for eac	h possible	e exit	for each	possible	e exit	DGI
<		><	>	<><	><>	<>	*** <><-	><><	<><-	>
-	L		0	4.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0
FNI	2 ਸਾ	- פּתע	U TNTT	4.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0
END I	RCHI	RES	±1N ± 1							
SPEC	-AC	FION	S							
END S FTABI	SPE(L-AC	TIONS							
FT2	ABLI	Ξ	1							
9	L	4								
	Dep	oth	Area	Volume	Outflow1	Velocity	Travel Time	* * *		
0 (נ) מממר	tt) 100	(acres)	(acre-it)	(CIS)	(it/sec)	(Minutes)	* * *		
0.0	1888	889	0.013223	0.000000	0.267497					
0.1	177'	778	0.013338	0.002361	0.378297					
0.2	2660	667	0.013395	0.003549	0.463318					
0.3	355	556	0.013453	0.004742	0.534993					
0.4	1444 522	444 222	0.013511	0.005941 0.007144	0.598140					
0.0	5222	222	0.013627	0.008353	0.707729					
0.1	711:	111	0.013685	0.009567	0.756594					
0.8	3000	000	0.013743	0.010786	0.802490					
0.8	3888	889	0.013801	0.012010	0.845898					
1 (977 1666	118	0.013860	0.013239 0.014474	0.88/186					
1.1	155	556	0.013977	0.015714	0.964472					
1.2	2444	444	0.014036	0.016959	1.000880					
1.3	333	333	0.014095	0.018209	1.036010					
1.4	1222	222	0.014154	0.019465	1.069986					
1.5	5 L L . 5 N N I		0.014213 0.014273	0.020725 0.021991	1 134892					
1.6	5888	889	0.014332	0.023263	1.165990					
1.7	777'	778	0.014392	0.024539	1.196281					
1.8	3666	667	0.014452	0.025821	1.225823					
1.9	955	556	0.014512	0.027109	1.254670					
2.0	133.	+++ 2 2 2	0.014572 0.014632	0.028401 0.029699	1 310460					
2.2	2222	222	0.014692	0.031002	1.337483					
2.3	3111	111	0.014752	0.032311	1.363970					
2.4	1000	000	0.014813	0.033625	1.389953					
2.4	1888 577'	589 778	0.014873 0 014934	0.034944 0.036269	1.415459					
2.0	5666	567	0.014995	0.037599	1.465139					
2.7	755	556	0.015056	0.038935	1.489358					
2.8	3444	444	0.015117	0.040276	1.513189					
2.9	933. 122	333	0.015178	0.041622	1.536651					
3.0	111	222 111	0.015240 0.015301	0.042374	1.582531					
3.2	2000	000	0.015363	0.045694	1.604979					
3.2	2888	889	0.015424	0.047063	1.627118					
3.3	377	778	0.015486	0.048437	1.648959					
3.4 スロ	1006 5551	00/ 556	0.015548 0 015610	U.U49816 0 051201	1 691797					
3.6	5444	444	0.015672	0.052591	1.712814					
3.	7333	333	0.015735	0.053987	1.733576					
3.8	3222	222	0.015797	0.055388	1.754092					
3.9		111	0.015860	0.056795	1.774371					
4.0)888 1001	889	0.015923	0.058208	1.814250					
4.1	177'	778	0.016048	0.061050	1.833864					

4.266667 4.355556 4.44444 4.533333 4.622222 4.711111 4.800000 4.888889 4.977778 5.066667 5.155556 5.24444 5.33333 5.422222 5.51111 5.600000 5.688889 5.777778 5.866667 5.955556 6.04444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 6.666667 6.755556 6.844444 6.933333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 6.844444 6.933333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 7.644444 7.733333 7.822222 7.911111 8.000000 END FTABLE 7.21	0.016111 0.016175 0.016238 0.016301 0.016365 0.016429 0.016556 0.016620 0.016685 0.016685 0.016749 0.016813 0.016943 0.016943 0.017077 0.017077 0.017077 0.0170730 0.017263 0.017530 0.017530 0.017530 0.017530 0.017530 0.017530 0.017530 0.017795 0.017725 0.017725 0.017725 0.017795 0.017795 0.017795 0.017795 0.017795 0.017795 0.017795 0.017795 0.017861 0.017928 0.017995 0.018061 0.018128 0.018330 0.018397 0.018465 0.018532 0.018600 0.018668 0.018736 0.018872 E 1 2	0.062479 0.063914 0.063914 0.06354 0.068253 0.069710 0.071173 0.072642 0.074117 0.075597 0.077083 0.078574 0.080072 0.081575 0.083084 0.084598 0.086119 0.087645 0.090715 0.092559 0.093808 0.095363 0.096925 0.098492 0.100065 0.101643 0.103228 0.104819 0.106415 0.108018 0.109626 0.11241 0.112861 0.114487 0.116120 0.127714	1.853270 1.872476 1.891486 1.910307 1.928945 1.947404 1.965690 1.983807 2.001761 2.019555 2.037193 2.054680 2.072019 2.089215 2.106270 2.123188 2.139972 2.156626 2.173152 2.189553 2.221993 2.238037 2.253966 2.269783 2.269783 2.269783 2.269783 2.269783 2.380329 2.363199 2.36329 2.467500 3.198544 4.316850 5.685745 7.207863 8.785919 10.32063 11.71823 12.90286 13.83219 14.51567 15.03487		
91 4 Depth (ft) 0.000000 0.066667 0.133333 0.200000 0.266667 0.33333 0.400000 0.466667 0.53333 0.600000 0.666667 0.73333 0.800000 0.866667 0.93333 1.000000 1.066667 1.133333 1.200000 1.266667 1.33333 1.400000	Area (acres) 0.000000 0.004938 0.006944 0.008456 0.009708 0.010790 0.011751 0.012616 0.013406 0.014132 0.014804 0.015430 0.016560 0.017073 0.017556 0.018010 0.018439 0.018843 0.019224 0.019584 0.019924	Volume (acre-ft) 0.000000 0.000220 0.001135 0.001742 0.002426 0.003178 0.003991 0.004858 0.005777 0.006741 0.007749 0.008798 0.009884 0.009884 0.012160 0.012160 0.013345 0.014560 0.015803 0.017072 0.018366 0.019683	Outflow1 (cfs) 0.000000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.199148 0.211229 0.222655 0.233522 0.243906 0.253865 0.263448 0.272695 0.281638 0.290306 0.298722 0.306908 0.314881 0.322657	Velocity (ft/sec)	Travel Time*** (Minutes)***

END FTABLES

EXT SOURCES <-Volume-> <membe <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></membe 	r> SsysSgap< # tem strg<-f ENGL 1 ENGL 1 ENGL 0.7 ENGL 0.7	Mult>Tran actor->strg 6 6	<-Target vols <name> # PERLND 1 99 IMPLND 1 99 PERLND 1 99 IMPLND 1 99</name>	5> <-Grp: # 99 EXTNL 99 EXTNL 99 EXTNL 99 EXTNL	<pre>> <-Member-> *** <name> # # *** PREC PREC PETINP PETINP</name></pre>
END EXT SOURCES					
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 501 OUTPUT COPY 502 OUTPUT COPY 506 OUTPUT COPY 504 OUTPUT COPY 507 OUTPUT COPY 508 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR COPY 505 OUTPUT COPY 503 OUTPUT RCHRES 2 HYDR RCHRES 2 HYDR END EXT TARGETS</name>	<-Member->< <name> # #<-f MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 RO 1 1 STAGE 1 1 MEAN 1 1 MEAN 1 1 RO 1 1 STAGE 1 1</name>	Mult>Tran actor->strg 48.4 48.4 48.4 48.4 48.4 48.4 1 1 48.4 48.4	<-Volume-> <i <name> # <i WDM 501 F1 WDM 502 F1 WDM 506 F1 WDM 504 F1 WDM 507 F1 WDM 508 F1 WDM 1000 F1 WDM 1001 S7 WDM 505 F1 WDM 503 F1 WDM 1002 F1 WDM 1003 S7</i </name></i 	Member> 7 Name> LOW 1 LOW 1	TsysTgapAmd***temstrgstrg***ENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPLENGLREPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATEF FND MASS LINK</name></volume>	<-Member->< <name> # #<-f 2 SURO 0.</name>	Mult> actor-> 083333	<target> <name> RCHRES</name></target>	<-Grp;	<-Member->*** <name> # #*** W IVOL</name>
MASS-LINK PERLND PWATEF END MASS-LINK	3 IFWO 0. 3	083333	RCHRES	INFLO	W IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 0. 5	083333	RCHRES	INFLO	N IVOL
MASS-LINK PERLND PWATEF END MASS-LINK	12 SURO 0. 12	083333	СОРҮ	INPUT	MEAN
MASS-LINK PERLND PWATEF END MASS-LINK	13 IFWO 0. 13	083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATEF END MASS-LINK	15 SURO 0. 15	083333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРҮ	INPUT	MEAN
MASS-LINK PERLND PWATEF END MASS-LINK	30 SURO 30		PERLND	EXTNL	SURLI
MASS-LINK PERLND PWATEF END MASS-LINK	34 IFWO 34		PERLND	EXTNL	IFWLI
MASS-LINK PERLND PWATER	38 AGWO		PERLND	EXTNL	AGWLI

Tamarack - Durations Existing

5/23/2016 1:08:23 PM

END MASS-LINK 38

MASS-LINK 50 IMPLND IWATER SURO END MASS-LINK 50

PERLND

EXTNL SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 mode: START RUN INTERP RESUME END GLOBAL	l simulation 1948 10 01 OUTPUT LEVEL 0 RUN 1	END 3 0	2009 09 30 UNIT SYSTEM	1		
FILES <file> <un#:< td=""><td>> <</td><td>-File Name-</td><td></td><td></td><td>>***</td><td></td></un#:<></file>	> <	-File Name-			>***	
<-ID-> WDM 20 MESSU 21 20 30 31 33 32 34 5ND FILES	6 Tamarack - 1 5 MitTamarack 7 MitTamarack 8 MitTamarack 0 POCTamarack 1 POCTamarack 3 POCTamarack 5 POCTamarack 2 POCTamarack 4 POCTamarack	Durations E - Duration - Duration - Duration - Duration - Duration - Duration - Duration - Duration - Duration	xisting.wdm s Existing.MES s Existing.L61 s Existing.L62 s Existing1.dat s Existing2.dat s Existing4.dat s Existing6.dat s Existing3.dat s Existing5.dat		* * *	
OPN SEQUENCE						
INGRP PERLND PERLND IMPLND IMPLND PERLND IMPLND PERLND PERLND RCHRES RCHRES COPY COPY COPY COPY COPY COPY COPY COPY	INDE: 8 17 2 4 6 9 3 7 2 1 18 1 2 501 502 504 506 3 503 603 5 505 605 1 2 4 6 3 5 5 5 5 5 5 5 5 5 5 5 5 5	LT 00:15				
END INGRI END OPN SEQUI DISPLY	P ENCE					
UISPLY-INF(# - #<	JI Title	>	***TRAN PTVI, אדמ	FJI.1	PYR DIG2 FTI.2 או	ND
1	Subbasin 1	-	MAX		1 2 30	9
2	Subbasin 2		MAX		1 2 31	9
4 6	Subbasin 6		MAX		1 2 35	9 9
3	Tank 1		MAX		1 2 32	9
5	Trapezoidal Por	nd 1	MAX		1 2 34	9
END DISPLY	- TNF.OT					

8 17 9 2 18 END	PWAT	-PARM	0 0 0 0 12		5 4.5 5 4.5		0.8 0.03 0.8 2 0.03		$ \begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \\ 400 \\ 400 \end{array} $		0.1 0.1 0.15 0.1 0.15		0.3 0.5 0.3 0.3 0.5		0.996 0.996 0.996 0.996 0.996
PWAT <p # 17 9 2 18 END PWAT</p 	PARI PLS > - #	43 ***F -PARM	PWAT 0 0 0 0 0 0 13	ER inj P	put ir ETMIN 0 0 0 0 0	nfo: I	Part 3 NFEXP 2 2 2 2 2 2	3 I]	, NFILD 2 2 2 2 2 2	₹** DE	CEPFR 0 0 0 0 0		BASETP 0 0 0 0 0	Ĩ	AGWETP 0 0 0 0 0
<pre>PWA1</pre>	PUS > - # PWAT-	-PARM	PWATE CEPSC 0.1 0.1 0.1 0.2 0.1	R inp	ut inf UZSN 0.5 0.25 0.5 0.5 0.15	O: P	art 4 NSUR 0.25 0.25 0.25 0.35 0.25	:	INTFW 0 6 0 0 6		IRC 0.7 0.5 0.7 0.7 0.3		LZETP 0.25 0.25 0.25 0.7 0.25	***	
PWAT <p # 8 17 9 2 18 END</p 	'-STA: PLS > - # PWAT-	re1 *** ***	Initi can fr CEPS 0 0 0 0 CE1	al co om 19	nditic 90 to SURS 0 0 0 0	ons a end	t star of 199 UZS 0 0 0 0	rt of 92 (pa	simu] at 1-1 IFWS 0 0 0 0	atior 1-95)	RUN LZS 3 2.5 3 2.5 3 2.5	21	*** AGWS 1 1 1 1		GWVS 0 0 0 0
END PE IMPLND GEN- <p # 2 4 6 3 7 1 END ***</p 	GEN-: Sect:	ROAL ROOF DRIV ROAL DRIV ROAL INFO INFO	DS/MOD TOPS TOPS VEWAYS DS/STE VEWAYS DS/FLA WATER	me /FLAT /MOD EP /STEE: T ***	> P	Un User 1 1 1 1 1 1	it-sys t-se in 1 1 1 1	stems eries out 1 1 1 1 1	Pri Engl 27 27 27 27 27 27 27	.nter Metr 0 0 0 0 0 0 0	* * * * * * * * *				
ACTI <p # 2 4 6 3 7 1 END PRIN</p 	VITY PLS > - # ACTIV	**** ATMF 0 0 0 0 0 7 70	> SNOW) 0) 0) 0) 0) 0) 0) 0	****) IWAT 1 1 1 1 1	Active SLD 0 0 0 0 0	e Sec IWG 0 0 0 0 0	tions IQAL 0 0 0 0 0	****	* * * * * *	****	****	* * * *	****		
<i # 2 4 6</i 	.цS > - #	ATMF 0 0 0	P SNOW 0 0 0 0	Print IWAT 4 4	-tlags SLD 0 0 0	; *** IWG 0 0	IQAL 0 0 0	PIVL * 1 1 1	PYR ***** 9 9 9	* * *					

3 7 1 END PRINT-	0 0 1NFO	0 4 0 4 0 4	0 0 0	0 0 0	0 0 0	1 1 1	9 9 9		
IWAT-PARM1 <pls> # - # C 2 4 6 3 7 1 END IWAT-P</pls>	IWATER SNO RTO 0 0 0 0 0 0 0 2 ARM1	variabl P VRS 0 0 0 0 0 0 0 0 0 0 0 0	e month VNN RT 0 0 0 0 0 0 0	ly pa LI 0 0 0 0 0	aramet	cer val	ue fla	ags ***	÷
IWAT-PARM2 <pls> # - # * 2 4 6 3 7 1 END IWAT-P</pls>	IWA ** LSU 40 40 40 40 40 20 20	TER ing R S 0 0 0 0 0 0	Dut info SLSUR 0.05 0.01 0.05 0.1 0.1 0.01	: Par NS (((((((et 2 SUR).1).1).1).1).1).1	RETS 0.0 0. 0.0 0.0 0.0	*** 8 1 8 5 5 1		
IWAT-PARM3 <pls> # - # * 2 4 6 3 7 1 END IWAT-P</pls>	IWA **PETMA PARM3	TER inp X PE 0 0 0 0 0 0	out info TMIN 0 0 0 0 0 0 0	: Par	st 3		* * *		
IWAT-STATE	1 ** Init ** RET TATE1	ial con S 0 0 0 0 0 0	ditions SURS 0 0 0 0 0 0 0	at s	start	of sim	ulatio	on	
END IMPLND									
<pre><-Source-> <name> # Subbasin 30</name></pre>	* * *		<ar <-fac</ar 	ea> tor->	>	<-Targ <name></name>	et-> #	MBLK Tbl#	* * * * * *
PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7 Cubb				5.79 5.79 1.79 2.6 1.11	5 5 5	RCHRES RCHRES RCHRES RCHRES RCHRES	1 1 1 1	2 3 5 5 5	
Subbasin5*PERLND9PERLND3IMPLND3IMPLND7	• •			1.39 1.39 0.52 0.59	9 2 5 1	RCHRES RCHRES RCHRES RCHRES RCHRES	2 2 2 2 2 2	2 3 5 5 5	
Subbasin 1** PERLND 8 PERLND 8 PERLND 17	*			0.39	9 9 5	COPY COPY COPY	501 501 501	12 13 12	

PERLND 17	0.95	COPY	501	13
IMPLND 2	0.35	COPY	501	15
IMPLND 4	0.32	COPY	501	15
IMPLND 6	0.14	COPY	501	15
Subbasin 2***				
PERLND 8	0.67	COPY	502	12
PERLND 8	0.6/	COPY	502	13
PERLND 17	0.41	COPY	502	12
PERLND 17	0.41	COPY	502	15
IMPLND Z	0.42	COPY	502	15
IMPLIND 4	0.08	COPI	502	15
Subbagin 4***	0.04	COPI	502	ТЭ
DFRIND 2	5 73	COPY	504	12
DFRIND 2	5 73	COPY	504	13
IMPLND 1	0.06	COPY	504	15
IMPLND 4	0.02	COPY	504	15
IMPLND 6	0.01	COPY	504	15
Subbasin 6***	0.01	0011	001	
PERLND 8	10.37	COPY	506	12
PERLND 8	10.37	COPY	506	13
PERLND 17	0.04	COPY	506	12
PERLND 17	0.04	COPY	506	13
IMPLND 2	1.77	COPY	506	15
IMPLND 4	2.59	COPY	506	15
IMPLND 6	1.11	COPY	506	15
Subbasin 7***				
PERLND 9	0.59	COPY	504	12
PERLND 9	0.59	COPY	504	13
PERLND 18	0.86	COPY	504	12
PERLND 18	0.86	COPY	504	13
IMPLND 4	0.62	COPY	504	15
IMPLND 7	0.26	COPY	504	15
Subbasin 8***	0 00	CODI	504	1.0
PERLND 9	2.33	COPY	504	12
PERLND 9	2.33	COPY	504	13
PERLIND 18	2.25	COPY	504	⊥∠ 1 2
PERLIND 10	2.25 1 70	COPI	504	15
IMPLND 5	1.70	COPY	504	15
IMPLND 7	0.05	COPY	504	15
Basin 3B***	0.50	0011	501	10
PERLND 9	1.44	COPY	503	12
PERLND 9	1.44	COPY	603	$12^{$
PERLND 9	1.44	COPY	503	13
PERLND 9	1.44	COPY	603	13
IMPLND 3	0.45	COPY	503	15
IMPLND 3	0.45	COPY	603	15
IMPLND 4	0.65	COPY	503	15
IMPLND 4	0.65	COPY	603	15
IMPLND 7	0.28	COPY	503	15
IMPLND 7	0.28	COPY	603	15
*****Routing*****				
PERLND 9	5.75	COPY	3	12
IMPLND 3	1.79	COPY	3	15
IMPLND 4	2.6	COPY	3	15
IMPLND 7	1.11	COPY	3	15
PERLIND 9	5.75	COPY	3	13
PERLIND 9	1.39	COPY	5	12 1 r
	0.54	COPY	5	15 15
	0.55	COPY	5	15 15
עוביייד / עונייידייד קעובייד	U.24 1 20	COPI	5	⊥⊃ 1 ?
	۲.22 ۱	COPI	5	⊥3 16
RCHRES 2	1	COPI	202	10
		COPV	505	16
END SCHEMATIC	1	COPY	505	16

NETWORK

<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***

<Name>#<Name>##<Name>##<Name>#COPY501OUTPUTMEAN1148.4DISPLY1INPUTTIMSER1COPY502OUTPUTMEAN1148.4DISPLY2INPUTTIMSER1COPY504OUTPUTMEAN1148.4DISPLY2INPUTTIMSER1COPY506OUTPUTMEAN1148.4DISPLY6INPUTTIMSER1COPY503OUTPUTMEAN1148.4DISPLY3INPUTTIMSER1COPY505OUTPUTMEAN1148.4DISPLY5INPUTTIMSER1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out * * *

 1
 Tank 1
 1
 1
 1
 28
 0
 1

 2
 Trapezoidal Pond-056
 1
 1
 1
 28
 0
 1

 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR * * * * * * * * * END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section # - #VC A1 A2 A3ODFVFG for each ***ODGTFG for eachFUNCT for eachFGFGFGpossibleexit***possibleexit1010400000022222010400000022222 END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 <----><----><----><----> * * *
 1
 1
 0.03
 0.0
 0.0
 0.5
 0.0

 2
 2
 0.01
 0.0
 0.0
 0.5
 0.0
 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section *** # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit

 Ior each possible exit
 Ior each possible exit

 <---><--->

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 <----> 1 0 2 0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 91 4 DepthAreaVolumeOutflow1VelocityTravelTime***(ft)(acres)(acre-ft)(cfs)(ft/sec)(Minutes)*** Depth

000000 000220 000620 001135 001742 002426 003178 003991 004858 005777 006741 007749 008798 009884 0112160 013345 012160 015803 012160 015803 012022 02382 023761 025159 026574 028006 029452 023761 025159 026574 028006 029452 030913 032387 033874 035372 036880 039925 041460 043002 044550 044104 047662 044224 050790 052358 053927 055497 057067 058637 057067 058637 071069 07111 075623 071069 071121 078607 0790 07121 078607 0790 07121 078607 0790 07121 07722 0	0.00000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.291229 0.222655 0.233522 0.243906 0.253865 0.263448 0.290306 0.298722 0.306908 0.314881 0.322657 0.330250 0.337672 0.344935 0.352048 0.359020 0.352048 0.359020 0.365859 0.372572 0.379167 0.385649 0.392024 0.398297 0.4044725 0.4044725 0.422457 0.422457 0.428285 0.434034 0.425309 0.445309 0.445309 0.456306 0.461706 0.467044 0.472322 0.477541 0.4827812 0.492867 0.522171 0.526871 0.522171 0.526871 0.522171 0.526871 0.522171 0.526871 0.5272010 0.576327 0.563276 0.567660 0.572010 0.576327 0.576327 0.58859 0.563276 0.567660 0.572010 0.576327 0.
	.000000 .000220 .000620 .001135 .001742 .002426 .003178 .003991 .004858 .005777 .006741 .007749 .008798 .009884 .011005 .012160 .013345 .012160 .013345 .0126574 .025039 .025159 .026574 .028006 .029452 .023761 .025159 .026574 .028006 .029452 .030913 .032387 .033874 .035372 .036880 .039925 .041460 .043002 .044550 .046104 .043002 .044550 .046104 .043023 .038398 .039925 .041460 .043024 .044550 .044550 .046104 .047662 .049224 .05535 .055497 .05440 .059790 .054400 .054400 .059790 .054400 .059790 .054400 .059790 .054400 .059790 .054400 .059790 .054400 .059790 .054400 .059790 .054400 .059790 .0544000 .059700 .0544000 .059700 .0540000000000000000000000000

4.666667 4.733333 4.800000 4.866667 4.933333 5.000000 5.066667 5.133333 5.200000 5.266667 5.333333 5.400000 5.466667 5.533333 5.600000 5.666667 5.733333 5.800000 5.866667 5.933333 6.000000 END FTABLE FTABLE	0.019584 0.019224 0.018843 0.018439 0.018010 0.017556 0.017073 0.016560 0.016013 0.015430 0.014804 0.014132 0.013406 0.012616 0.011751 0.010790 0.009708 0.008456 0.006944 0.004938 0.000000 E 1 2	0.092628 0.093922 0.095191 0.096434 0.097649 0.098835 0.099989 0.101111 0.102196 0.103245 0.104253 0.105218 0.106136 0.107004 0.107816 0.108568 0.109252 0.109859 0.110374 0.110774 0.110994	0.589089 0.593281 0.597445 0.601580 0.605686 0.609765 0.978910 1.648713 2.508517 3.508899 4.608973 5.768278 6.945177 8.097647 9.185308 10.17228 11.03063 11.74437 12.31382 12.76044 13.13191		
Depth (ft) 0.00000 0.088889 0.177778 0.266667 0.355556 0.444444 0.533333 0.622222 0.711111 0.800000 0.888889 0.977778 1.066667 1.155556 1.244444 1.333333 1.422222 1.511111 1.600000 1.688889 1.777778 1.866667 1.955556 2.044444 2.133333 2.222222 2.311111 2.400000 2.488889 2.577778 2.666667 2.755556 2.844444 2.933333 3.022222 3.11111 3.200000 3.288889 3.377778 3.466667 3.555556 3.644444 3.733333 3.822222	Area (acres) 0.013223 0.013280 0.013388 0.013395 0.013453 0.013511 0.013569 0.013627 0.013685 0.013743 0.013801 0.013801 0.013801 0.013801 0.013918 0.013977 0.014036 0.01495 0.014095 0.014154 0.014213 0.014273 0.014273 0.014452 0.014572 0.014572 0.014572 0.014572 0.014572 0.014575 0.015178 0.015240 0.015301 0.015363 0.015424 0.015548 0.015548	Volume (acre-ft) 0.000000 0.001178 0.002361 0.003549 0.004742 0.005941 0.007144 0.008353 0.009567 0.010786 0.012010 0.013239 0.014474 0.015714 0.016959 0.018209 0.019465 0.020725 0.021991 0.023263 0.024539 0.024539 0.025821 0.027109 0.028401 0.029699 0.031002 0.032311 0.033625 0.034944 0.036269 0.037593 0.034944 0.042763 0.042694 0.042763 0.0428437 0.0428437 0.0428437 0.0428437 0.0428437 0.042871 0.052591 0.053987 0.055388	Outflowl (cfs) 0.000000 0.267497 0.378297 0.463318 0.598140 0.655230 0.707729 0.756594 0.802490 0.845898 0.887186 0.926635 0.964472 1.000880 1.036010 1.069986 1.102916 1.134892 1.165990 1.196281 1.225823 1.254670 1.282868 1.310460 1.337483 1.363970 1.389953 1.415459 1.440513 1.465139 1.48955 1.559759 1.559759 1.559759 1.559759 1.552531 1.604979 1.627118 1.648959 1.670515 1.691797 1.712814 1.733576 1.754092	Velocity (ft/sec)	Travel Time*** (Minutes)***

3.911111 0.015860 0.056795 1.774371 4.00000 0.015923 0.058208 1.794421 4.088889 0.015985 0.059626 1.814250 4.177778 0.016048 0.061050 1.833864 4.266667 0.016111 0.062479 1.853270 4.355556 0.016175 0.063914 1.872476 4.444444 0.016238 0.065354 1.891486 4.4533333 0.016301 0.066801 1.910307 4.622222 0.016365 0.068253 1.928945 4.71111 0.016429 0.069710 1.947404 4.80000 0.016492 0.071173 1.965690 4.888889 0.016556 0.072642 1.983807 4.977778 0.016620 0.074117 2.001761 5.066667 0.016685 0.075597 2.019555 5.155556 0.016749 0.077083 2.037193 5.244444 0.016813 0.078574 2.054680 5.33333 0.016878 0.081072 2.072019 5.422222 0.016943 0.081575 2.089215 5.51111 0.017007 0.083084 2.106270 5.600000 0.017072 0.084598 2.123188 5.688889 0.01737 0.086119 2.139972 5.777778 0.017203 0.087645 2.156626 5.866667 0.017268 0.089177 2.173152 5.955556 0.01733 0.090715 2.189553 6.044444 0.017399 0.092259 2.205833 6.13333 0.017465 0.093808 2.221993 6.22222 0.017530 0.095363 2.238037 6.311111 0.017076 0.083084 2.2269783 6.488889 0.017729 0.100652 2.253966 6.400000 0.01762 0.098492 2.269783 6.48889 0.017729 0.100653 2.285491 6.577778 0.01729 0.100643 2.308260 6.666667 0.017861 0.103228 2.327666 6.75556 0.017930 0.095363 2.238037 6.31111 0.017662 0.198492 2.269783 6.48889 0.017729 0.100654 2.363199 6.84444 0.017995 0.106415 2.363199 6.844444 0.017995 0.106415 2.363199 7.022222 0.01828 0.109626 2.467500 7.11111 0.018018 2.300329 7.022222 0.01828 0.109626 2.467500 7.11111 0.01845 0.11748 1.3188544 7.20000 0.018262 0.112861 4.316850 7.28889 0.01830 0.114487 5.685745 7.377778 0.018397 0.116120 7.207863 7.46667 0.018465 0.11778 8.785919 7.55556 0.018327 0.1124371 13.83219 7.644444 0.018600 0.121053 11.71823 7.73333 0.018668 0.122709 12.90286 7.82222 0.018360 0.124371 13.83219 7.91111 0.018804 0.126040 14.51567 8.000000 0.018872 0.127714 15.03487 END FTABLE 2	
EXT SOURCES <-Volume-> <member> SsysSgap<mult>Tran <name> # <name> # tem strg<-factor->strg WDM 2 PREC ENGL 1 WDM 2 PREC ENGL 1 WDM 1 EVAP ENGL 0.76 WDM 1 EVAP ENGL 0.76</name></name></mult></member>	<-Target vols> <-Grp> <-Member-> *** <name> # # <name> # # *** PERLND 1 999 EXTNL PREC IMPLND 1 999 EXTNL PREC PERLND 1 999 EXTNL PETINP IMPLND 1 999 EXTNL PETINP</name></name>
END EXT SOURCES	
EXT TARGETS <-Volume-> <-Grp> <-Member-> <mult>Tran <name> # <name> # #<-factor->strg COPY 1 OUTPUT MEAN 1 1 48.4 COPY 501 OUTPUT MEAN 1 1 48.4 COPY 2 OUTPUT MEAN 1 1 48.4 COPY 502 OUTPUT MEAN 1 1 48.4 COPY 602 OUTPUT MEAN 1 1 48.4 COPY 602 OUTPUT MEAN 1 1 48.4</name></name></mult>	<pre><-Volume-> <member> Tsys Tgap Amd *** <name> # <name> tem strg strg*** WDM 701 FLOW ENGL REPL WDM 801 FLOW ENGL REPL WDM 901 FLOW ENGL REPL WDM 702 FLOW ENGL REPL WDM 802 FLOW ENGL REPL WDM 902 FLOW ENGL REPL WDM 704 FLOW ENGL REPL</name></name></member></pre>

COPY	504	OUTPUT	MEAN	1 1	48.4	WDM	804	FLOW	I El	JGL	REPL
COPY	604	OUTPUT	MEAN	1 1	48.4	WDM	904	FLOW	I El	JGL	REPL
COPY	6	OUTPUT	MEAN	1 1	48.4	WDM	706	FLOW	I El	IGL	REPL
COPY	506	OUTPUT	MEAN	1 1	48.4	WDM	806	FLOW	I El	IGL	REPL
COPY	606	OUTPUT	MEAN	1 1	48.4	WDM	906	FLOW	I EI	JGL	REPL
COPY	3	OUTPUT	MEAN	1 1	48.4	WDM	703	FLOW	I EI	IGL	REPL
COPY	503	OUTPUT	MEAN	1 1	48.4	WDM	803	FLOW	 1	JGL	REPL
COPY	603		MEAN	1 1	48 4	WDM	903	FLOW	 1.3	JGT.	REPL
BCHBES	1	HADB	RO	1 1	10.1	WDM	1004	FLOW	<u>ים</u> זים ז	JCI.	REDI.
RCHRES	1	HYDR	STACE	1 1	1	WDM	1001	STAC	ים. זים י	JCI.	REIL REDI.
DCUDEC	2	UVDD	DIAGE	1 1	1		1005	ET OW	ים. זים ז		
RCHRES	2		CTACE	1 1	1		1000		יים י		DEDI
CODY	2 5		MEAN	1 1			705	DIAG	ום דיי		REPL
COPI		OUTPUT	MEAN	1 1	40.4		705	FLOW		IGL IGI	REPL
COPI	505	OUTPUT	MEAN	1 1	40.4		005	FLOW		IGT IGT	REPL
COPY	005	OUTPUT	MEAN	ТТ	48.4	WDM	905	FLOW	I EI	ЧĠГ	REPL
END EXI	I TAR	GETS									
MASS-LI	.NK						1				باد باد باد
<volume< td=""><td><u> </u></td><td><-Grp></td><td><-Membe</td><td>er-></td><td><mult></mult></td><td><rrarge< td=""><td>et></td><td></td><td><-Grp></td><td><-Mem</td><td>Jer->^^^</td></rrarge<></td></volume<>	<u> </u>	<-Grp>	<-Membe	er->	<mult></mult>	<rrarge< td=""><td>et></td><td></td><td><-Grp></td><td><-Mem</td><td>Jer->^^^</td></rrarge<>	et>		<-Grp>	<-Mem	Jer->^^^
<name></name>		_	<name></name>	# #	<-lactor->	<name:< td=""><td>></td><td></td><td></td><td><name:< td=""><td>> # #***</td></name:<></td></name:<>	>			<name:< td=""><td>> # #***</td></name:<>	> # #***
MASS-	-LINK		2				~				
PERLND		PWATER	SURO		0.083333	RCHRE	S		INFLOW	IVOL	
END M	IASS-	LINK	2								
		_									
MASS-	-LINK	5	3								
PERLND		PWATER	IFWO		0.083333	RCHRE	S		INFLOW	IVOL	
END M	IASS-	-LINK	3								
MASS-	-LINK	5	5								
IMPLND		IWATER	SURO		0.083333	RCHRE	S		INFLOW	IVOL	
END M	IASS-	LINK	5								
MASS-	-LINK	5	12								
PERLND		PWATER	SURO		0.083333	COPY			INPUT	MEAN	
END M	IASS-	-LINK	12								
MASS-	-LINK	5	13								
PERLND		PWATER	IFWO		0.083333	COPY			INPUT	MEAN	
END M	IASS-	LINK	13								
MASS-	-LINK	5	15								
IMPLND		IWATER	SURO		0.083333	COPY			INPUT	MEAN	
END M	IASS-	LINK	15						• -		
MASS-	-LINK	5	16								
RCHRES		ROFTIOW				COPY			INPUT	MEAN	
END N	IASS-	TTNK	16						0 +		

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

PROJECT REPORT

Tamarack Project Basin Future Fully Developed Conditions

General Model Information

Project Name:	Tamarack - Durations
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/18/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

Low	Flow	Threshold for POC1:	50 Percent of the 2 Year
High	Flow	Threshold for POC1:	50 Year
Low	Flow	Threshold for POC2:	50 Percent of the 2 Year
High	Flow	Threshold for POC2:	50 Year
Low	Flow	Threshold for POC3:	50 Percent of the 2 Year
High	Flow	Threshold for POC3:	50 Year
Low	Flow	Threshold for POC4:	50 Percent of the 2 Year
High	Flow	Threshold for POC4:	50 Year
Low High	Flow Flow	Threshold for POC5:	50 Percent of the 2 Year
	_		
Low	Flow	Threshold for POC6:	50 Percent of the 2 Year
High	Flow	Threshold for POC6:	50 Year
Low	Flow	Threshold for POC6:	50 Percent of the 2 Year
High	Flow	Threshold for POC6:	50 Year
Low	Flow	Threshold for POC7:	50 Percent of the 2 Year
High	Flow	Threshold for POC7:	50 Year

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Subbasin 2	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25

Element Flows To: Surface Interflow Groundwater Subbasin 3 Detention Subbasin 3 Detention

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7

Element Flows To: Surface Interflow Groundwater Subbasin 5 Detention

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod Element Flows To:	acre 5.73	
Surface	Interflow	G

Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	3.96
Element Flows To:	
Outlet 1	Outlet 2
Basin 4 - Perv Lateral	Flow
Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.33 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .86 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep 2.25 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .59 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Subbasin 3B Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Steep	acre 1.44
Pervious Total	1.44
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.65 0.28
Impervious Total	1.38
Basin Total	2.82

Element Flows To: Surface Interflow

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.38 0.94
Pervious Total	1.32
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.33 0.14
Impervious Total	0.82
Basin Total	2.14
Flomont Flows To:	

Surface	Interflow	Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.52 0.32
Pervious Total	0.84
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.25 0.11
Impervious Total	0.78
Basin Total	1.62
Element Flows To: Surface	Interflow

Subbasin 3A	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.54
Pervious Total	5.54
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.74 1.18
Impervious Total	5.71
Basin Total	11.25
Floment Flows To:	

Element Flows To:	
Surface	Interflow
Tank 1	Tank 1

Subbasin 4 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.82
Pervious Total	5.82
Impervious Land Use	acre
Impervious Total	0
Basin Total	5.82

Element Flows To: Surface Interflow Groundwater

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.15
Pervious Total	1.15
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.73 0.31
Impervious Total	1.56
Basin Total	2.71
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 9.37 0.03
Pervious Total	9.4
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 3.3 1.41
Impervious Total	6.48
Basin Total	15.88
Element Flows To: Surface	Interflow

Subbasin 7	
Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.52 0.77
Pervious Total	1.29
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.72 0.31
Impervious Total	1.03
Basin Total	2.32
Element Flows To	

Element Flows To: Surface Interflow

Subbasin 8 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 2.2 2.13
Pervious Total	4.33
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.78 1.02 0.44
Impervious Total	3.24
Basin Total	7.57
Element Flows To: Surface	Interflow

Basin 3B Bypass:	Yes
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.69 0.29
Impervious Total	1.43
Basin Total	2.82

Element Flows To: Surface Inter

Interflow

Routing Elements Predeveloped Routing

Subbasin 5 Detention

Bottom Length: Bottom Width: Depth: Volume at riser head: Side slope 1: Side slope 2: Side slope 3:	24.00 ft. 24.00 ft. 8 ft. 0.1096 acre-feet. 0.292 To 1 0.292 To 1 0.292 To 1	
Side slope 4:	0.292 To 1	
Riser Height: Riser Diameter: Orifice 1 Diameter: Orifice 2 Diameter: Element Flows To:	7 ft. 24 in. 5.75 in. Elevation:0 ft. 1 in. Elevation:6.5 f	t.
Outlet 1	Outlet 2	

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.013	0.000	0.000	0.000
0.0889	0.013	0.001	0.267	0.000
0.1778	0.013	0.002	0.378	0.000
0.2667	0.013	0.003	0.463	0.000
0.3556	0.013	0.004	0.535	0.000
0.4444	0.013	0.005	0.598	0.000
0.5333	0.013	0.007	0.655	0.000
0.6222	0.013	0.008	0.707	0.000
0.7111	0.013	0.009	0.756	0.000
0.8000	0.013	0.010	0.802	0.000
0.8889	0.013	0.012	0.845	0.000
0.9778	0.013	0.013	0.887	0.000
1.0667	0.013	0.014	0.926	0.000
1.1556	0.014	0.015	0.964	0.000
1.2444	0.014	0.017	1.000	0.000
1.3333	0.014	0.018	1.036	0.000
1.4222	0.014	0.019	1.070	0.000
1.5111	0.014	0.020	1.102	0.000
1.6000	0.014	0.022	1.134	0.000
1.6889	0.014	0.023	1.166	0.000
1.7778	0.014	0.024	1.196	0.000
1.8667	0.014	0.025	1.225	0.000
1.9556	0.014	0.027	1.254	0.000
2.0444	0.014	0.028	1.282	0.000
2.1333	0.014	0.029	1.310	0.000
2.2222	0.014	0.031	1.337	0.000
2.3111	0.014	0.032	1.364	0.000
2.4000	0.014	0.033	1.390	0.000
2.4889	0.014	0.034	1.415	0.000
2.5778	0.014	0.036	1.440	0.000
2.6667	0.015	0.037	1.465	0.000
2.7556	0.015	0.038	1.489	0.000

2.8444 2.9333 3.0222 3.1111	0.015 0.015 0.015 0.015	0.040 0.041 0.043 0.044	1.513 1.536 1.559 1.582	0.000 0.000 0.000
3.2000	0.015	0.045	1.605	0.000
3.2889	0.015	0.047	1.627	0.000
3.3778	0.015	0.048	1.649	0.000
3.4667	0.015	0.049	1.670	0.000
3.5556	0.015	0.051	1.691	0.000
3.6444	0.015	0.052	1.712	0.000
3.7333	0.015	0.054	1.733	0.000
3.8222	0.015	0.055	1.754	0.000
3.9111	0.015	0.056	1.774	0.000
4.0000	0.015	0.058	1.794	0.000
4.0889	0.016	0.059	1.814	0.000
4.1778	0.016	0.061	1.833	0.000
4.2667	0.016	0.062	1.853	0.000
4.3556	0.016	0.063	1.872	0.000
4.4444 4.5333 4.6222 4.7111	0.016 0.016 0.016	0.065 0.066 0.068	1.891 1.910 1.928	0.000 0.000 0.000
4.8000 4.8889 4.9778	0.016 0.016 0.016 0.016	0.009 0.071 0.072 0.074	1.947 1.965 1.983 2.001	0.000 0.000 0.000 0.000
5.0667	0.016	0.075	2.019	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
5.1556	0.016	0.077	2.037	
5.2444	0.016	0.078	2.054	
5.3333	0.016	0.080	2.072	
5.4222	0.016	0.081	2.089	0.000
5.5111	0.017	0.083	2.106	0.000
5.6000	0.017	0.084	2.123	0.000
5.8889	0.017	0.086	2.140	0.000
5.7778	0.017	0.087	2.156	0.000
5.8667	0.017	0.089	2.173	0.000
5.9556	0.017	0.090	2.189	0.000
6.0444	0.017	0.092	2.205	0.000
6.1333	0.017	0.093	2.222	0.000
6.2222	0.017	0.095	2.238	0.000
6.4000 6.4889 6.5778	0.017 0.017 0.017 0.017	0.098 0.098 0.100 0.101	2.254 2.269 2.285 2.308	0.000 0.000 0.000 0.000
6.6667 6.7556 6.8444 6.9333	0.017 0.017 0.018 0.018	0.103 0.104 0.106 0.108	2.327 2.345 2.363 2.380	0.000 0.000 0.000
7.0222 7.1111 7.2000	0.018 0.018 0.018 0.018	0.109 0.111 0.112	2.467 3.198 4.316	0.000 0.000 0.000 0.000
7.2889	0.018	0.114	5.685	0.000
7.3778	0.018	0.116	7.207	0.000
7.4667	0.018	0.117	8.785	0.000
7.5556	0.018	0.119	10.32	0.000
7.6444 7.7333 7.8222	0.018 0.018 0.018	0.121 0.122 0.124 0.126	11.71 12.90 13.83	0.000 0.000 0.000
1.3111	0.010	0.120	14.51	0.000

8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Subbasin 3 Detention

Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.000	0.000	0.000	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0667	0.004	0.000	0.070	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1333	0.006	0.000	0.099	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2000	0.008	0.001	0.122	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2667	0.009	0.001	0.140	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3333	0.010	0.002	0.157	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4000	0.011	0.003	0.172	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4667	0.012	0.004	0.186	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5333	0.013	0.004	0.199	0.000
0.66670.0140.0060.2220.0000.73330.0150.0070.2330.0000.80000.0160.0080.2430.0000.86670.0160.0090.2530.0000.93330.0170.0110.2630.0001.00000.0170.0120.2720.0001.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.33330.0190.0170.3060.000	0.6000	0.014	0.005	0.211	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6667	0.014	0.006	0.222	0.000
0.80000.0160.0080.2430.0000.86670.0160.0090.2530.0000.93330.0170.0110.2630.0001.00000.0170.0120.2720.0001.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.000	0.7333	0.015	0.007	0.233	0.000
0.86670.0160.0090.2530.0000.93330.0170.0110.2630.0001.00000.0170.0120.2720.0001.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.000	0.8000	0.016	0.008	0.243	0.000
0.93330.0170.0110.2630.0001.00000.0170.0120.2720.0001.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.0001.33330.0190.0180.3140.000	0.8667	0.016	0.009	0.253	0.000
1.00000.0170.0120.2720.0001.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.0001.33330.0190.0180.3140.000	0.9333	0.017	0.011	0.263	0.000
1.06670.0180.0130.2810.0001.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.0001.33330.0190.0180.3140.000	1.0000	0.017	0.012	0.272	0.000
1.13330.0180.0140.2900.0001.20000.0180.0150.2980.0001.26670.0190.0170.3060.0001.33330.0190.0180.3140.000	1.0667	0.018	0.013	0.281	0.000
1.2000 0.018 0.015 0.298 0.000 1.2667 0.019 0.017 0.306 0.000 1.3333 0.019 0.018 0.314 0.000	1.1333	0.018	0.014	0.290	0.000
1.2667 0.019 0.017 0.306 0.000 1.3333 0.019 0.018 0.314 0.000	1.2000	0.018	0.015	0.298	0.000
	1.2667	0.019	0.017	0.306	0.000
1.0000 0.010 0.014 0.000	1.3333	0.019	0.018	0.314	0.000
1.4000 0.019 0.019 0.322 0.000	1.4000	0.019	0.019	0.322	0.000
1.4667 0.020 0.021 0.330 0.000	1.4667	0.020	0.021	0.330	0.000
1.5333 0.020 0.022 0.337 0.000	1.5333	0.020	0.022	0.337	0.000
1.6000 0.020 0.023 0.344 0.000	1.6000	0.020	0.023	0.344	0.000
1.6667 0.021 0.025 0.352 0.000	1.6667	0.021	0.025	0.352	0.000
1.7333 0.021 0.026 0.359 0.000	1.7333	0.021	0.026	0.359	0.000
1.8000 0.021 0.028 0.365 0.000	1.8000	0.021	0.028	0.365	0.000
1.8667 U.U21 U.U29 U.372 U.U00 1.0322 0.022 0.020 0.020 0.000	1.8007	0.021	0.029	0.372	0.000
1.9333 0.022 0.030 0.379 0.000	1.9333	0.022	0.030	0.379	0.000
2.0000 0.022 0.032 0.385 0.000	2.0000	0.022	0.032	0.385	0.000
2.0007 0.022 0.033 0.392 0.000	2.0007	0.022	0.033	0.392	0.000
2.1333 0.022 0.035 0.398 0.000	2.1333	0.022	0.035	0.398	0.000
2.2000 0.022 0.030 0.404 0.000	2.2000	0.022	0.030	0.404	0.000
2.2007 0.022 0.030 0.410 0.000	2.2007	0.022	0.030	0.410	0.000
2.0000 0.020 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	2.0000	0.023	0.039	0.410	0.000
2.4000 0.023 0.041 0.422 0.000 2.4667 0.023 0.042 0.428 0.000	2.4000	0.023	0.041	0.422	0.000
2.4007 0.023 0.043 0.420 0.000	2.4007	0.023	0.043	0.420	0.000
2 6000 0 023 0 046 0 439 0 000	2.6000	0.023	0.046	0.439	0.000

2.6667	0.023	0.047	0.445	0.000
2.8000	0.023	0.050	0.456	0.000
2.8667	0.023	0.052	0.461	0.000
2.9333	0.023	0.053	0.467	0.000
3.0000	0.023	0.055	0.472	0.000
3.1333	0.023	0.058	0.482	0.000
3.2000	0.023	0.060	0.487	0.000
3.2667	0.023	0.061	0.492	0.000
3.3333	0.023	0.063	0.497	0.000
3.4000	0.023	0.064	0.502	0.000
3.5333	0.023	0.068	0.512	0.000
3.6000	0.023	0.069	0.517	0.000
3.6667	0.023	0.071	0.522	0.000
3.7333	0.022	0.072	0.526	0.000
3.8667	0.022	0.074	0.536	0.000
3.9333	0.022	0.077	0.540	0.000
4.0000	0.022	0.078	0.545	0.000
4.0667	0.022	0.080	0.549	0.000
4.1333	0.021	0.081	0.554	0.000
4.2667	0.021	0.084	0.563	0.000
4.3333	0.021	0.085	0.567	0.000
4.4000	0.020	0.087	0.572	0.000
4.4007	0.020	0.088	0.576	0.000
4.6000	0.020	0.090	0.584	0.000
4.6667	0.019	0.092	0.589	0.000
4.7333	0.019	0.093	0.593	0.000
4.8000	0.018	0.095	0.597	0.000
4.0007	0.018	0.098	0.601	0.000
5.0000	0.017	0.098	0.609	0.000
5.0667	0.017	0.100	0.978	0.000
5.1333	0.016	0.101	1.648	0.000
5.2000	0.016	0.102	2.508	0.000
5.3333	0.013	0.103	4.609	0.000
5.4000	0.014	0.105	5.768	0.000
5.4667	0.013	0.106	6.945	0.000
5.5333	0.012	0.107	8.097	0.000
5.6667	0.011	0.107	9.165	0.000
5.7333	0.009	0.109	11.03	0.000
5.8000	0.008	0.109	11.74	0.000
5.8667	0.006	0.110	12.31	0.000
5.9333 6.0000	0.004	0.110	12.76	0.000
6.0667	0.000	0.000	13.68	0.000

Mitigated Routing

Tank 1	
Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0667	0.004	0.000	0.070	0.000
0.1333	0.006	0.000	0.099	0.000
0.2000	0.008	0.001	0.122	0.000
0.2667	0.009	0.001	0.140	0.000
0.3333	0.010	0.002	0.157	0.000
0.4000	0.011	0.003	0.172	0.000
0.4667	0.012	0.004	0.186	0.000
0.5333	0.013	0.004	0.199	0.000
0.6000	0.014	0.005	0.211	0.000
0.6667	0.014	0.006	0.222	0.000
0.7333	0.015	0.007	0.233	0.000
0.8000	0.016	0.008	0.243	0.000
0.8667	0.016	0.009	0.253	0.000
0.9333	0.017	0.011	0.263	0.000
1.0000	0.017	0.012	0.272	0.000
1.0667	0.018	0.013	0.281	0.000
1.1333	0.018	0.014	0.290	0.000
1.2000	0.018	0.015	0.298	0.000
1.2007	0.019	0.017	0.306	0.000
1.3333	0.019	0.018	0.314	0.000
1.4000	0.019	0.019	0.322	0.000
1.4007	0.020	0.021	0.330	0.000
1.0000	0.020	0.022	0.337	0.000
1.0000	0.020	0.025	0.344	0.000
1 7333	0.021	0.025	0.352	0.000
1 8000	0.021	0.020	0.365	0.000
1.8667	0.021	0.020	0.300	0.000
1 9333	0.022	0.020	0.379	0.000
2.0000	0.022	0.032	0.385	0.000
2.0667	0.022	0.033	0.392	0.000
2.1333	0.022	0.035	0.398	0.000
2.2000	0.022	0.036	0.404	0.000
2.2667	0.022	0.038	0.410	0.000
2.3333	0.023	0.039	0.416	0.000
2.4000	0.023	0.041	0.422	0.000
2.4667	0.023	0.043	0.428	0.000

2.5333	0.023	0.044	0.434	0.000
2.6000	0.023	0.046	0.439	0.000
2.0007	0.023	0.047	0.445	0.000
2 8000	0.023	0.040	0.456	0.000
2.8667	0.023	0.052	0.461	0.000
2.9333	0.023	0.053	0.467	0.000
3.0000	0.023	0.055	0.472	0.000
3.0667	0.023	0.057	0.477	0.000
3.1333	0.023	0.058	0.482	0.000
3.2000	0.023	0.060	0.487	0.000
3.2667	0.023	0.061	0.492	0.000
3.3333	0.023	0.063	0.497	0.000
3.4000	0.023	0.064	0.502	0.000
3.4007	0.023	0.000	0.507	0.000
3,6000	0.023	0.000	0.512	0.000
3 6667	0.023	0.000	0.522	0.000
3.7333	0.022	0.072	0.526	0.000
3.8000	0.022	0.074	0.531	0.000
3.8667	0.022	0.075	0.536	0.000
3.9333	0.022	0.077	0.540	0.000
4.0000	0.022	0.078	0.545	0.000
4.0667	0.022	0.080	0.549	0.000
4.1333	0.021	0.081	0.554	0.000
4.2000	0.021	0.083	0.558	0.000
4.2007	0.021	0.004	0.505	0.000
4.3333	0.021	0.005	0.507	0.000
4.4667	0.020	0.088	0.576	0.000
4.5333	0.020	0.090	0.580	0.000
4.6000	0.019	0.091	0.584	0.000
4.6667	0.019	0.092	0.589	0.000
4.7333	0.019	0.093	0.593	0.000
4.8000	0.018	0.095	0.597	0.000
4.8667	0.018	0.096	0.601	0.000
4.9333	0.018	0.097	0.000	0.000
5.0000	0.017	0.098	0.009	0.000
5 1333	0.017	0.100	1 648	0.000
5.2000	0.016	0.102	2.508	0.000
5.2667	0.015	0.103	3.508	0.000
5.3333	0.014	0.104	4.609	0.000
5.4000	0.014	0.105	5.768	0.000
5.4667	0.013	0.106	6.945	0.000
5.5333	0.012	0.107	8.097	0.000
5.6000	0.011	0.107	9.185	0.000
5.6667	0.010	0.108	10.17	0.000
5.7333	0.009	0.109	11.03	0.000
5 8667	0.008	0.109	12 31	0.000
5.9333	0.004	0.110	12.01	0.000
6.0000	0.000	0.111	13.13	0.000
6.0667	0.000	0.000	13.68	0.000

Trapezoidal Pond 1

Bottom Length:	24.00 ft.
Bottom Width:	24.00 ft.
Depth:	8 ft.
Volume at riser head:	0.1096 acre-feet.
Side slope 1:	0.292 To 1
Side slope 2:	0.292 To 1
Side slope 3:	0.292 To 1
Side slope 4:	0.292 To 1
Discharge Structure	
Riser Height:	7 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	5.75 in. Elevation:0 ft.
Orifice 2 Diameter:	1 in. Elevation:6.5 ft.
Element Flows To:	
Outlet 1	Outlet 2

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.013	0.000	0.000	0.000
0.0889	0.013	0.001	0.267	0.000
0.1778	0.013	0.002	0.378	0.000
0.2667	0.013	0.003	0.463	0.000
0.3556	0.013	0.004	0.535	0.000
0.4444	0.013	0.005	0.598	0.000
0.5333	0.013	0.007		0.000
0.0222	0.013	0.000	0.707	0.000
0.7111	0.013	0.009	0.750	0.000
0.0000	0.013	0.010	0.002	0.000
0.0009	0.013	0.012	0.045	0.000
0.9770	0.013	0.013	0.007	0.000
1.0007	0.013	0.014	0.920	0.000
1.1330	0.014	0.013	1 000	0.000
1.2444	0.014	0.017	1.000	0.000
1.0000	0.014	0.010	1.030	0.000
1.4222	0.014	0.019	1 102	0.000
1 6000	0.014	0.020	1 134	0.000
1.6889	0.014	0.022	1 166	0.000
1 7778	0.014	0.020	1 196	0.000
1 8667	0.014	0.025	1 225	0.000
1.9556	0.014	0.027	1.254	0.000
2.0444	0.014	0.028	1.282	0.000
2.1333	0.014	0.029	1.310	0.000
2.2222	0.014	0.031	1.337	0.000
2.3111	0.014	0.032	1.364	0.000
2.4000	0.014	0.033	1.390	0.000
2.4889	0.014	0.034	1.415	0.000
2.5778	0.014	0.036	1.440	0.000
2.6667	0.015	0.037	1.465	0.000
2.7556	0.015	0.038	1.489	0.000
2.8444	0.015	0.040	1.513	0.000
2.9333	0.015	0.041	1.536	0.000
3.0222	0.015	0.043	1.559	0.000
3.1111	0.015	0.044	1.582	0.000

3.2000	0.015	0.045	1.605	$0.000 \\ 0.000 \\ 0.000$
3.2889	0.015	0.047	1.627	
3.3778	0.015	0.048	1.649	
3.4667	0.015	0.049	1.670	0.000
3.5556	0.015	0.051	1.691	
3.0444 3.7333 3.8222	0.015 0.015 0.015	0.052 0.054 0.055	1.733 1.754	0.000
3.9111	0.015	0.056	1.774	0.000
4.0000	0.015	0.058	1.794	
4.0889	0.016	0.059	1.814	$0.000 \\ 0.000$
4.1778	0.016	0.061	1.833	
4.2667	0.016	0.062	1.853	0.000
4.3556	0.016	0.063	1.872	0.000
4.4444 4.5333	0.016 0.016	0.065	1.891 1.910	0.000
4.0222 4.7111 4.8000	0.016	0.068	1.920 1.947 1.965	0.000
4.8889	0.016 0.016	0.072	1.983	0.000
5.0667	0.016	0.075	2.019	0.000
5.1556	0.016	0.077	2.037	0.000
5.2444	0.016	0.078	2.054	0.000
5.3333	0.016	0.080	2.072	0.000
5.4222	0.016	0.081	2.089	0.000
5.5111	0.017	0.083	2.106	0.000
5.6889 5.7778	0.017	0.084 0.086 0.087	2.123 2.140 2.156	0.000
5.8667 5.9556	0.017 0.017 0.017	0.089 0.090	2.173 2.189	0.000
6.0444	0.017	0.092	2.205	0.000
6.1333	0.017	0.093	2.222	0.000
6.2222	0.017	0.095	2.238	0.000
6.3111	0.017	0.096	2.254	0.000
6.4889 6.5778	0.017 0.017 0.017	0.098 0.100 0.101	2.269 2.285 2.308	0.000
6.6667 6.7556	0.017 0.017 0.017	0.103 0.104	2.327 2.345	0.000
6.8444	0.018	0.106	2.363	$0.000 \\ 0.000$
6.9333	0.018	0.108	2.380	
7.0222	0.018	0.109	2.467	0.000
7.1111	0.018	0.111	3.198	0.000
7.2000	0.018	0.112	4.316	0.000
7.2889	0.018	0.114	5.685	
7.3778	0.018	0.116	7.207	
7.4667 7.5556	0.018 0.018	0.117 0.117 0.119	8.785 10.32	0.000 0.000
7.6444	0.018	0.121	11.71	0.000
7.7333	0.018	0.122	12.90	0.000
7.8222	0.018	0.124	13.83	0.000
7.9111	0.018	0.126	14.51	0.000
8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.32 Total Impervious Area: 0.82

Flow Frequency Method: Log Pearson Type III 17B

 Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.416796

 5 year
 0.567316

 10 year
 0.677895

 25 year
 0.830552

 50 year
 0.954007

 100 year
 1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.419476
0.570091
0.680611
0.83304
0.956208
1.087905

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

lear	Freuevelopeu	wiitiyate
1949	0.612	0.615
1950	0.594	0.595
1951	0.375	0.376
1952	0.249	0.251
1953	0.279	0.281
1954	0.341	0.343
1955	0.379	0.382
1956	0.346	0.347
1957	0.439	0.442
1958	0.321	0.323

19840.2890.29119850.3940.39819860.3660.36819870.4870.49219880.2770.280	19840.2890.29119850.3940.39819860.3660.36819870.4870.49219880.2770.28019890.4230.42719901.0461.04619910.7640.76619920.3090.31119930.2880.290	1984 0.289 0.291 1985 0.394 0.398 1986 0.366 0.368 1987 0.487 0.492 1988 0.277 0.280 1989 0.423 0.427 1990 1.046 1.046 1991 0.764 0.766 1992 0.309 0.311 1993 0.288 0.290 1994 0.258 0.260 1995 0.356 0.359 1996 0.561 0.562 1997 0.430 0.433 1998 0.377 0.379 1999 0.920 0.925	1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1977 1978 1979 1980 1981	0.300 0.393 0.348 0.274 0.376 0.324 0.459 0.282 0.596 0.613 0.414 0.386 0.470 0.559 0.243 0.459 0.243 0.459 0.243 0.459 0.338 0.425 0.518 0.717 0.403 0.637 0.436	0.303 0.395 0.351 0.277 0.378 0.325 0.462 0.284 0.597 0.617 0.417 0.389 0.473 0.561 0.246 0.462 0.452 0.358 0.340 0.428 0.523 0.719 0.406 0.640 0.440
	19890.4230.42719901.0461.04619910.7640.76619920.3090.31119930.2880.290	19890.4230.42719901.0461.04619910.7640.76619920.3090.31119930.2880.29019940.2580.26019950.3560.35919960.5610.56219970.4300.43319980.3770.37919990.9200.925	1984 1985 1986 1987 1988	0.289 0.394 0.366 0.487 0.277	0.291 0.398 0.368 0.492 0.280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20000.4100.41320010.4080.41220020.5540.55720030.5250.52720040.8560.861		2005 2006 2007 2008 2009	0.352 0.349 0.987 0.711 0.468	0.355 0.350 0.986 0.714 0.473

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated11.04581.0461

1.0458	1.0461
0.9867	0.9861
0.9201	0.9251
	1.0458 0.9867 0.9201

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 34 35 36 37 38	0.8561 0.7635 0.7165 0.7114 0.6369 0.6132 0.6116 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4696 0.4685 0.4595 0.4595 0.4595 0.4304 0.4358 0.4304 0.4358 0.4304 0.4251 0.4251 0.4234 0.4251 0.4234 0.4141 0.4077 0.4025 0.3944 0.3933 0.3861 0.3787 0.3767 0.3759	0.8610 0.7655 0.7187 0.7138 0.6402 0.6173 0.6146 0.5974 0.5946 0.5617 0.5607 0.5569 0.5274 0.4729 0.4729 0.4729 0.4729 0.4727 0.4622 0.4617 0.4520 0.4422 0.4400 0.4326 0.4277 0.4275 0.4167 0.4129 0.4167 0.4129 0.4167 0.4129 0.4167 0.4129 0.4167 0.4353 0.3953 0.3888 0.3788 0.3782
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	0.3759 0.3748 0.3662 0.3562 0.3559 0.3525 0.3487 0.3483 0.3461 0.3406 0.3377 0.3242 0.3207 0.3093 0.3002 0.2886 0.2876 0.2824 0.2786 0.2767 0.2740 0.2579 0.2488	0.3782 0.3764 0.3683 0.3592 0.3580 0.3548 0.3507 0.3503 0.3467 0.3467 0.3252 0.3234 0.3111 0.3034 0.2909 0.2898 0.2844 0.2815 0.2800 0.2767 0.2604 0.2508
61	0.2429	0.2455

Duration Flows

The Development Failed :duration increase for more than 50% of the flows.

			-	- /
Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.2084	1243	1278	102	Fail
0.2159	1126	1152	102	Fail
0 2235	985	1019	103	Fail
0.2200	885	007	100	Fail
0.2310	700	907	102	
0.2385	786	804	102	Fall
0.2461	697	724	103	Fail
0.2536	625	650	104	Fail
0.2611	571	588	102	Fail
0 2686	515	536	104	Fail
0 2762	474	484	102	Fail
0.2702	442	452	102	Foil
0.2037	443	400	102	
0.2912	403	411	101	Fail
0.2988	379	384	101	Fail
0.3063	352	360	102	Fail
0.3138	321	337	104	Fail
0.3214	297	304	102	Fail
0 3289	274	280	102	Fail
0.3364	250	260	102	Fail
0.3304	200	201	102	
0.3440	229	231	103	
0.3515	210	214	101	Fail
0.3590	190	197	103	Fail
0.3666	182	186	102	Fail
0.3741	172	173	100	Pass
0.3816	162	165	101	Fail
0 3892	148	150	101	Fail
0.3067	127	1/1	101	Fail
0.3307	107	141	102	Fail
0.4042	124	130	104	
0.4117	116	120	103	Fall
0.4193	110	113	102	Pass
0.4268	103	107	103	Pass
0.4343	100	101	101	Pass
0.4419	94	97	103	Pass
0.4494	93	94	101	Pass
0 4569	92	92	100	Pass
0.1605	87	88	100	Pass
0.4040	70	00	101	Dace
0.4720	79	02	103	rass Daas
0.4795	13	75	102	Pass
0.4871	67	70	104	Pass
0.4946	60	62	103	Pass
0.5021	56	59	105	Pass
0.5097	55	56	101	Pass
0.5172	54	55	101	Pass
0.5247	48	49	102	Pass
0.5322	46	47	102	Pass
0.5308	40	45	102	Dass
0.5590	44	40	102	rass Daas
0.5473	43	43	100	Pass
0.5548	42	43	102	Pass
0.5624	35	36	102	Pass
0.5699	33	33	100	Pass
0.5774	30	30	100	Pass
0.5850	29	29	100	Pass
0 5925	28	29	103	Pass
0.6000	26	26	100	Pass
0.0000	<u>~</u> U	<u>~</u> U	100	1 433

0.6076	24	26	108	Pass
0.6151	22	23	104	Pass
0.6226	22	22	100	Pass
0.6302	20	20	100	Pass
0.6377	19	20	105	Pass
0.6452	19	19	100	Pass
0.6528	19	19	100	Pass
0.6603	19	19	100	Pass
0.6678	19	19	100	Pass
0.6753	17	17	100	Pass
0.6829	17	17	100	Pass
0.6904	16	17	106	Pass
0.6979	15	16	106	Pass
0.7055	15	15	100	Pass
0.7130	13	14	107	Pass
0.7205	12	12	100	Pass
0.7281	12	12	100	Pass
0.7356	11	11	100	Pass
0.7431	11	11	100	Pass
0.7507	10	10	100	Pass
0.7582	10	10	100	Pass
0.7657	8	9	112	Fail
0.7733	8	8	100	Pass
0.7808	8	8	100	Pass
0.7883	8	8	100	Pass
0.7958	$\frac{1}{7}$	1	100	Pass
0.8034	1	1	100	Pass
0.8109	7	7	100	Pass
0.0104	6	7	100	Pass
0.0200	0 5	7	110	Pan
0.0335	5	5	100	Pass
0.0410	5	5	100	Pass
0.0400	5	5	100	Pass
0.0001	3	3	100	Pass
0.0000	3	3	100	Pass
0.8787	3	3	100	Pass
0.8862	3	3	100	Pass
0.8938	3	3	100	Pass
0.9013	3	3	100	Pass
0.9088	3	3	100	Pass
0.9163	3	3	100	Pass
0.9239	2	3	150	Fail
0.9314	2	2	100	Pass
0.9389	2	2	100	Pass
0.9465	2	2	100	Pass
0.9540	2	2	100	Pass

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.84 Total Impervious Area: 0.78

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

	FIUW(CIS
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

2 year	0.357064
5 year	0.468532
10 year	0.548138
25 year	0.655564
50 year	0.740714
100 year	0.830382
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

i cai	i redeveloped	miliyai
1949	0.378	0.484
1950	0.399	0.466
1951	0.247	0.308
1952	0.164	0.218
1953	0.189	0.263
1954	0.231	0.293
1955	0.249	0.333
1956	0.246	0.297
1957	0.270	0.356
1958	0.210	0.285
1959	0.210	0.293

1960 1961 1962 1963 1964 1965	0.247 0.224 0.181 0.243 0.224 0.285	0.317 0.297 0.250 0.316 0.287 0.370
1960 1967 1968 1969 1970 1971 1972	0.188 0.405 0.254 0.247 0.300 0.366	0.247 0.478 0.531 0.334 0.328 0.398 0.444
1973 1974 1975 1976 1977 1978	0.169 0.290 0.275 0.229 0.220 0.287	0.237 0.377 0.371 0.298 0.288 0.392
1979 1980 1981 1982 1983 1984	0.355 0.452 0.256 0.387 0.287 0.193	0.491 0.556 0.347 0.512 0.396 0.254
1985 1986 1987 1988 1989 1990	0.248 0.230 0.322 0.195 0.308 0.703 0.480	0.337 0.299 0.449 0.268 0.419 0.796
1992 1993 1994 1995 1996 1997	0.489 0.201 0.213 0.187 0.229 0.395 0.278	0.390 0.260 0.282 0.255 0.311 0.449 0.352
1998 1999 2000 2001 2002 2003	0.278 0.246 0.574 0.258 0.279 0.333 0.340	0.325 0.741 0.342 0.383 0.434 0.426
2004 2005 2006 2007 2008 2009	0.543 0.216 0.226 0.692 0.460 0.331	0.704 0.286 0.283 0.763 0.541 0.456

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

i lann	i i cuci ciopcu	mingate
1	0.7030	0.7957
2	0.6916	0.7627
3	0.5737	0.7415
4	0.5428	0.7039

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.4887 0.4598 0.4521 0.4053 0.3990 0.3949 0.3871 0.3783 0.3659 0.3551 0.3400 0.3326 0.3306 0.3219 0.3085 0.3004 0.2896	0.5895 0.5565 0.5409 0.5309 0.5115 0.4912 0.4839 0.4778 0.4660 0.4563 0.4491 0.4489 0.4489 0.4489 0.4441 0.4339 0.4259 0.4259 0.4190 0.3980 0.3961
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.2896 0.2871 0.2870 0.2793 0.2780 0.2749 0.2705 0.2578 0.2561 0.2541 0.2476 0.2476 0.2476 0.2469 0.2469 0.2469 0.2464 0.2458 0.2427 0.2312 0.2302 0.2294 0.2290	0.3961 0.3915 0.3769 0.3706 0.3705 0.3558 0.3518 0.3472 0.3472 0.3472 0.3369 0.3339 0.3327 0.3282 0.3251 0.3175 0.3156 0.3109 0.3075 0.2988 0.2968 0.2965
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	0.2259 0.2245 0.2198 0.2159 0.2133 0.2102 0.2098 0.2005 0.1951 0.1926 0.1893 0.1864 0.1806 0.1694 0.1636	0.2931 0.2925 0.2883 0.2873 0.2857 0.2850 0.2834 0.2633 0.2627 0.2601 0.2547 0.2543 0.2503 0.2473 0.2369 0.2182

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.1361	1238	3345	270	Fail
0.1411	1100	2971	270	Fail
0 1460	992	2716	273	Fail
0.1509	887	2447	275	Fail
0.1558	786	2102	278	Fail
0.1550	700	1056	270	
0.1007	600	1950	219	Fall
0.1000	022	1707	204	Fall Fail
0.1705	557	1599	287	Fall
0.1755	512	1468	286	Fall
0.1804	4/1	1340	284	Fail
0.1853	442	1221	276	Fail
0.1902	409	1115	272	Fail
0.1951	377	1020	270	Fail
0.2000	347	936	269	Fail
0.2050	319	871	273	Fail
0.2099	293	777	265	Fail
0.2148	266	713	268	Fail
0.2197	246	649	263	Fail
0.2246	221	591	267	Fail
0.2295	202	548	271	Fail
0.2344	185	514	277	Fail
0.2394	174	485	278	Fail
0.2443	161	459	285	Fail
0.2492	146	428	293	Fail
0.2541	140	404	288	Fail
0.2590	131	372	283	Fail
0.2639	125	352	281	Fail
0.2689	117	336	287	Fail
0.2738	111	310	279	Fail
0.2787	103	292	283	Fail
0.2836	99	273	275	Fail
0.2885	91	250	274	Fail
0.2934	85	234	275	Fail
0.2983	80	209	261	Fail
0.3033	73	196	268	Fail
0.3082	69	184	266	Fail
0.3131	65	180	276	Fail
0.3180	63	165	261	Fail
0.3229	58	157	270	Fail
0.3278	56	149	266	Fail
0.3328	51	141	276	Fail
0.3377	49	132	269	Fail
0.3426	46	128	278	Fail
0.3475	42	121	288	Fail
0.3524	39	114	292	Fail
0.3573	36	111	308	Fail
0.3622	34	107	314	Fail
0.3672	31	102	329	Fail
0.3721	30	98	326	Fail
0.3770	30	93	310	Fail
0.3819	29	90	310	Fail
0.3868	27	84	311	Fail
0.3917	24	79	329	Fail
0.3966	23	72	313	Fail
0.4016 0.4065 0.4114 0.4163 0.4212 0.4261 0.4311	22 20 19 19 19 19 19 18	70 67 62 59 57 53 51	318 335 326 310 300 278 283	Fail Fail Fail Fail Fail Fail
--	--	--	---	--
$\begin{array}{c} 0.4360\\ 0.4409\\ 0.4458\\ 0.4507\\ 0.4556\\ 0.4605\\ 0.4655\\ 0.4704 \end{array}$	16 15 14 12 11 10 10	48 46 44 41 35 32 29 27	300 306 293 292 291 290 290 270	Fail Fail Fail Fail Fail Fail Fail Fail
0.4753 0.4802 0.4851 0.4900 0.4950 0.4999 0.5048 0.5097	10 10 9 8 8 8 8 8	26 25 24 24 22 21 21 20	260 250 240 266 275 262 262 250	Fail Fail Fail Fail Fail Fail Fail Fail
0.5146 0.5195 0.5244 0.5294 0.5343 0.5392 0.5441 0.5490	8 7 6 6 5 5	19 19 19 19 17 17 15	237 271 316 283 283 300 300	Fail Fail Fail Fail Fail Fail Fail
0.5490 0.5539 0.5588 0.5638 0.5687 0.5736 0.5785 0.5834	5 5 5 5 5 5 5 3 3 3	15 15 14 14 14 13 11 11	300 280 280 280 280 260 366 366	Fail Fail Fail Fail Fail Fail Fail
0.5883 0.5933 0.5982 0.6031 0.6080 0.6129 0.6178 0.6227	3 3 3 2 2 2 2 2	11 10 7 7 7 7 7 7 7	366 333 233 233 350 350 350 350 350	Fail Fail Fail Fail Fail Fail Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 3

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 6.93 Total Impervious Area: 7.14

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 vear	2.364141
5 year	3.37629
10 year	4.099862
25 year	5.073688
50 year	5.842112
100 year	6.647232

Flow Frequency Return Periods for Mitigated. POC #3Return PeriodFlow(cfs)2 year2.5240295 year3.56711210 year4.306955

5.296724
6.073725
6.884618

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

i cai	i redeveloped	miliya
1949	3.128	3.399
1950	3.894	4.085
1951	2.506	2.642
1952	1.863	1.912
1953	2.249	2.297
1954	1.525	1.587
1955	2.462	2.566
1956	2.260	2.396
1957	2.801	2.904
1958	1.530	1.750
1959	1.672	1.729

1960 1961	2.449 2.385	2.546 2.495
1962	1.235	1.493
1963	1.484	1.599
1964	1.856	1.958
1965	2.345	2.653
1966	1.956	1.993
1967	3.707	4.017
1900	2.020	2.730
1909	1 901	2 2 5 5
1971	2.211	2.496
1972	2.998	3.268
1973	1.765	1.800
1974	1.613	1.744
1975	2.798	2.911
1976	1.619	1.961
1977	1.0 4 0 2.731	1.922
1979	2.485	2.620
1980	2.561	2.670
1981	2.887	2.997
1982	4.085	4.269
1983	3.389	3.483
1984	1.440	1.567
1900	2.013	2.907
1987	2.605	2.776
1988	2.197	2.347
1989	1.356	1.460
1990	6.364	6.844
1991	4.511	4.764
1992	2.017	2.126
1993	0.002	0.901
1995	2 214	2 383
1996	3.462	3.651
1997	2.788	2.975
1998	1.756	1.919
1999	5.697	5.937
2000	2.594	2.751
2001	2.076	2.309
2002	1 343	1 425
2004	5.407	5.596
2005	2.318	2.408
2006	2.150	2.278
2007	6.078	6.579
2008	4.300	4.556
2009	3.114	3.285

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 Rank Predeveloped Mitigated

Rank	Fredeveloped	wiiliyate
1	6.3638	6.8444
2	6.0782	6.5788
3	5.6967	5.9367
4	5.4067	5.5961

5	4.5113	4.7636
6	4.2998	4.5556
7	4.0850	4.2694
8	3.8942	4.0846
9	3.7672	4.0174
10	3.4624	3.6510
11	3.4399	3.5661
12	3.3893	3.4832
13	3.1279	3.3993
14	3.1145	3.2854
15	2.9975	3.2685
16	2.8871	2.9965
17	2.8126	2.9748
18	2.8012	2.9112
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	2.7983 2.7878 2.7312 2.6258 2.6055 2.5944 2.5611 2.5057 2.4854 2.4618 2.4490 2.3853 2.3622 2.3447 2.3180 2.2599 2.2489 2.2138	2.9071 2.9037 2.8390 2.7761 2.7515 2.7384 2.6703 2.6527 2.6419 2.6196 2.5656 2.5455 2.4959 2.4959 2.4953 2.4953 2.4571 2.4082 2.3965 2.3891
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	2.2114 2.2042 2.1965 2.1495 2.0762 2.0171 1.9555 1.9008 1.8631 1.8559 1.8458 1.7650 1.7559 1.6720 1.6193 1.6129 1.5303 1.5245	2.3833 2.3470 2.2973 2.2903 2.2783 2.2554 2.1256 1.9931 1.9613 1.9578 1.9218 1.9123 1.8002 1.7497 1.7436 1.7291 1.5994
55	1.4839	1.5867
56	1.4395	1.5672
57	1.3556	1.4932
58	1.3428	1.4596
59	1.2352	1.4250
60	1.0104	1.2519
61	0.8819	0.9013

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
1.1821	1236	1413	114	Fail
1.2291	1131	1312	116	Fail
1.2762	1047	1202	114	Fail
1 3233	938	1104	117	Fail
1 3704	855	1005	117	Fail
1 /17/	782	023	118	Fail
1.4174	702	925	115	
1.4045	652	704	120	Foil
1.5110	602	704	120	Fall
1.0000	602 562		110	Fall Fail
1.0007	502	044	114	
1.0028	520	603	CII	Fall
1.6999	479	559	116	Fall
1.7469	453	525	115	Fall
1.7940	414	483	116	Fail
1.8411	386	445	115	Fail
1.8881	345	418	121	Fail
1.9352	316	385	121	Fail
1.9823	293	350	119	Fail
2.0294	279	319	114	Fail
2.0764	262	301	114	Fail
2.1235	248	282	113	Fail
2.1706	231	267	115	Fail
2.2176	208	253	121	Fail
2.2647	191	238	124	Fail
2.3118	181	220	121	Fail
2.3588	167	203	121	Fail
2.4059	151	188	124	Fail
2.4530	137	174	127	Fail
2.5001	129	158	122	Fail
2.5471	122	149	122	Fail
2.5942	117	143	122	Fail
2.6413	113	133	117	Fail
2.6883	106	125	117	Fail
2.7354	98	120	122	Fail
2.7825	94	108	114	Fail
2.8296	87	104	119	Fail
2.8766	85	96	112	Fail
2.9237	79	91	115	Fail
2.9708	74	88	118	Fail
3.0178	67	81	120	Fail
3.0649	64	81	126	Fail
3.1120	61	74	121	Fail
3.1591	56	70	125	Fail
3.2061	54	68	125	Fail
3 2532	50	60	120	Fail
3 3003	46	58	126	Fail
3.3473	44	54	122	Fail
3.3944	41	49	119	Fail
3 4415	38	44	115	Fail
3 4886	34	43	126	Fail
3 5356	34	40	117	Fail
3 5827	30	39	130	Fail
3 6298	28	37	132	Fail
3 6768	24	36	150	Fail
0.0100	- ·			

3.7239 3.7710 3.8181	24 22 18	31 27 25	129 122 138	Fail Fail Fail Fail
3.9122 3.9593	16 15	24 23 21	143 140	Fail
4.0063	14	21	150	Fail
4.0534	14	19	135	Fail
4.1005	12	17	141	Fail
4.1476	12	16	133	Fail
4.1946	12	16	133	Fail
4.2417	12	16	133	Fail
4.2888	12	13	108	Pass
4.3358	11	12	109	Pass
4.3829	11	12	109	Pass
4.4300	11	12	109	Pass
4.4770	11	12	109	Pass
4.5241	10	12	120	Fail
4.5712	9	11	122	Fail
4.6183	8	11	137	Fail
4.6653 4.7124	8 8 8	11 11 10	137 137 137	Fail Fail
4.8065 4.8536	8 7 6	9 8	125 128 133	Fail
4.9007	6	8	133	Fail
4.9478	6	8	133	Fail
4.9948	6	6	100	Pass
5.0419 5.0890 5.1360	6 6 5	6 6	100 100 120	Pass Pass Fail
5.1831	4	6	150	Fail
5.2302	4		150	Fail
5.2773 5.3243 5.3714	4 4 4	6 5	150 150 125	Fail Fail Fail
5.4185	3	5	166	Fail
5.4655	3	5	166	Fail
5.5126	3	4	133	Fail
5.5597	333	4	133	Fail
5.6068		3	100	Pass
5.6538		3	100	Pass
5.7009 5.7480	22	3	150 150	Fail
5.7950 5.8421	2 2	3 3	150	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #3 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Tank 1 POC		840.12				0.00			
Total Volume Infiltrated		840.12	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 4

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #4 Total Pervious Area: 11.76 Total Impervious Area: 3.96

Mitigated Landuse Totals for POC #4 Total Pervious Area: 5.82 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4 Return Period Flow(cfs)

2 year	0.1159
5 year	0.338036
10 year	0.63464
25 year	1.312858
50 year	2.165686
100 year	3.469708

Flow Frequency Return Periods for Mitigated. POC #4Return PeriodFlow(cfs)2 year0.0050485 year0.00833110 year0.011249

0 015071

25 year	0.015971
50 year	0.020372
100 year	0.025655

Annual Peaks

25 Joor

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

i cai	i i cuc velopeu	minuga
1949	0.312	0.004
1950	1.365	0.012
1951	0.308	0.012
1952	0.070	0.005
1953	0.053	0.005
1954	0.166	0.005
1955	0.094	0.005
1956	0.276	0.005
1957	0.076	0.005
1958	0.063	0.005
1959	0.091	0.005

1960 1961	0.193 0.155	0.005 0.005
1962	0.031	0.004
1963	0.109	0.004
1965	0.073	0.005
1966	0.068	0.005
1967	0.958	0.005
1968	0.194	0.005
1970	0.047	0.003
1971	0.080	0.005
1972	1.027	0.034
1973	0.063	0.005
1974	0.000	0.005
1976	0.130	0.005
1977	0.019	0.004
1978	0.058	0.005
1979	0.038	0.004
1981	0.062	0.005
1982	0.137	0.005
1983	0.079	0.005
1984	0.046	0.005
1986	0.112	0.003
1987	0.162	0.004
1988	0.042	0.005
1989	0.040	0.005
1991	0.750	0.000
1992	0.063	0.005
1993	0.046	0.004
1994	0.028	0.004
1995	0.816	0.005
1997	0.312	0.005
1998	0.060	0.004
1999	1.400	0.011
2000	0.018	0.004
2002	0.134	0.004
2003	0.075	0.005
2004	0.427	0.005
2005	0.204	0.005
2007	3.489	0.068
2008	0.764	0.005
2009	0.270	0.005

Ranked Annual PeaksRanked Annual Peaks for Predeveloped and Mitigated.Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	3.4888	0.0675
2	2.8717	0.0453
3	1.3996	0.0335
4	1.3649	0.0123

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0580	13242	1	0	Pass
0.0792	3908	0	0	Pass
0.1005	1346	0	0	Pass
0.1218	204	0	0	Pass
0.1431	154	0	0	Pass
0.1644	124	0	0	Pass
0.1857	109	0	0	Pass
0.2070	96	0	0	Pass
0.2283	88	0	0	Pass
0.2496	//	0	0	Pass
0.2709	/1	0	0	Pass
0.2921	60	0	0	Pass
0.3134	53	0	0	Pass
0.3347	49	0	0	Pass
0.3560	44	0	0	Pass
0.3773	41	0	0	Pass
0.3986	40	0	0	Pass
0.4199	38	0	0	Pass
0.4412	35	0	0	Pass
0.4625	33	0	0	Pass
0.4838	33	0	0	Pass
0.5050	30	0	0	Pass
0.5263	30	0	0	Pass
0.5476	29	0	0	Pass
0.5689	28	0	0	Pass
0.5902	26	0	0	Pass
0.6115	26	0	0	Pass
0.6328	25	0	0	Pass
0.6541	23	0	0	Pass
0.0754	21	0	0	Pass
0.0907	21	0	0	Pass
0.7179	21	0	0	Pass
0.7392	21	0	0	Pass Door
0.7005	20	0	0	rass Docc
0.7010	19	0	0	rass Docc
0.0031	19	0	0	Pass
0.0244	10	0	0	Pass
0.0437	10	0	0	Dass
0.0070	1/	0	0	Dass
0.0005	14	0	0	Dass
0.3030	10	0	0	Dass
0.9509	12	0	0	Dass
0.3321	12	0	0	Dass
0.9734	11	0	0	Dass
1 0160	11	0	0	Dass
1.0100	9	0	0	Pass
1.0575	9	0	0	Pass
1 0700	9	Õ	0	Pase
1 1012	9	Õ	0	Pase
1 1072	9	0	0	i ass Dase
1 1/38	9	0	0	i ass Dase
1 1650	9	0	0	i ass Pase
1.1000	0	0	v	1 433

1.1863	8	0	0	Pass
1.2076	8	0	0	Pass
1.2289	8	0	0	Pass
1.2502	8	0	0	Pass
1.2715	8	0	0	Pass
1.2928	8	0	0	Pass
1.3141	8	0	0	Pass
1.3354	8	0	0	Pass
1.3567	8	0	0	Pass
1.3779	7	0	0	Pass
1.3992	6	0	0	Pass
1.4205	5	0	0	Pass
1.4418	5	0	0	Pass
1.4631	5	0	0	Pass
1.4844	5	0	0	Pass
1.5057	5	0	0	Pass
1.5270	4	0	0	Pass
1.5483	4	0	0	Pass
1.5696	4	0	0	Pass
1.5908	4	0	0	Pass
1.6121	4	0	0	Pass
1.6334	4	0	0	Pass
1.6547	4	0	0	Pass
1.6760	4	0	0	Pass
1.6973	4	0	0	Pass
1.7186	4	0	0	Pass
1.7399	4	0	0	Pass
1.7612	4	0	0	Pass
1.7825	4	0	0	Pass
1.8038	4	0	0	Pass
1.0200	4	0	0	Pass
1.0403	4	0	0	Pass Dace
1.0070	4	0	0	Pass Dass
1 0102	4	0	0	Pass
1 9315	4	0	0	Pass
1 9528	4	0	0	Pass
1 9741	4	0	0	Pass
1 9954	4	0	Ő	Pass
2 0167	4	Ő	Ő	Pass
2 0379	4	Õ	Õ	Pass
2.0592	3	Õ	Õ	Pass
2.0805	3	Õ	Õ	Pass
2.1018	3	Õ	õ	Pass
2.1231	3	Õ	õ	Pass
2.1444	3	Õ	Ō	Pass
2.1657	3	Õ	Õ	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #4 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 5

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.15 Total Impervious Area: 1.56

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #5 **Return Period** Flow(cfs)

	1 10 11 (010)
2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817

Flow Frequency Return Periods for Mitigated. POC #5Return PeriodFlow(cfs)2 year0.5715065 year0.70847

5 year	0.70847
10 year	0.802065
25 year	0.923993
50 year	1.017665
100 year	1.1139

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

i cai	i reuevelopeu	iviitiyat
1949	0.624	0.723
1950	0.648	0.727
1951	0.437	0.499
1952	0.351	0.414
1953	0.383	0.438
1954	0.417	0.475
1955	0.462	0.543
1956	0.472	0.526
1957	0.495	0.573
1958	0.397	0.455
1959	0.422	0.478

1960 1961	0.411 0.447	0.474 0.520
1962	0.380	0.444
1963	0.449	0.524
1964	0.434	0.509
1965	0.546	0.616
1966	0.368	0.432
1967	0.675	0.738
1900	0.020	0.722
1909	0.400	0.537
1971	0.505	0.593
1972	0.648	0.718
1973	0.353	0.403
1974	0.502	0.567
1975	0.549	0.632
1976	0.375	0.437
1977	0.429	0.485
1970	0.520	0.599
1980	0.698	0.714
1981	0.496	0.574
1982	0.670	0.783
1983	0.549	0.646
1984	0.384	0.448
1985	0.509	0.588
1980	0.443	0.515
1988	0.047	0.720
1989	0.551	0.635
1990	0.981	1.060
1991	0.666	0.763
1992	0.375	0.430
1993	0.392	0.457
1994	0.385	0.447
1995	0.441	0.503
1990	0.014	0.075
1998	0.451	0.520
1999	0.899	1.025
2000	0.476	0.549
2001	0.498	0.571
2002	0.609	0.697
2003	0.533	0.605
2004	0.863	0.988
2005	0.431 ∩⊿21	0.492 0.482
2007	0.989	1 043
2008	0.693	0.802
2009	0.663	0.759

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #5 Rank Predeveloped Mitigated

nann	i i cucvelopeu	wiitigate
1	0.9894	1.0597
2	0.9812	1.0434
3	0.8995	1.0252
4	0.8626	0.9877

5 6	0.6975 0.6926	0.8019 0.7864
7 8	0.6751 0.6702	0.7834 0.7629
9 10	0.6628	0.7589
11 12	0.6479 0.6478	0.7281 0.7266
13 14	0.6472 0.6248	0.7233 0.7222
15 16	0.6239 0.6143	0.7178 0.7136
17 18	0.6118 0.6085	$0.6968 \\ 0.6749$
19	0.5513	0.6464
21	0.5485	0.6316
23	0.5463	0.6048
24 25	0.5202	0.5992 0.5934
26 27	0.5049 0.5018	0.5876 0.5740
28 29	0.4995 0.4984	0.5734 0.5705
30 31	0.4965 0.4945	0.5670 0.5648
32 33	0.4864	0.5574
34 35	0.4716	0.5431
36 37	0.4506	0.5239
38	0.4489	0.5205
39 40	0.4430	0.5151
41 42	0.4366 0.4366	0.5029 0.5015
43 44	0.4343 0.4312	0.4987 0.4972
45 46	0.4289 0.4230	0.4919 0.4848
47 48	0.4216	0.4781 0.4747
49	0.4171	0.4740
50 51 52	0.3971	0.4570
53 54	0.3846	0.4482
54 55	0.3833	0.4467
об 57	0.3804 0.3751	0.4376 0.4374
58 59	0.3750 0.3681	0.4323 0.4303
60 61	0.3527 0.3511	0.4145 0.4027

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0 2493	2267	3844	169	Fail
0.2560	2066	3540	171	Fail
0.2500	1000	3206	173	Fail
0.2027	1300	2040	175	
0.2094	1727	3040	170	Fall Fail
0.2761	1579	2789	170	
0.2827	1458	2614	179	Fail
0.2894	1340	2411	179	Fail
0.2961	1205	2222	184	Fail
0.3028	1110	2095	188	Fail
0.3095	1029	1931	187	Fail
0.3161	958	1731	180	Fail
0.3228	893	1614	180	Fail
0.3295	824	1498	181	Fail
0.3362	761	1378	181	Fail
0.3429	711	1297	182	Fail
0.3495	664	1190	179	Fail
0.3562	609	1097	180	Fail
0.3629	577	1031	178	Fail
0.3696	541	966	178	Fail
0.3763	108	906	181	Fail
0.3703	450	900 951	185	Fail
0.3029	400	001	100	Fall
0.3090	420	003	107	Fall
0.3963	398	754	189	Fall
0.4030	3/5	704	187	Fall
0.4097	351	657	187	Fail
0.4163	325	615	189	Fail
0.4230	299	572	191	Fail
0.4297	283	544	192	Fail
0.4364	262	511	195	Fail
0.4431	246	482	195	Fail
0.4498	227	454	200	Fail
0.4564	213	419	196	Fail
0.4631	196	389	198	Fail
0.4698	191	364	190	Fail
0.4765	182	342	187	Fail
0.4832	170	327	192	Fail
0.4898	160	311	194	Fail
0.4965	151	294	194	Fail
0.5032	139	271	194	Fail
0.5099	132	251	190	Fail
0.5166	123	240	195	Fail
0 5232	113	221	195	Fail
0.5202	107	211	197	Fail
0.5266	100	202	202	Fail
0.5300	00	101	102	Fail
0.5455	04	191	102	Fail
0.5500	94	102	195	
0.0000	90	175	194	Fall
0.0000	02 77	100	202	Fall
0.5700	11		203	ган
0.5/0/	14	147	198	Fall
0.5834	/0	143	204	Fall
0.5901	68	136	200	Fail
0.5967	66	128	193	Fail
0.6034	65	118	181	Fail

0.6101 0.6168 0.6235 0.6301 0.6368 0.6435 0.6502 0.6569 0.6635 0.6702 0.6769 0.6836 0.6903 0.6969 0.7036 0.7170 0.7237 0.7303 0.7170 0.7237 0.7303 0.7170 0.7237 0.7303 0.7170 0.7437 0.7504 0.7571 0.7638 0.7704 0.7571 0.7638 0.7704 0.7571 0.7638 0.7704 0.7571 0.7638 0.7704 0.7571 0.7638 0.7704 0.7571 0.7638 0.7905 0.7972 0.8038 0.8105 0.8172 0.8239 0.8306 0.8372 0.8439 0.8506 0.8573 0.8640 0.8773 0.8840 0.8773 0.8974 0.8974	61 552 47 42 3 6 9 2 2 0 8 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5	113 107 101 96 92 87 84 79 76 74 70 69 66 64 60 52 9 43 33 32 22 21 76 14 13 12 12 12 10 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 185\\ 194\\ 194\\ 204\\ 209\\ 207\\ 227\\ 219\\ 262\\ 308\\ 350\\ 345\\ 366\\ 376\\ 428\\ 421\\ 433\\ 445\\ 430\\ 380\\ 350\\ 320\\ 300\\ 270\\ 255\\ 275\\ 262\\ 212\\ 200\\ 185\\ 171\\ 171\\ 200\\ 200\\ 185\\ 171\\ 171\\ 200\\ 200\\ 166\\ 160\\ 160\\ 160\\ 160\\ 160\\ 160\\ 1$	Fail Fail Fail Fail Fail Fail Fail Fail
0.8974	5	8	160	Fail
0.9040	4	8	200	Fail
0.9107	4	8	200	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #5 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		229.46				0.00			
Total Volume Infiltrated		229.46	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 6

Predeveloped Landuse Totals for POC #6Total Pervious Area:10.41Total Impervious Area:5.47

Mitigated Landuse Totals for POC #6 Total Pervious Area: 9.4 Total Impervious Area: 6.48

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #6 Return Period Flow(cfs)

2 year	2.349287
5 year	3.13595
10 year	3.71691
25 year	4.52232
50 year	5.176234
100 year	5.878212

Flow Frequency Return Periods for Mitigated. POC #6Return PeriodFlow(cfs)2 year2.7294235 year3.59490910 year4.227448

iu year	4.22/440
25 year	5.096922
50 year	5.797504
100 year	6.545027

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

i cai	i i euevelopeu	wiitiyat
1949	2.974	3.485
1950	3.487	3.807
1951	2.180	2.458
1952	1.508	1.785
1953	1.768	2.082
1954	2.007	2.286
1955	2.138	2.514
1956	2.064	2.295
1957	2.224	2.626
1958	1.863	2.196
1959	1.989	2.339

1960 1961	2.068 1.894	2.334 2.211
1962 1963	1.677 2.033	1.979 2 368
1964	1.932	2.273
1965	2.373	2.776
1966	1.594 3.474	1.867 3.817
1968	3.343	3.922
1969	2.079	2.456
1970 1971	2.091	2.463
1972	3.228	3.595
1973	1.613	1.897
1974 1975	2.327	2.738
1976	1.873	2.192
1977	1.901	2.242
1978	2.597	3.041
1979	3.201	3.732
1981	2.258	2.668
1982	3.215	3.795
1984	1.654	1.930
1985	2.197	2.600
1986 1987	1.946	2.300
1988	1.861	2.195
1989	2.774	3.240
1990 1991	6.208 3.953	6.665 4 451
1992	1.614	1.907
1993	1.806	2.097
1994 1995	1.693	1.980 2 394
1996	3.395	3.652
1997	2.418	2.759
1998	2.155	2.542 5.330
2000	2.180	2.567
2001	2.550	2.997
2002	2.008	3.156 2.997
2004	4.331	5.090
2005	1.803	2.131
2000	1.941 6.317	2.208 6.657
2008	3.846	4.281
2009	3.066	3.598

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #6 Rank Predeveloped Mitigated

1	6.3171	6.6651
2	6.2081	6.6570
3	4.5290	5.3298
4	4.3308	5.0899

34 2.1551 2.5142 35 2.1377 2.4629 36 2.0905 2.4578 37 2.0790 2.4559 38 2.0683 2.3939 39 2.0642 2.3684 40 2.0325 2.3385 41 2.0280 2.3335 42 2.0067 2.2997 43 1.9892 2.2945 44 1.9459 2.2856 45 1.9405 2.2732 46 1.9320 2.2420	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 27 28 29 30 31 32 33 4	3.9528 3.8459 3.4873 3.4743 3.3949 3.3428 3.2971 3.2282 3.2147 3.2014 3.0662 3.0286 2.9743 2.7736 2.6678 2.6678 2.6678 2.6406 2.5967 2.5824 2.5603 2.5496 2.5187 2.4175 2.3734 2.3270 2.2581 2.2238 2.1969 2.1800 2.1797	4.4507 4.2806 3.9221 3.8791 3.8168 3.8068 3.7945 3.7315 3.6525 3.5978 3.5949 3.5775 3.4848 3.2399 3.1559 3.1163 3.0414 3.0229 2.9971 2.9971 2.9971 2.9971 2.9971 2.9971 2.9660 2.7760 2.7586 2.7377 2.6676 2.6256 2.5997 2.5673 2.5419
	35	2.1377	2.4629
	36	2.0905	2.4578
	37	2.0790	2.4559
	38	2.0683	2.3939
	39	2.0642	2.3684
	40	2.0325	2.3385
	41	2.0280	2.3335
	42	2.0067	2.2997
	43	1.9892	2.2945
	44	1.9459	2.2856
	45	1.9405	2.2732
	46	1.9320	2.2420

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
1.1746	1423	2453	172	Fail
1.2151	1277	2199	172	Fail
1.2555	1128	1978	175	Fail
1.2959	1021	1789	175	Fail
1.3363	913	1595	174	Fail
1.3767	811	1452	179	Fail
1.4172	721	1304	180	Fail
1.4576	654	1194	182	Fail
1.4980	585	1078	184	Fail
1.5384	524	975	186	Fail
1.5788	491	898	182	Fail
1.6193	459	806	175	Fail
1.6597	434	733	168	Fail
1.7001	394	670	170	Fail
1.7405	363	611	168	Fail
1.7809	326	550	168	Fail
1.8214	304	510	167	Fail
1.8618	282	482	170	Fail
1.9022	263	455	173	Fail
1.9426	238	430	180	Fail
1.9830	216	395	182	Fail
2.0235	197	364	184	Fail
2.0639	179	342	191	Fail
2.1043	163	316	193	Fail
2.1447	152	302	198	Fail
2.1851	136	279	205	Fail
2.2256	129	258	200	Fail
2.2660	125	238	190	Fail
2.3064	117	216	184	Fail
2.3468	113	197	174	Fail
2.3872	104	183	175	Fail
2.4277	95	170	178	Fail
2.4681	92	160	173	Fail
2.5085	89	153	171	Fail
2.5489	83	136	163	Fail
2.5893	75	132	176	Fail
2.6298	68	126	185	Fail
2.6702	63	118	187	Fail
2.7106	55	113	205	Fail
2.7510	55	111	201	Fail
2.7914	51	102	200	Fail
2.8319	49	93	189	Fail
2.8723	46	92	200	Fail
2.9127	45	87	193	Fail
2.9531	42	85	202	Fail
2.9935	40	78	195	Fail
3.0340	35	73	208	Fail
3.0744	33	67	203	Fail
3.1148	32	63	196	Fail
3.1552	30	58	193	Fail
3.1956	30	54	180	Fail
3.2361	26	53	203	Fail
3.2765	25	51	204	Fail
3.3169	24	49	204	Fail

3.3573 3.3977 3.4382 3.4786 3.5190 3.5594 3.5998 3.6403 3.7211 3.7615 3.8020 3.8424 3.8828 3.9232 3.9636 4.0041 4.0445 4.0849 4.1253 4.1657 4.2062 4.2466 4.2870 4.3274 4.3678 4.4083 4.4487 4.3678 4.4083 4.4487 4.5295 4.5699 4.6104 4.6508 4.6912 4.7316 4.7316 4.7720 4.8125 4.8529 4.8529 4.9337 4.9741 5.0146	23 22 18 16 16 14 14 13 12 11 00 9 8 7 7 7 7 7 7 7 5 5 5 5 5 4 4 4 4 4 4 4 4	46 43 42 38 37 49 27 26 23 22 0 9 8 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} 200\\ 195\\ 200\\ 211\\ 231\\ 212\\ 181\\ 192\\ 185\\ 185\\ 176\\ 183\\ 181\\ 190\\ 180\\ 188\\ 188\\ 200\\ 228\\ 228\\ 214\\ 200\\ 200\\ 228\\ 228\\ 214\\ 200\\ 200\\ 171\\ 157\\ 220\\ 200\\ 200\\ 180\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 2$	Fail Fail Fail Fail Fail Fail Fail Fail
4.9337 4.9741 5.0146 5.0550 5.0954 5.1358 5.1762	4 3 3 3 3 3 3 3 3 3 3 3	0 6 6 6 6 6 5 5 5 5	150 200 200 200 166 166 166	Fail Fail Fail Fail Fail Fail Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #6 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 7

Predeveloped Landuse Totals for POC #7 Total Pervious Area: 0.86 Total Impervious Area: 0

Mitigated Landuse Totals for POC #7 Total Pervious Area: 1.29 Total Impervious Area: 1.03

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #7

Return Period	FIOW(CTS)
2 year	0.103696
5 year	0.174028
10 year	0.226792
25 year	0.299486
50 year	0.357556
100 year	0.418685

Flow Frequency Return Periods for Mitigated. POC #7 Return Period Flow(cfs)

	11011(010)
2 year	0.496902
5 year	0.666664
10 year	0.789999
25 year	0.958747
50 year	1.094141
100 year	1.238102
-	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #7 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigat
1949	0.207	0.725
1950	0.199	0.681
1951	0.107	0.448
1952	0.050	0.306
1953	0.037	0.347
1954	0.082	0.418
1955	0.079	0.448
1956	0.111	0.415
1957	0.123	0.523
1958	0.072	0.387
1959	0.059	0.366
1960 1961	0.119	0.461 0.413
--------------	-------	----------------
1962	0.031	0.339
1963	0.101	0.452
1964	0.094	0.380
1965	0.133	0.547
1966	0.059	0.343
1967	0.203	0.696
1968	0.122	0.718
1909	0.129	0.301
1971	0.116	0.560
1972	0.189	0.666
1973	0.042	0.297
1974	0.124	0.525
1975	0.137	0.535
1976	0.090	0.421
1977	0.081	0.399
1978	0.093	0.493
1979	0.039	0.030
1981	0.086	0.498
1982	0.201	0.741
1983	0.120	0.541
1984	0.057	0.350
1985	0.082	0.484
1986	0.110	0.443
1987	0.098	0.606
1980	0.037	0.345
1990	0.381	1 177
1991	0.265	0.874
1992	0.080	0.367
1993	0.045	0.332
1994	0.028	0.303
1995	0.068	0.429
1996	0.200	0.647
1997	0.115	0.501
1990	0.097	0.440
2000	0.234	0.501
2001	0.042	0.504
2002	0.166	0.647
2003	0.173	0.612
2004	0.233	1.004
2005	0.100	0.425
2006	0.101	0.412
2007 2008	0.303	1.106
2000	0.200	0.013
2003	0.145	0.519

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #7 Rank Predeveloped Mitigated

0.3814	1.1772
0.3533	1.1060
0.2937	1.0711
0.2650	1.0044
	0.3814 0.3533 0.2937 0.2650

5 6 7 8 9 10 11	0.2580 0.2562 0.2330 0.2073 0.2027 0.2011 0.1997 0.1987	0.8744 0.8154 0.8050 0.7406 0.7250 0.7182 0.6959 0.6810
13 14 15 16 17 18 19 20 21 22	0.1887 0.1729 0.1663 0.1449 0.1369 0.1332 0.1291 0.1235 0.1226	$\begin{array}{c} 0.6659\\ 0.6473\\ 0.6472\\ 0.6378\\ 0.6116\\ 0.6060\\ 0.5790\\ 0.5602\\ 0.5472\\ 0.5472\\ 0.5414\end{array}$
22 23 24 25 26 27 28 29 30 31	0.1222 0.1203 0.1191 0.1156 0.1151 0.1108 0.1105 0.1103 0.1066 0.1013	0.5414 0.5354 0.5255 0.5232 0.5035 0.5015 0.5012 0.5006 0.4987 0.4979
32 33 34 35 36 37 38 39 40 41	$\begin{array}{c} 0.1008\\ 0.1000\\ 0.0979\\ 0.0976\\ 0.0975\\ 0.0940\\ 0.0930\\ 0.0904\\ 0.0864\\ 0.0824\\ \end{array}$	$\begin{array}{c} 0.4927 \\ 0.4839 \\ 0.4726 \\ 0.4614 \\ 0.4523 \\ 0.4477 \\ 0.4477 \\ 0.4425 \\ 0.4402 \\ 0.4291 \\ 0.4291 \end{array}$
42 43 44 45 46 47 48 49 50 51	0.0818 0.0813 0.0802 0.0787 0.0775 0.0722 0.0682 0.0594 0.0587 0.0565	0.4253 0.4206 0.4184 0.4149 0.4132 0.4115 0.3994 0.3867 0.3801 0.3666
52 53 54 55 56 57 58 59 60 61	0.0500 0.0453 0.0422 0.0417 0.0385 0.0375 0.0374 0.0314 0.0300 0.0279	$\begin{array}{c} 0.3659\\ 0.3504\\ 0.3472\\ 0.3450\\ 0.3428\\ 0.3391\\ 0.3323\\ 0.3058\\ 0.3034\\ 0.2967\end{array}$

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0518	2082	55953	2687	Fail
0.0549	1781	51782	2907	Fail
0.0580	1461	46820	3204	Fail
0.0611	1243	43355	3487	Fail
0.0642	1063	40254	3786	Fail
0.0673	884	37409	4231	Fail
0.0704	725	34907	4814	Fail
0.0735	591	32490	5497	Fail
0.0766	488	30265	6201	Fail
0.0796	417	28212	6765	Fail
0.0827	355	26244	7392	Fail
0.0858	307	24490	7977	Fail
0.0889	279	22886	8202	Fail
0.0920	253	21432	8471	Fail
0.0951	219	19611	8954	Fail
0.0982	194	18375	9471	Fail
0.1013	172	17222	10012	Fail
0.1043	153	16084	10512	Fail
0.1074	141	15145	10741	Fail
0.1105	123	14230	11569	Fail
0.1136	110	13387	12170	Fail
0.1167	100	12583	12583	Fail
0.1198	94	11884	12642	Fail
0.1229	86	11169	12987	Fail
0.1260	81	10519	12986	Fail
0.1290	75	9755	13006	Fail
0.1321	68	9225	13566	Fail
0.1352	67	8735	13037	Fail
0.1383	65	8258	12704	Fail
0.1414	62	7824	12619	Fall
0.1445	59 57	7407	12554	Fall
0.1470	57 52	7001	12282	Fall
0.1507	5Z	6000	12701	Fall
0.1550	51	0233	12220	Fall
0.1500	30	5905	11000	Fall
0.1599	49	5070	11079	Fall
0.1030	44	JZUZ 1011	12051	Fail
0.1602	40	4341	11780	Fail
0.1032	40 20	4/12	11/17	Fail
0.1723	36	4239	11775	Fail
0.1785	35	4025	11500	Fail
0.1815	33	3820	11575	Fail
0 1846	32	3634	11356	Fail
0 1877	32	3465	10828	Fail
0.1908	28	3300	11785	Fail
0.1939	27	3144	11644	Fail
0.1970	25	2990	11960	Fail
0.2001	23	2796	12156	Fail
0.2032	20	2656	13280	Fail
0.2062	18	2541	14116	Fail
0.2093	16	2411	15068	Fail
0.2124	16	2295	14343	Fail
0.2155	16	2203	13768	Fail

0.2186	16 16	2111 2016	13193 12600	Fail Fail
0.2248	16	1927	12000	Fail
0.2279	16	1854	11587	Fail
0.2309	16	1772	11075	Fail
0.2340	12	1691	14091	Fail
0.2371	12	1628	13566	Fail
0.2402	12	1560	13000	Fail
0.2433	12	1503	12525	Fail
0.2464	11	1447	13154	Fail
0.2495	11	1386	12600	Fail
0.2526	11	1331	12100	Fall
0.2557	9	1282	14244	Fall
0.2007	0 7	1233	10412	Fail
0.2010	7	11/1	16300	Fail
0.2043	5	1083	21660	Fail
0.2711	5	1041	20820	Fail
0.2742	5	1005	20100	Fail
0.2773	5	963	19260	Fail
0.2804	5	916	18320	Fail
0.2834	4	879	21975	Fail
0.2865	4	843	21075	Fail
0.2896	4	809	20225	Fail
0.2927	4	781 755	19525	Fail
0.2958	3	755	25166	Fall
0.2909	3	732	24400	Fall
0.3020	2	679	23033	Fail
0.3081	2	649	32450	Fail
0.3112	2	632	31600	Fail
0.3143	2	606	30300	Fail
0.3174	2	581	29050	Fail
0.3205	2	560	28000	Fail
0.3236	2	543	27150	Fail
0.3267	2	524	26200	Fail
0.3298	2	513	25650	Fail
0.3329	2	500	25000	Fail
0.3359	2	483	24150	Fall
0.3390	2	472	23000	Fall
0.3421	2	439	22900	Fall Fail
0.3483	2	430	21500	Fail
0.3514	2	421	21050	Fail
0.3545	1	413	41300	Fail
0.3576	1	399	39900	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #7On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #8 Total Pervious Area: 2.25 Total Impervious Area: 0

Mitigated Landuse Totals for POC #8 Total Pervious Area: 4.33 Total Impervious Area: 3.24

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #8 Return Period Flow(cfs)

	FIUW(UIS)
2 year	0.271296
5 year	0.455306
10 year	0.593352
25 year	0.783538
50 year	0.935466
100 year	1.095396

Flow Frequency Return Periods for Mitigated. POC #8 **Return Period** 2 year 1 654455

z year	1.004400
5 year	2.198737
10 year	2.591282
25 year	3.125213
50 year	3.551386
100 year	4.002663

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #8 Year Predeveloped Mitigated

i oui	110001010000	miniga
1949	0.542	2.321
1950	0.520	2.217
1951	0.279	1.439
1952	0.131	1.013
1953	0.098	1.174
1954	0.216	1.360
1955	0.206	1.494
1956	0.290	1.479
1957	0.321	1.640
1958	0.189	1.270
1959	0.153	1.269

1960	0.312	1.520
1961	0.203	1.374
1962	0.082	1.097
1963	0.265	1.483
1964	0.246	1.351
1965	0.349	1.705
1966	0.155	1.160
1967	0.530	2.340
1968	0.320	2.472
1969	0.338	1.559
1970	0.255	1.531
1971	0.302	1.835
1972	0.494	2.089
1973	0.110	1.021
1974	0.323	1.717
1975	0.358	1.671
1970	0.230	1.342
1977	0.213	1.342
1978	0.243	1.760
1979	0.101	2.170
1980	0.675	2.813
1981	0.226	1.578
1982	0.526	2.352
1983	0.315	1.762
1984	0.148	1.180
1985	0.214	1.514
1986	0.289	1.415
1987	0.256	1.947
1988	0.098	1.199
1989	0.079	1.893
1990	0.998	3.742
1991	0.693	2.845
1992	0.210	1.257
1993	0.119	1.351
1994	0.073	1.111
1995	0.178	1.377
1996	0.522	2.258
1997	0.301	1.599
1998	0.255	1.540
2000 2001 2002	0.768 0.289 0.109 0.435	3.486 1.588 1.729 2.042
2003	0.452	2.132
2004	0.610	3.345
2005	0.262	1.312
2006	0.264	1.319
2007	0.924	3.601
2008	0.670	2.716
2009	0.379	2.059

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #8 Rank Predeveloped Mitigated

0.9978	3.7423
0.9243	3.6005
0.7684	3.4857
0.6933	3.3452
	0.9978 0.9243 0.7684 0.6933

5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26	0.6751 0.6702 0.6096 0.5423 0.5262 0.5224 0.5200 0.4936 0.4523 0.4351 0.3791 0.3582 0.3485 0.3232 0.3207 0.3148 0.3117 0.3024 0.3010	2.8453 2.8128 2.7159 2.4718 2.3519 2.3396 2.3214 2.2579 2.2171 2.1703 2.1316 2.0889 2.0593 2.0423 1.9471 1.8934 1.8353 1.7625 1.7604 1.7290 1.7167 1.7048
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	0.2900 0.2891 0.2885 0.2788 0.2649 0.2637 0.2616 0.2562 0.2553 0.2550 0.2460 0.2432 0.2365 0.2261 0.2155 0.2139 0.2127 0.20299 0.2027 0.1890 0.1784	1.6709 1.6404 1.5994 1.5883 1.5776 1.5588 1.5404 1.5310 1.5201 1.5201 1.5136 1.4943 1.4943 1.4830 1.4785 1.4395 1.4395 1.4395 1.4120 1.3768 1.3744 1.3602 1.3515 1.3506 1.3424
49 50 51 52 53 54 55 56 57 58 59 60 61	0.1553 0.1535 0.1479 0.1309 0.1186 0.1103 0.1091 0.1008 0.0981 0.0978 0.0821 0.0785 0.0731	1.3190 1.3118 1.2703 1.2687 1.2574 1.1991 1.1803 1.1740 1.1601 1.1110 1.0966 1.0211 1.0129

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.1356	2023	69214	3421	Fail
0.1437	1715	64573	3765	Fail
0.1518	1484	60423	4071	Fail
0.1599	1258	56552	4495	Fail
0.1680	1072	52980	4942	Fail
0.1760	866	49258	5687	Fail
0.1841	714	46264	6479	Fail
0.1922	574	43505	7579	Fail
0.2003	474	40853	8618	Fail
0.2084	407	38414	9438	Fail
0.2164	348	36168	10393	Fail
0.2245	304	34051	11200	Fail
0.2326	277	32105	11590	Fail
0.2407	246	30222	12285	Fail
0.2488	221	28490	12891	Fail
0.2568	197	26950	13680	Fail
0.2649	172	25474	14810	Fail
0.2730	153	24127	15769	Fail
0.2811	138	22629	16397	Fail
0.2891	118	21410	18144	Fail
0.2972	110	20264	18421	Fail
0.3053	98	19167	19558	Fail
0.3134	91	18183	19981	Fail
0.3215	83	17207	20731	Fail
0.3295	80	16326	20407	Fail
0.3376	76	15490	20381	Fail
0.3457	69	14673	21265	Fail
0.3538	67	13960	20835	Fail
0.3619	65	13240	20369	Fail
0.3699	62	12596	20316	Fail
0.3780	59	11914	20193	Fall
0.3801	20 50	11328	20228	Fall
0.3942	5Z	10810	20788	Fall
0.4023	50	10310	20231	Fall
0.4103	30 40	9020	19040	Fall
0.4104	40	9301	20220	Fall
0.4205	44	8547	20320	Fail
0.4340	40	81/0	20040	Fail
0.4420	20	7762	19902	Fail
0.4588	36	7441	20669	Fail
0.4669	35	7125	20000	Fail
0.4750	33	6842	20733	Fail
0.4830	32	6509	20340	Fail
0 4911	31	6211	20035	Fail
0.4992	28	5940	21214	Fail
0.5073	25	5666	22664	Fail
0.5154	25	5411	21644	Fail
0.5234	23	5197	22595	Fail
0.5315	20	4979	24895	Fail
0.5396	18	4763	26461	Fail
0.5477	16	4581	28631	Fail
0.5558	16	4383	27393	Fail
0.5638	16	4188	26175	Fail

0.5719	16	4023	25143	Fail
0.5800	16	3878	24237	Fail
0.5881	16	3696	23100	Fail
0.5961	16	3544	22150	Fail
0.6042	16	3392	21200	Fail
0.6123	12	3247	27058	Fail
0.6204	12	3106	25883	Fail
0.6285	12	3020	25166	Fail
0.6365	12	2898	24150	Fail
0.6446	11	2774	25218	Fail
0.6527	11	2656	24145	Fail
0.6608	11	2560	23272	Fail
0.6689	9	2460	27333	Fail
0.6769	7	2376	33942	Fail
0.6850	7	2291	32728	Fail
0.6931	7	2209	31557	Fail
0.7012	5	2128	42560	Fail
0.7093	5	2043	40860	Fail
0.7173	5	1978	39560	Fail
0.7254	5	1911	38220	Fail
0.7335	5	1851	37020	Fail
0.7416	4	1776	44400	Fail
0.7496	4	1707	42675	Fail
0.7577	4	1651	41275	Fail
0.7658	4	1589	39725	Fail
0.7739	3	1544	51466	Fail
0.7820	3	1492	49733	Fail
0.7900	3	1440	48000	Fail
0.7981	2	1402	70100	Fail
0.8062	2	1358	67900	Fail
0.8143	2	1317	65850	Fail
0.8224	2	1285	64250	Fail
0.8304	2	1245	62250	Fail
0.8385	2	1213	60650	Fail
0.8466	2	1155	57750	Fail
0.8547	2	1124	56200	Fail
0.8628	2	1094	54700	Fail
0.8708	2	1061	53050	Fail
0.8789	2	1041	52050	Fail
0.8870	2	1005	50250	Fall
0.8951	2	972	48600	Fall
0.9032	2	942	4/100	
0.9112	2	911	45550	
0.9193	2	882	44100	
0.92/4	1	858	85800	
0.9355	T	ŏ∠ŏ	82800	Fall

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #8 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #11 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model START RUN INTERP RESUME END GLOBAL	simulation 1948 10 01 OUTPUT LEVEL 0 RUN 1	END 3 O	2009 09 UNI	30 T SYSTEM	1			
FILES <file> <un#></un#></file>	<	File Name				·>** **	*	
WDM 26 MESSU 25 27 28 30 31 35 36 37 32 34 33	Tamarack - I PreTamarack PreTamarack POCTamarack POCTamarack POCTamarack POCTamarack POCTamarack POCTamarack POCTamarack POCTamarack POCTamarack	Durations. - Duration - Durat	wdm ns.MES ns.L61 nsl.dat ns2.dat ns6.dat ns7.dat ns8.dat ns3.dat ns5.dat ns4.dat					
END FILES								
OPN SEQUENCE INGRP PERLND PERLND IMPLND IMPLND IMPLND PERLND IMPLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND COPY COPY COPY COPY COPY COPY COPY COPY	INDEI 8 17 2 4 6 9 3 7 16 40 41 42 43 3 1 2 39 501 502 506 507 508 503 505 504 1 2 6 7 8 3 5 5 4 2 6 7 8 3 5 5 1 2 5 6 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5	JT 00:15						
DISPLY-INFC # - #<)_ Title	:	>***TRAN	PIVL DIG1	FIL1	PYR DIG2	FIL2	YRND
1 2	Subbasin 1 Subbasin 2		MAX MAX			1 2 1 2	30 31	9 9

43 3	0 0	0	4 0 4 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 9 1 9
39 END	0 PRINT-INF	0	4 0	0 0	0 0	0 0	0 0	1 9
PWA' # 8 17 9 40 41 42 43 39 END	T-PARM1 PLS > PWA - # CSNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TER Var RTOP U 0 0 0 0 0 0 0 0 0 0 0 1	iable mon ZFG VCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	thly parame VUZ VNN V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ter value IFW VIRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	flags ** VLE INFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	** HWT *** 0 0 0 0 0 0 0 0 0 0 0 0	
PWA'	T-PARM2 PLS > − # ***F PWAT-PARM	PWATER OREST 0 0 0 0 0 0 0 0 2	input in LZSN 4.5 5 4.5 4.5 4.5 5 5 5	fo: Part 2 INFILT 0.8 0.03 0.8 0.03 0.03 0.03 0.8 2 2	* 1 LSUR 400 400 400 400 400 400 400 400 400	** SLSUR 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.1	KVARY 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.3 0.3	AGWRC 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
PWA' = = = = = = = = = = = = =	T-PARM3 PLS > - # ***P PWAT-PARM	PWATER ETMAX 0 0 0 0 0 0 0 0 0 3	input in PETMIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0	fo: Part 3 INFEXP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** INFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	** DEEPFR 0 0 0 0 0 0 0 0 0 0 0 0 0	BASETP 0 0 0 0 0 0 0 0 0 0 0 0	AGWETP 0 0 0 0 0 0 0 0 0 0 0 0
PWA' <1 # 8 17 9 40 41 42 43 39 END	Γ−PARM4 PLS > − # PWAT-PARM	PWATER CEPSC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 4	input inf UZSN 0.5 0.25 0.5 0.15 0.15 0.5 0.5 0.5 0.5	o: Part 4 NSUR 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	INTFW 0 6 0 6 6 0 0 0 0	IRC 0.7 0.5 0.7 0.7 0.3 0.3 0.3 0.7 0.7	LZETP 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	***
PWA' <1 8 17 9 40 41 42	I-STATE1 PLS > *** - # ***	Initial an from CEPS 0 0 0 0 0 0 0 0	conditio 1990 to SURS 0 0 0 0 0 0 0	ns at start end of 1992 UZS 0 0 0 0 0 0 0 0 0 0	of simula (pat 1-12 IFWS 0 0 0 0 0 0 0 0	ation 1-95) RUN LZS 3 2.5 3 3 2.5 2.5	21 *** AGWS 1 1 1 1 1 1	GWVS 0 0 0 0 0 0

43 3 39 END	PWAT-	-STATI	0 0 0 51		0 0 0		0 0 0		0 0 0		3 3 3		1 1 1
END P	ERLND												
IMPLN GEN	D -INFO												
<: #	PLS >< - #	<	Nan	ne	>	Uni User	t-sys. t-se	stems eries	Pri: Engl 1	nter Metr	* * * * * *		
2 4 6 3 7 16 END ***	H GEN-I Secti	ROADS ROOF DRIVE ROADS DRIVE ROADS INFO ion IV	G/MOD TOPS/ EWAYS/ G/STEE EWAYS/ MOD I NATER*	ÍFLAT ÍMOD IP ÍSTEEP LAT		1 1 1 1 1	111 1 1 1 1 1	1 1 1 1 1	27 27 27 27 27 27 27	0 0 0 0 0			
ACT <	IVITY PLS >	* * * * *	*****	*** A	ctive	Sect	ions	* * * * *	* * * * * *	* * * * *	****	*****	*
# 2 4	- #	ATMP 0 0	SNOW 0	IWAT 1 1	SLD 0 0	IWG 0 0	IQAL 0 0	* * >	*				
6 3		0	0	1 1	0	0	0						
7 16 END	ACTIV	0 0 VITY	0	1 1	0	0	0						
PRI	NT-INE	FO	tatatat —		C 1								
< # 2	- #	ATMP 0	SNOW	Print- IWAT 4	ilags SLD 0	IWG 0	IQAL 0	PIVL *; 1	PYR ***** 9	* *			
4 6		0	0	4 4	0	0	0	1 1	9				
3 7 16 END	PRIN	0 0 0 r-tnf(0 0 0	4 4 4	0 0 0	0 0 0	0 0 0	1 1 1	9 9 9				
IWA	T-PARM	41	,										
<: # 2	PLS > - #	IWAT CSNO	FER va RTOP ח	ariabl VRS 0	e mon VNN	thly RTLI 0	paran '	neter **	value	flag	IS *	* *	
4 6		0 0	0 0	0 0	0 0	0 0							
3 7 16		0 0	0 0	0 0	0 0	0 0							
END	IWAT-	-PARM1	L	0	0	0							
'AWI :> #	T-PARN PLS > _ #	42 ***	IWATE	ER inp	ut in	fo: I	Part 2	2	* >דידכר	* *			
" 2 4	π		400 400	b	0.05		0.1 0.1	1	0.08				
6 3 7			$400 \\ 400 \\ 400$		0.05		0.1 0.1		0.08				
16 END	IWAT-	-PARM2	400		0.05		0.1		0.08				
IWA	T-PARN PI'S >	43	TWZጥፔ	R inn	ut in	fo: T	art ?	3	*	* *			
+ 2 4	- #	***PI	ETMAX 0 0	PE	TMIN 0 0	r	<u></u> .						

0 0 0

6 3 7 16 END IWAT	-parm3	0 0 0 0	0 0 0 0					
IWAT-STA <pls> # - # 2 4 6 3 7 16 END IWAT</pls>	TE1 *** Init *** RET -STATE1	ial cond S S 0 0 0 0 0 0	URS 0 0 0 0 0 0 0	ns at	start	of simu	ılatio	n
END IMPLND								
SCHEMATIC <-Source-> <name> #</name>	9 Tmp 0 1011	Tetemal	<# <-fa	Area actor-	-> ->	<-Targe <name></name>	et-> #	MBLK Tbl#
IMPLND 16	o Imperv	Lateral	Flow	0.691	11	PERLND	39	50
PERLND 40 PERLND 40 PERLND 40	0 - PELV	Lacerar	FIOW	0.400 0.400 0.400	56 56 56	PERLND PERLND PERLND	39 39 39	30 34 38
Subbasin PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7	3A***			5. 5. 1. 2 1.	75 75 79 .6 11	RCHRES RCHRES RCHRES RCHRES RCHRES	2 2 2 2 2	2 3 5 5 5
SUDDASIN PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7	5***	1	-1	1. 1. 0. 0.	39 39 52 55 24	RCHRES RCHRES RCHRES RCHRES RCHRES	1 1 1 1	2 3 5 5 5
PERLND 43 PERLND 43 PERLND 43 PERLND 43	7 - Perv	Lateral	Flow	A/B** 0.10 0.10 0.10)3)3)3	PERLND PERLND PERLND	39 39 39	30 34 38
PERLND 41 PERLND 41 PERLND 41 Subbasin	8 - Derv	Lateral	Flow	0.150 0.150 0.150	01 01 01	PERLND PERLND PERLND	39 39 39	30 34 38
PERLND 42 PERLND 42 PERLND 42 Subbasin 1	***	Laterar	LTOM	0.392 0.392 0.392	27 27 27	PERLND PERLND PERLND	39 39 39	30 34 38
PERLND 8 PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 Subbosis	2***				39 39 95 95 35 32 14	COPY COPY COPY COPY COPY COPY	501 501 501 501 501 501 501	12 13 12 13 15 15 15
PERLND 8 PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6	~ ~ ~			0.0 0.2 0.2 0.2 0.2 0.2	57 57 41 41 42 08 04	COPY COPY COPY COPY COPY COPY	502 502 502 502 502 502 502 502	12 13 12 13 15 15 15
Subbasin PERLND 8	6***			10.3	37	COPY	506	12

* * * * * *

PERLND	8						1().37		COF	Ϋ́Υ	506		13				
PERLND	17						(0.04		COF	Ϋ́	506		12				
PERLND	17						(0.04		COF	PΥ	506		13				
IMPLND	2						-	L.77		COF	Ϋ́Υ	506		15				
IMPLND	4						4	2.59		COF	Ϋ́Υ	506		15				
IMPLND	6	т		- 1 -		- 4 4 4	-	L.II		COF	Ϋ́	506		15				
Basin 4	4 - 1	erv L	ater	ai f	TOM	7~^^	r	- 72		aor	177			10				
PERLIND	39						:	5.73		COF	Y Y	504 E04		⊥∠ 1 2				
Cubbag	in '	7 – Do	T	at or	- 1	F lo)./) **		COF	, T	504		тэ				
DFPI.MD	 	- re	LV L	acer	aı	FIU	w C	1 86		COL	v	507		12				
PERLND	41						() 86		COF	v v	507		13				
Subbas	in 8	3 - Pe	rv T	ater	al	Flo	w C*	**		001	-	507		10				
PERLND	42				0.1	0		2.25		COF	γY	508		12				
PERLND	42							2.25		COF	γY	508		13				
Subbas	in 31	3***																
PERLND	3						-	L.44		COF	Ϋ́Υ	503		12				
PERLND	3						-	L.44		COF	PΥ	503		13				
IMPLND	3						().45		COF	PΥ	503		15				
IMPLND	4						().65		COF	PΥ	503		15				
IMPLND	7						().28		COF	Ϋ́	503		15				
******]	Rout	ing***	* * *					-		~ ~ ~				1.0				
RCHRES	Ţ							1		COF	Υ	505		16				
RCHRES		пта						T		COF	Ϋ́	503		Τ0				
END SCI	пыма.																	
NETWORI	ĸ																	
	m e - >	<-Grn)> <-	Memr	er-	-><-	_M1111	>Tr	an	< - T	'arge	t vc	lav	< -0	rn>	<-Membr	-r->	* * *
<name></name>	#	(OIP	< N.	ame>	· #	#<-	facto	r->st	ra	<na< td=""><td>ime></td><td>±</td><td>+GT,</td><td></td><td>T Pr</td><td><name></name></td><td>± ±</td><td>* * *</td></na<>	ime>	±	+GT,		T Pr	<name></name>	± ±	* * *
COPY	501	OUTPU	JT ME.	AN	ï	1	48.4	1	- 5	DIS	PLY	1		INE	DUT	TIMSER	1	
COPY	502	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	2		INE	UT	TIMSER	1	
COPY	506	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	6		INE	DUT	TIMSER	1	
COPY	507	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	7		INE	DUT	TIMSER	1	
COPY	508	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	8		INE	PUT	TIMSER	1	
COPY	503	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	3		INE	PUT	TIMSER	1	
COPY	505	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	5		INE	PUT	TIMSER	1	
COPY	504	OUTPU	JT ME.	AN	1	1	48.4	1		DIS	SPLY	4		INE	PUT	TIMSER	1	
< TTo]		4 George		Mamila			N / 7 J						1~~		1	< Mamla		* * *
<-volu	me->	<-erp	/-> </td <td>Menic</td> <td>er-</td> <td>-><- #~</td> <td>-MUII</td> <td>2 > 1r</td> <td>ran</td> <td><-1</td> <td>arge</td> <td>L VC</td> <td><810 #</td> <td>< -0</td> <td>rp></td> <td></td> <td>2r-> # #</td> <td>* * *</td>	Menic	er-	-><- #~	-MUII	2 > 1r	ran	<-1	arge	L VC	<810 #	< -0	rp>		2r-> # #	* * *
FND NF	# זק∩עוידי	~	< IN	allie	• #	#~-	Lacti)r->st	тg	<inc< td=""><td></td><td>#</td><td>#</td><td></td><td></td><td><name></name></td><td># #</td><td></td></inc<>		#	#			<name></name>	# #	
	IWORI	`																
RCHRES																		
GEN-	TNFO																	
RCI	HRES		Nam	e		N	exits	s Un	it	Svs	tems	F	rint	ter				* * *
#	- #•	<				>	<>	> User	-T-	ser	ies	Enc	1 Me	etr	LKFC	1		* * *
										in	out							* * *
1	5	Subbas	sin 5	Det	en-	-049	-	L 1		1	1	2	8	0	1	_		
2	0	Subbas	sin 3	Det	en-	-052	-	L 1		1	1	2	8	0	1	_		
END (GEN-I	INFO																
***	Sect	lon RC	HRES	* * *														
ACTI	VITY				_		-											
<p1< td=""><td>LS ></td><td>*****</td><td>****</td><td>****</td><td>Ac</td><td>tiv</td><td>e Seo</td><td>ctions</td><td>**</td><td>***</td><td>****</td><td>* * * *</td><td>****</td><td>****</td><td>****</td><td>*****</td><td></td><td></td></p1<>	LS >	*****	****	****	Ac	tiv	e Seo	ctions	**	***	****	* * * *	****	****	****	*****		
# ·	- #	HYFG	ADF'G	CNF	GF	fTF'G	SDFC	GQFG	OX	.F'G	NUFG	PKF	'G Pł	HF'G	* * *			
Ţ		1	0		0	0	(0	0		0	0				
			0		0	0	() ()		0	0		0	0				
END A	ACIIV	/ ĭ																
יאדסס	т <u>–</u> тмт	70																
<di< td=""><td>T'R ></td><td>*****</td><td>****</td><td>* * * *</td><td>***</td><td>* p</td><td>rint.</td><td>-flags</td><td>* *</td><td>***</td><td>****</td><td>* * * *</td><td>***</td><td>* * *</td><td>PTVT</td><td>, PYR</td><td></td><td></td></di<>	T'R >	*****	****	* * * *	***	* p	rint.	-flags	* *	***	****	* * * *	***	* * *	PTVT	, PYR		
#	- #	HYDR	ADCA	CON	IS F	IEAT	SEI) GOT	ox	RX	NUTR	Ρ1'N	IK ÞI	HCB	PIVI	_ PYR	* * * * *	****
1	- TL		1				~	~~-	011						• -			
1		4	0		0	0	() ()		0	0		0	0	1	_ 9		
2		4 4	0 0		0 0	0 0	() 0) 0		0 0	0 0		0	0 0	1	_ 9 _ 9		

HYDR-PARM1

1 0 1 0	RCHRES # – #	Flags for VC A1 A2 FG FG FG	each HYDR A3 ODFVFG FG possibl	Section for each le exit	*** ODGTF(*** possi	G for each ble exit	FUNCT to possible	*** for each e exit
2 0 1 0	1	* * * 0 1 0	* * * * * 0 4 0	* * * * 0 0 0	* 0	* * * * *	2 2	2 2 2
$\begin{array}{c} \text{HD} \\ \text{H} - \# & \text{FTABNO} & \text{LEN} & \text{DELTH} & \text{STCOR} & \text{KS} & \text{DESO} & **** \\ \hline \text{H} - \# & \text{FTABNO} & \text{LEN} & \text{DELTH} & \text{STCOR} & \text{KS} & \text{DESO} & **** \\ \hline \text{I} & 1 & 1 & 0.01 & 0.0 & 0.0 & 0.5 & 0.0 \\ \hline \text{2} & 2 & 0 & 0.3 & 0.0 & 0.0 & 0.5 & 0.0 \\ \hline \text{RD} & \text{HYDR-PARM2} & \text{HYDR-PARM2} \\ \hline \text{HYDR-PARM2} & \text{HYDR} & \text{Initial conditions for each HYDR section} & **** \\ \hline \text{H} - \# *** & \text{VOL} & \text{Initial value of COLIND} & Initial value of OUTDOT \\ & *** ac-ft & for each possible exit & for each possible exit \\ \hline \text{c$	2 END HYDR-	0 1 0 -PARM1	0 4 0	0 0 0	0	0 0 0 0	22	2 2 2
<pre> </pre>	HYDR-PARN # - #	12 FTABNO	LEN	DELTH	STCOR	KS	DB50	* * *
2 2 0.03 0.0 0.0 0.5 0.0 END HYDR-PARM2 HYDR-FAINT RCHRES Initial conditions for each HYDR section **** # - # *** VOL Initial value of COLIND Initial value of COTDOT **** ac-ft for each possible exit <	<>< 1	<>< 1		 0.0	<> 0.0	<>< 0.5	<> 0.0	* * *
<pre>*** *** CTIDES Initial conditions for each HVDR section</pre>	2 END HYDR- HYDR-INI	2 -PARM2	0.03	0.0	0.0	0.5	0.0	
<pre>*** ac-fi for each possible exit for eac</pre>	RCHRES	Initial c	conditions f	for each B	HYDR section	on Tritia		*** ד
<pre><></pre> <>1 0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	······································	*** ac-ft	for each	n possible	e exit	for eac	h possible e	exit
2 0 4.0 0.0	<>< 1	0	<><- 4.0	0.0 0.0	0.0 0.0	*** <>< 0.0	0.0 0.0 (><> 0.0 0.0
SPEC-ACTIONS END SPEC-ACTIONS FTABLES TABLE 1 91 4 Dept Area Volume Outflowl Velocity Travel Time**** (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)*** 0.000000 0.013233 0.00000 0.00000 0.088889 0.013280 0.001178 0.267497 0.266667 0.013395 0.003549 0.463318 0.355556 0.013453 0.004742 0.534993 0.444444 0.013511 0.005941 0.598140 0.633333 0.013569 0.007144 0.655230 0.662222 0.013627 0.00853 0.77729 0.711111 0.013685 0.009567 0.756594 0.800000 0.01377 0.01380 0.002490 0.888889 0.013801 0.012010 0.845898 0.977778 0.013381 0.002453 0.766543 1.155556 0.013418 0.014474 0.926635 1.244444 0.014036 0.016959 1.000880 1.33333 0.14095 0.018429 1.036810 1.33333 0.14095 0.018429 1.036810 1.33333 0.14095 0.018429 1.036810 1.366667 0.014154 0.019451 1.069986 1.51111 0.014213 0.02725 1.102916 1.650000 0.01377 0.013455 1.069986 1.51111 0.014152 0.022439 1.134892 1.688889 0.014332 0.02263 1.165990 1.777778 0.013452 0.022439 1.1225823 1.656667 0.014452 0.028491 1.225823 1.856667 0.014452 0.028491 1.225823 1.866667 0.014452 0.028491 1.225823 1.856667 0.014452 0.028491 1.225823 1.856667 0.014452 0.028491 1.225823 1.856667 0.014452 0.02301 1.337483 2.31111 0.01473 0.033044 1.415459 2.222222 0.014639 0.033021 1.337483 2.31111 0.014752 0.03301 1.363970 2.40000 0.014473 0.034944 1.415459 2.43333 0.015178 0.013625 1.38953 2.488889 0.014873 0.034944 1.415459 2.577778 0.014495 0.03269 1.440513 2.66667 0.014952 0.03269 1.440513 2.66667 0.014954 0.037599 1.455139 2.577778 0.014943 0.034944 1.415459 2.577778 0.014943 0.034944 1.415459 2.577778 0.014943 0.034944 1.415459 2.577778 0.014943 0.034944 1.415459 2.577778 0.014945 0.037599 1.455139 2.577778 0.014945 0.037599 1.455139 2.577778 0.014945 0.037599 1.455139 2.58889 0.014517 0.042974 1.559759 3.11111 0.015301 0.044332 1.582531 3.20000 0.015424 0.044937 1.664979 3.288889 0.015424 0.044937 1.648959	2 END HYDR- END RCHRES	0 -INIT	4.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0 (0.0 0.0
END SPEC-ACTIONS FTABLES FTABLE 1 91 4 Depth Area Volume Outflowl Velocity Travel Time*** (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)*** 0.000000 0.013223 0.000000 0.000000 0.088889 0.013280 0.001178 0.267497 0.266667 0.013395 0.003541 0.378297 0.266667 0.013395 0.003549 0.463318 0.355556 0.013453 0.004742 0.538193 0.44444 0.013511 0.005941 0.598140 0.53333 0.013669 0.007144 0.655230 0.622222 0.013627 0.008353 0.707729 0.71111 0.013685 0.009567 0.756594 0.800000 0.013743 0.010786 0.802490 0.808889 0.013801 0.012010 0.845898 0.97777 0.013743 0.010786 0.802490 0.888889 0.013801 0.012010 0.845898 1.966667 0.013918 0.01474 0.926635 1.155556 0.013918 0.014674 0.926635 1.33333 0.014055 0.012091 1.134892 1.68889 0.014305 0.012091 1.00880 1.33333 0.014055 0.012091 1.134892 1.68889 0.014321 0.02725 1.102916 1.600000 0.014273 0.021991 1.134892 1.68889 0.014322 0.022639 1.165990 1.777778 0.013452 0.022439 1.125806 2.13333 0.014632 0.02261 1.225823 1.855556 0.013912 0.022451 1.225823 1.866667 0.014452 0.028401 1.282868 2.13333 0.014632 0.022699 1.310460 2.22222 0.014692 0.031002 1.337403 2.31111 0.01473 0.031002 1.337403 2.400000 0.014493 0.034944 1.415459 2.438889 0.018473 0.034944 1.415459 2.577778 0.014495 0.03305 1.483953 2.48889 0.018473 0.034944 1.4559 2.577778 0.014495 0.03305 1.483953 2.44444 0.015117 0.04274 1.559759 3.11111 0.015240 0.042974 1.559759 3.11111 0.015240 0.044974 1.559759 3.11111 0.015240 0.044974 1.559759 3.11111 0.015240 0.044974 1.559759 3.11111 0.015240 0.044974 1.559759 3.11111 0.015240 0.044977 1.559759 3.11111 0.015424 0.044976 1.527118 3.377777 0.0154440	SPEC-ACTION	NS						
91 4 Depth Area Volume Outflowl Velocity Travel Time*** (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)*** 0.00000 0.013223 0.00000 0.00000 0.080889 0.01320 0.00178 0.267497 0.177778 0.01338 0.002361 0.378297 0.266667 0.01395 0.003549 0.463318 0.355556 0.013453 0.004742 0.534993 0.44444 0.013511 0.005941 0.598140 0.53333 0.013659 0.007144 0.655230 0.622222 0.013627 0.008353 0.707729 0.71111 0.01365 0.009567 0.756594 0.800000 0.013743 0.010786 0.802490 0.888889 0.013801 0.012010 0.845898 0.977778 0.013806 0.013239 0.887186 1.066667 0.013918 0.014474 0.926635 1.155556 0.013977 0.01380 0.014474 0.926635 1.33333 0.014095 0.018209 1.036010 1.42222 0.01454 0.019465 1.009860 1.33333 0.014095 0.018209 1.036010 1.42222 0.01454 0.019465 1.069986 1.51111 0.014213 0.020725 1.102916 1.600000 0.01473 0.022821 1.225823 1.658566 0.014512 0.022821 1.225823 1.955556 0.014512 0.027109 1.254670 2.044444 0.01462 0.023623 1.165990 1.777778 0.014392 0.023631 1.363970 2.044444 0.01452 0.0227109 1.254670 2.044444 0.01452 0.0227109 1.254670 2.044444 0.01452 0.02361 1.309953 2.480889 0.01433 0.033625 1.389953 2.480889 0.01433 0.033625 1.389953 2.48089 0.01433 0.03269 1.440513 2.666667 0.01495 0.032311 1.363970 2.40000 0.014813 0.03269 1.440513 2.666667 0.01495 0.032311 1.363970 2.44444 0.015177 0.04276 1.513189 2.577778 0.014934 0.03269 1.440513 2.666667 0.01495 0.032351 1.429358 2.84444 0.015177 0.04276 1.513189 2.577778 0.014934 0.03269 1.440513 2.666667 0.01495 0.032311 1.363970 2.44444 0.015177 0.04276 1.513189 2.577778 0.014934 0.03269 1.440513 2.666667 0.01495 0.032311 1.353953 2.48444 0.015177 0.040276 1.513189 2.331111 0.01536 0.042974 1.559759 3.11111 0.01536 0.044322 1.582531 3.20000 0.01536 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118	END SPEC-AC FTABLES FTABLE	CTIONS 1						
(ft) (arres) (arreft) (cfs) (ft/sec) (Minutes)*** 0.000000 0.013223 0.00000 0.000000 (Minutes)*** 0.177778 0.013328 0.00178 0.267497 0.177778 0.013395 0.003549 0.463318 0.355556 0.013453 0.004742 0.534993 0.444444 0.013511 0.00541 0.598140 0.533333 0.013627 0.008353 0.707729 0.711111 0.013685 0.00977 0.55544 0.800000 0.013743 0.010786 0.802490 0.88889 0.013801 0.102010 0.845886 0.977778 0.013860 0.013239 0.887186 1.05556 0.013977 0.015714 0.964472 1.244444 0.014036 0.016959 1.00880 1.33333 0.014213 0.020725 1.102916 1.600000 0.01422 0.023633 1.165990 1.77778 0.014322 0.024539 1.196281 1.866667 0.014452 0.027109 1.254670 <td< td=""><td>91 4 Depth</td><td>Area</td><td>Volume</td><td>Outflow1</td><td>Velocity</td><td>Travel Tim</td><td>ا ۲ * * *</td><td></td></td<>	91 4 Depth	Area	Volume	Outflow1	Velocity	Travel Tim	ا ۲ * * *	
0.000000 0.013223 0.000178 0.267497 0.177778 0.013338 0.00178 0.267497 0.266667 0.013453 0.003549 0.463318 0.355556 0.013453 0.004742 0.534993 0.444444 0.013511 0.005941 0.598140 0.53333 0.013659 0.007144 0.655230 0.622222 0.013627 0.008353 0.707729 0.711111 0.013685 0.009567 0.756594 0.800000 0.013743 0.010786 0.802490 0.888889 0.013801 0.012010 0.845898 0.977778 0.013918 0.014474 0.926635 1.066667 0.013918 0.014474 0.926635 1.155556 0.013977 0.015714 0.964472 1.244444 0.014036 0.016959 1.006880 1.33333 0.014095 0.018209 1.036010 1.422222 0.014154 0.019465 1.069986 1.51111 0.014213 0.020725 1.102916 1.600000 0.014273 0.021709 1.134892 1.688889 0.014322 0.024539 1.196281 1.877778 0.014322 0.024539 1.196281 1.866667 0.014452 0.025821 1.225823 1.866667 0.014452 0.025451 1.225823 1.95555 0.014652 0.027109 1.337463 2.31111 0.014452 0.02869 1.310460 2.222222 0.014632 0.02363 1.136995 2.488889 0.014873 0.034944 1.415459 2.444444 0.014672 0.02869 1.340460 2.222222 0.014632 0.03365 1.389953 2.488889 0.014873 0.034944 1.415459 2.577778 0.014934 0.036269 1.440513 2.666667 0.01495 0.03365 1.389953 2.488889 0.014873 0.034944 1.415459 2.577778 0.014333 0.034944 1.415459 2.577778 0.014333 0.034944 1.415459 2.75556 0.015056 0.038955 1.489358 2.48889 0.014873 0.034944 1.4559 2.577778 0.014394 0.036269 1.440513 2.666667 0.014954 0.04276 1.513189 2.75556 0.015056 0.038955 1.489358 2.84444 0.01517 0.04276 1.513189 2.93333 0.01578 0.044322 1.582531 3.200000 0.015363 0.045694 1.604979 3.228889 0.015424 0.044324 1.582531 3.200000 0.015364 0.04274 1.559759 3.11111 0.015424 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.664859	(ft)	(acres)	(acre-ft)	(cfs)	(ft/sec)	(Minutes	3)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.088889	0.013223 0.013280	0.000000 0.001178	0.267497				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.177778	0.013338	0.002361	0.378297				
0.44444 0.013511 0.005941 0.598140 0.53333 0.013569 0.007144 0.655230 0.62222 0.013627 0.008353 0.707729 0.711111 0.013685 0.009567 0.756594 0.800000 0.013743 0.010786 0.802490 0.88889 0.013801 0.012010 0.845898 0.977778 0.013801 0.012010 0.845898 0.977778 0.013801 0.01474 0.926635 1.155556 0.013977 0.015714 0.964472 1.244444 0.014036 0.016959 1.000880 1.33333 0.014095 0.018209 1.036010 1.422222 0.014154 0.019465 1.069986 1.51111 0.014213 0.020725 1.102916 1.6080889 0.014332 0.023263 1.165990 1.777778 0.014452 0.025821 1.25823 1.955556 0.014512 0.027109 1.254670 2.044444 0.014572 0.028401 1.282868 2.133333 0.014632 0.02263 1.363970 2.222222 0.014692 0.031002 1.337483 2.31111 0.014753 0.034944 1.415459 2.40000 0.014813 0.034625 1.389953 2.488889 0.014873 0.034944 1.415459 2.577778 0.014934 0.036269 1.409450 2.48889 0.014733 0.034944 1.415459 2.577778 0.014934 0.036269 1.409450 2.48889 0.014753 0.034944 1.415459 2.577778 0.014517 0.032311 1.363970 2.40000 0.014813 0.03625 1.389953 2.488889 0.014773 0.034944 1.415459 2.577778 0.014934 0.036269 1.440513 2.666667 0.014951 0.037599 1.465139 2.755556 0.015056 0.038935 1.489358 2.844444 0.015117 0.040276 1.513189 2.93333 0.015178 0.041622 1.559759 3.11111 0.015301 0.042321 1.559759 3.11111 0.015301 0.042321 1.589531 3.200000 0.015363 0.045644 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048459	0.266667	0.013395 0 013453	0.003549 0 004742	0.463318				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.444444	0.013511	0.005941	0.598140				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.533333	0.013569	0.007144	0.655230				
0.800000 0.013743 0.010786 0.802490 0.888889 0.013801 0.012010 0.845898 0.977778 0.013860 0.013239 0.887186 1.066667 0.013918 0.014474 0.926635 1.155556 0.013977 0.015714 0.964472 1.244444 0.014036 0.016959 1.000880 1.33333 0.014095 0.018209 1.036010 1.422222 0.014154 0.019465 1.069986 1.51111 0.014213 0.020725 1.102916 1.600000 0.014273 0.021991 1.134892 1.688889 0.014332 0.023263 1.165990 1.777778 0.014392 0.024539 1.196281 1.866667 0.014452 0.025821 1.225823 1.955556 0.014512 0.027109 1.254670 2.044444 0.014572 0.028401 1.282868 2.133333 0.014632 0.029699 1.310460 2.222222 0.014692 0.031002 1.337483 2.31111 0.014752 0.032311 1.363970 2.400000 0.014813 0.03625 1.389953 2.48889 0.014873 0.034944 1.415459 2.577778 0.014994 0.036269 1.440513 2.666667 0.014954 0.037599 1.465139 2.755556 0.015056 0.038935 1.489358 2.844444 0.015117 0.040276 1.513189 2.93333 0.015178 0.041622 1.536651 3.022222 0.015240 0.042974 1.559759 3.11111 0.015301 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.28889 0.015424 0.047063 1.627118 3.377778 0.015424 0.047063 1.627118 3.377778 0.015424 0.047063 1.627118 3.377778 0.015424 0.047063 1.627118	0.622222	0.013627 0.013685	0.008353 0.009567	0.707729				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.800000	0.013743	0.010786	0.802490				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.888889	0.013801	0.012010	0.845898				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.977778	0.013860	0.013239 0.014474	0.887186				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.155556	0.013977	0.015714	0.964472				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.244444	0.014036	0.016959	1.000880				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.333333	0.014095	0.018209	1.036010				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.511111	0.014134 0.014213	0.020725	1.102916				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.600000	0.014273	0.021991	1.134892				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.688889	0.014332	0.023263	1.165990				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.866667	0.014392 0.014452	0.024539	1.225823				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.955556	0.014512	0.027109	1.254670				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.044444	0.014572	0.028401	1.282868				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∠.⊥33333 2 222222	0.014632	0.029699 0.031002	1.310460 1 337483				
2.400000 0.014813 0.033625 1.389953 2.488889 0.014873 0.034944 1.415459 2.577778 0.014934 0.036269 1.440513 2.666667 0.014995 0.037599 1.465139 2.755556 0.015056 0.038935 1.489358 2.844444 0.015117 0.040276 1.513189 2.93333 0.015178 0.041622 1.536651 3.022222 0.015240 0.042974 1.559759 3.11111 0.015301 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	2.311111	0.014752	0.032311	1.363970				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.400000	0.014813	0.033625	1.389953				
2.666667 0.014995 0.037599 1.465139 2.755556 0.015056 0.038935 1.489358 2.844444 0.015117 0.040276 1.513189 2.933333 0.015178 0.041622 1.536651 3.022222 0.015240 0.042974 1.559759 3.11111 0.015301 0.044332 1.582531 3.200000 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	2.488889	0.014873	U.U34944 0 036269	1.415459 1.440512				
2.755556 0.015056 0.038935 1.489358 2.844444 0.015117 0.040276 1.513189 2.933333 0.015178 0.041622 1.536651 3.022222 0.015240 0.042974 1.559759 3.111111 0.015301 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	2.666667	0.014995	0.037599	1.465139				
2.844444 0.015117 0.040276 1.513189 2.933333 0.015178 0.041622 1.536651 3.022222 0.015240 0.042974 1.559759 3.11111 0.015301 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	2.755556	0.015056	0.038935	1.489358				
2.933333 0.013176 0.041022 1.530051 3.022222 0.015240 0.042974 1.559759 3.111111 0.015301 0.044332 1.582531 3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	2.844444	0.015117	0.040276	1.513189				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.933333 3.022222	0.015240	0.041022 0.042974	1.559759				
3.200000 0.015363 0.045694 1.604979 3.288889 0.015424 0.047063 1.627118 3.377778 0.015486 0.048437 1.648959	3.111111	0.015301	0.044332	1.582531				
3.288889	3.200000	0.015363	0.045694	1.604979				
	3.288889	0.015424 0.015486	0.047063 0.048437	1.627118 1.648959				

3.466667 3.555556 3.644444 3.733333 3.822222 3.911111 4.000000 4.088889 4.177778 4.266667 4.355556 4.44444 4.533333 4.622222 4.711111 4.800000 4.888889 4.977778 5.066667 5.155556 5.244444 5.333333 5.422222 5.511111 5.600000 5.688889 5.777778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 5.600000 5.688889 5.777778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 6.666667 6.755556 6.844444 6.933333 7.022222 7.111111 7.200000 7.555556 6.844444 6.933333 7.022222 7.111111 7.208889 7.37778 7.466667 7.555556 7.644444 7.733333 7.822222 7.911111 8.000000 END FTABL	0.015548 0.015610 0.015672 0.015735 0.015797 0.015860 0.015923 0.015985 0.016048 0.016111 0.016175 0.016238 0.016301 0.016365 0.016429 0.016492 0.016656 0.016656 0.016656 0.016685 0.016749 0.016813 0.016878 0.016749 0.016843 0.016878 0.016749 0.01685 0.016749 0.016878 0.016749 0.016878 0.016749 0.017072 0.017072 0.017072 0.017203 0.017268 0.017203 0.017268 0.017330 0.017268 0.017596 0.017596 0.017596 0.017596 0.017596 0.017595 0.017795 0.017795 0.017861 0.017928 0.017928 0.017995 0.018128 0.018128 0.018307 0.018465 0.018532 0.018465 0.018736 0.018736 0.018736 0.018872 E	0.049816 0.051201 0.052591 0.053987 0.055388 0.056795 0.058208 0.059626 0.061050 0.062479 0.063914 0.065354 0.068253 0.069710 0.071173 0.072642 0.074117 0.075597 0.074117 0.075597 0.074117 0.075597 0.077083 0.078574 0.080072 0.081575 0.083084 0.084598 0.086119 0.084598 0.086119 0.087645 0.089177 0.090715 0.092259 0.093808 0.095363 0.096925 0.098492 0.100065 0.101643 0.103228 0.1096925 0.098492 0.100655 0.101643 0.103228 0.104819 0.104819 0.104819 0.104819 0.102260 0.117758 0.1124371 0.126040 0.127714	1.670515 1.691797 1.712814 1.733576 1.754092 1.774371 1.794421 1.814250 1.833864 1.853270 1.872476 1.891486 1.910307 1.928945 1.947404 1.965690 1.983807 2.001761 2.019555 2.037193 2.054680 2.072019 2.089215 2.106270 2.123188 2.139972 2.156626 2.173152 2.189553 2.205833 2.221993 2.25833 2.221993 2.25833 2.221993 2.253966 2.327666 2.345699 2.363199 2.380329 2.363199 2.380329 2.363199 2.380329 2.363199 2.380329 2.363199 2.380329 2.467500 3.198544 4.316850 5.207863 3.785919 10.32063 11.71823 12.90286 13.83219 14.51567 15.03487		
FTABLE 91 4 Depth (ft)	2 Area (acres)	Volume (acre-ft)	Outflow1 (cfs)	Velocity (ft/sec)	Travel Time*** (Minutes)***
0.00000 0.066667 0.133333 0.200000 0.266667 0.333333 0.400000 0.466667 0.533333 0.600000 0.666667 0.733333 0.800000	0.000000 0.004938 0.006944 0.008456 0.009708 0.010790 0.011751 0.012616 0.013406 0.014132 0.014804 0.015430 0.016013	0.00000 0.000220 0.001135 0.001742 0.002426 0.003178 0.003991 0.004858 0.005777 0.006741 0.007749 0.008798	0.000000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.199148 0.211229 0.222655 0.233522 0.243906	(20,000)	

0.866667 0.933333 1.000000 1.066667 1.133333 1.200000 1.266667 1.333333 1.400000 1.466667 1.533333 1.600000 1.666667 1.733333 1.800000 1.866667 2.133333 2.0000000 2.066667 2.33333 2.000000 2.666667 2.533333 2.600000 2.666667 2.533333 3.000000 2.666667 3.33333 3.000000 3.666667 3.33333 3.000000 3.666667 3.533333 3.6000000 3.666667 3.533333 3.600000 3.666667 3.533333 3.600000 3.666667 3.533333 3.6000000 3.666667 3.66667 3.533333 3.6000000 3.666667 3.533333 3.6000000 3.666667 3.533333 3.6000000	0.016560 0.017073 0.017556 0.018010 0.018439 0.018439 0.019224 0.019244 0.020245 0.020547 0.020547 0.021351 0.021587 0.021808 0.022015 0.022015 0.022015 0.0223701 0.023408 0.023408 0.023408 0.023408 0.023501 0.023548 0.023554 0.0235554 0.0235554 0.0235554 0.0235554 0.0235554	0.009884 0.011005 0.012160 0.013345 0.014560 0.015803 0.017072 0.018366 0.019683 0.021022 0.023761 0.025159 0.026574 0.028006 0.029452 0.030913 0.032387 0.035372 0.036880 0.038398 0.039925 0.041460 0.043002 0.044550 0.044550 0.044550 0.044550 0.044550 0.044550 0.044550 0.044550 0.053927 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.058637 0.060204 0.061770 0.058637 0.06204 0.061770 0.058637 0.06204 0.061770 0.058637 0.06204 0.061770 0.058637 0.06204 0.061770 0.058637 0.06204 0.072596 0.071169 0.072596 0.071121 0.078607 0.080812 0.084235 0.084235 0.084235 0.0857233 0.088612 0.092628	0.253865 0.263448 0.272695 0.281638 0.290306 0.298722 0.306908 0.314881 0.322657 0.330250 0.337672 0.344935 0.352048 0.359020 0.365859 0.372572 0.379167 0.385649 0.392027 0.404472 0.410555 0.416549 0.422457 0.428285 0.434034 0.428285 0.434034 0.456306 0.467044 0.456306 0.467044 0.456306 0.467044 0.472322 0.477541 0.482704 0.492867 0.492867 0.492867 0.512589 0.517402 0.512589 0.517402 0.522171 0.526897 0.512589 0.517402 0.549916 0.554059 0.5632760 0.572010 0.572010 0.576327 0.580612 0.589089
4.133333 4.200000 4.266667 4.333333 4.400000 4.466667 4.533333 4.600000 4.666667 4.733333 4.800000 4.866667 4.933333 5.000000 5.066667 5.133333 5.200000 5.266667 5.33333 5.400000 5.46667	0.021808 0.021587 0.021351 0.021100 0.020832 0.020547 0.020245 0.019924 0.019584 0.019224 0.018843 0.018439 0.018010 0.017556 0.017556 0.017556 0.017556 0.016560 0.0165430 0.014804 0.014132 0.013406	0.081542 0.082989 0.084420 0.085835 0.087233 0.088612 0.099972 0.091311 0.092628 0.093922 0.095191 0.096434 0.097649 0.098835 0.0999835 0.0999835 0.102196 0.103245 0.104253 0.105218 0.106136	0.554405 0.558859 0.563276 0.567660 0.572010 0.576327 0.580612 0.584866 0.589089 0.593281 0.597445 0.601580 0.605686 0.609765 0.978910 1.648713 2.508517 3.508899 4.608973 5.768278 6.945177

5.533333 0.0126 5.600000 0.0117 5.666667 0.0107 5.73333 0.0097 5.800000 0.0084 5.866667 0.0069 5.933333 0.0049 6.000000 0.0000 END FTABLE 2 END FTABLES	516 0.10700 751 0.10780 790 0.10850 708 0.10925 156 0.10925 156 0.10985 156 0.10985 156 0.10985 156 0.10985 156 0.10985 157 0.11095 100 0.11095	04 8.097647 16 9.185308 58 10.17228 52 11.03063 59 11.74437 74 12.31382 74 12.76044 94 13.13191				
EXT SOURCES					Manlana	* * *
<pre><name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></pre>	# tem strg ENGL 2 ENGL 2 ENGL 0 ENGL 0	<pre>cMult>frafi <-factor->strg L 0.76 0.76</pre>	<pre><-larget Vols> <name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999 IMPLND 1 999</name></pre>	EXTNL EXTNL EXTNL EXTNL EXTNL	<-Member-> <name> # # PREC PREC PETINP PETINP</name>	* * *
END EXT SOURCES						
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 501 OUTPUT COPY 502 OUTPUT COPY 506 OUTPUT COPY 504 OUTPUT COPY 507 OUTPUT COPY 508 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR COPY 505 OUTPUT COPY 503 OUTPUT RCHRES 2 HYDR RCHRES 2 HYDR END EXT TARGETS</name>	<-Member-> <name> # # MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 MEAN 1 1 RO 1 1 STAGE 1 1 MEAN 1 1 MEAN 1 1 RO 1 1 RO 1 1 STAGE 1 1</name>	<mult>Tran <-factor->strg 48.4 48.4 48.4 48.4 48.4 48.4 1 1 48.4 48.4</mult>	<-Volume-> <mem <name> # <nam WDM 501 FLOW WDM 502 FLOW WDM 506 FLOW WDM 504 FLOW WDM 507 FLOW WDM 508 FLOW WDM 1000 FLOW WDM 1001 STAG WDM 505 FLOW WDM 503 FLOW WDM 503 FLOW WDM 1002 FLOW WDM 1003 STAG</nam </name></mem 	uber> Ts ne> t I El I El I El I El I El I El I El I El	Sys Tgap Amo cem strg str JGL REI JGL REI	1 *** cg*** 2L 2L 2L 2L 2L 2L 2L 2L 2L 2L
MASS-LINK <volume> <-Grp> <name></name></volume>	<-Member->< <name> # #<</name>	<mult> <-factor-></mult>	<target> <name></name></target>	<-Grp>	<-Member->; <name> # #;</name>	* * *
PERLND PWATER END MASS-LINK	SURO 2	0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5	0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN	
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	COPY	INPUT	MEAN	
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	СОРҮ	INPUT	MEAN	
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРҮ	INPUT	MEAN	
MASS-LINK	30					

PERLND END MASS-	PWATER LINK	SURO 30	PERLND	EXTNL	SURLI
MASS-LINK PERLND END MASS-	PWATER LINK	34 IFWO 34	PERLND	EXTNL	IFWLI
MASS-LINK PERLND END MASS-	PWATER LINK	38 AGWO 38	PERLND	EXTNL	AGWLI
MASS-LINK IMPLND END MASS-	IWATER LINK	50 SURO 50	PERLND	EXTNL	SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 mode START RUN INTERP RESUME END GLOBAL	l simulation 1948 10 01 OUTPUT LEVEL 0 RUN 1	END 3 0	2009 09 UNI) 30 It sys	TEM	1				
FILES <file> <un#:< td=""><td>> <</td><td>File Name-</td><td></td><td></td><td></td><td></td><td></td><td>>**:</td><td>*</td><td></td></un#:<></file>	> <	File Name-						>**:	*	
WDM 26 MESSU 29 27 28 30 31 32 32 34 34	 Tamarack - I MitTamarack MitTamarack MitTamarack POCTamarack 	 Durations.w Duration 	dm s.MES s.L61 s.L62 s1.dat s2.dat s4.dat s6.dat s7.dat s8.dat s3.dat s5.dat							
END FILES										
OPN SEQUENCE INGRP PERLND PERLND IMPLND IMPLND IMPLND PERLND PERLND PERLND PERLND PERLND PERLND RCHRES RCHRES COPY COPY COPY COPY COPY COPY COPY COPY	INDEL 8 17 2 4 6 9 3 7 2 18 1 2 501 502 504 506 507 508 3 503 603 505 605 1 2 4 6 7 8 3 505 605 1 2 4 6 7 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 507 508 3 505 605 505 605 505 605 1 2 505 605 505 605 1 2 505 605 505 605 1 2 505 605 505 605 1 2 505 605 505 605 505 605 505 605 505 605 1 2 505 605 1 2 505 605 505 605 1 2 505 605 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 505 605 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5	T 00:15								
DISPLY-INFO)1 		***TP 2N		DTG1	FTT.1	qvq	חדפי	FTT.2	VRND
1	Subbasin 1	,	MAX	<u>-</u> түп .	TOTOT	т. Т.П.Т.	1	2	30	9
2	Subbasin 2 Subbasin 4		MAX MAX				1	2 2	31 33	9 9

6 7 8 3 5 END DISPLY COPY	Subbasin Subbasin Subbasin Tank 1 Trapezoida Y-INF01	6 7 8 1 Pond 2	1	MAX MAX MAX MAX MAX		1 1 1 1	2 2 2 2 2 2 2 2 2 2	35 9 36 9 37 9 32 9 34 9
TIMESERIE # - # 1 501 502 504 506 507 508 3 503 603	S NPT NMN ** 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*						
5 505 605 END TIMES END COPY GENER OPCODE # # END OPCOD PARM # #	1 1 1 1 ERIES OPCD *** E K **	*						
END PARM END GENER PERLND GEN-INFO <pls><</pls>	Name-	>NI	BLKS Un	it-systems	Printer	* * *		
# - #	/B, Lawn, Mc , Lawn, Mod /B, Lawn, St /B, Forest, , Lawn, Stee NFO on PWATER***	eep Mod Sp	User 1 1 1 1 1 1 1 1 1 1	t-series in out 1 1 1 1 1 1 1 1 1 1	Engl Metr 27 0 27 0 27 0 27 0 27 0 27 0	***		
ACTIVITY <pls> # - # 8 17 9 2 18 END ACTIV</pls>	**************************************	* Active AT SED 1 0 1 0 1 0 1 0 1 0 1 0	Sections PST PWG 0 0 0 0 0 0 0 0 0 0	********* PQAL MSTI 0 0 0 0 0 0 0 0 0 0 0 0	*********** PEST NITR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	******** PHOS TR 0 0 0 0 0	** AC *** 0 0 0 0 0	*
PRINT-INF	O **************** 0 0 0 0 0 0 0 0 0 0 0	***** Pr: AT SED 4 0 4 0 4 0 4 0 4 0 4 0 4 0	int-flags PST PWG 0 0 0 0 0 0 0 0 0 0	********* PQAL MSTI 0 0 0 0 0 0 0 0 0 0 0 0	PEST NITR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	******** PHOS TR 0 0 0 0 0 0	** PI AC ** 0 0 0 0 0	VL PYR ******** 1 9 1 9 1 9 1 9 1 9
PWAT-PARM <pls> # - # 8</pls>	1 PWATER vari CSNO RTOP UZ 0 0	able mont FG VCS 0 0	thly para VUZ VNN 0 0	meter valu VIFW VIRC 0 0	ue flags * C VLE INFC 0 0 0	** HWT ** 0	*	

17 9 2 18 END PV	VAT-PAF	0 0 0 0 0 0 0 0 2M1	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0)))		
PWAT-F <pls # - 8 17 9 2 18 END PV</pls 	PARM2 5 > # ***	PWATE FOREST 0 0 0 0 0 0 2M2	R input L2 2	info ISN 5 4.5 5 5 4.5	: Pa: INF 0	rt 2 ILT 0.8 .03 0.8 2 .03	I	** 400 400 400 400 400	* S	LSUR 0.1 0.15 0.1 0.15		KVARY 0.3 0.5 0.3 0.3 0.5		AGWRC 0.996 0.996 0.996 0.996 0.996
PWAT-F <pls # - 8 17 9 2 18 END PV</pls 	PARM3 5 > # ***	PWATE PETMAX 0 0 0 0 0 2M3	R input PETN	info IIN 0 0 0 0 0	: Pa: INF	rt 3 EXP 2 2 2 2 2 2 2	INF	** 2 2 2 2 2 2	* DE	EPFR 0 0 0 0 0	E	BASETP 0 0 0 0 0	1	AGWETP 0 0 0 0 0
<pre>PWA1-F <pls # - 8 17 9 2 18 END PV</pls </pre>	VARM4 5 > # VAT-PAF	PWATER CEPSC 0.1 0.1 0.1 0.2 0.1 2M4	input U2 (0 (((info: ZSN 25 .25 .5 .5 .15	Par N 0 0 0 0 0	t 4 SUR .25 .25 .25 .35 .25	IN	UTFW 0 6 0 0 6		IRC 0.7 0.5 0.7 0.7 0.3		LZETP 0.25 0.25 0.25 0.7 0.25	* * *	
PWAT-S <pls # - 8 17 9 2 18 END PV</pls 	STATE1 5 > *** # ***	F Initia ran fro CEPS 0 0 0 0 0 0 0 TE1	l cond: m 1990 ST	tions to en JRS 0 0 0 0 0 0	at dof	start 1992 UZS 0 0 0 0 0	of s (pat I	simula 1-11 FWS 0 0 0 0 0	tion -95)	RUN LZS 3 2.5 3 2.5	21 *	AGWS 1 1 1 1 1 1		GWVS 0 0 0 0
END PERI IMPLND GEN-IN <pls # - 2 4 6 3 7 END GH *** Se</pls 	LND JFO S >< # ROF DRJ ROF DRJ EN-INFC	ADS/MOD DF TOPS/ VEWAYS/ ADS/STEE VEWAYS/ IWATER*	e FLAT MOD P STEEP **	> Us	Unit er 1 1 1 1	-syst t-ser 1 1 1 1	ems ies E 1 1 1 1	Prin Ingl M 27 27 27 27 27 27	ter etr 0 0 0 0 0	* * * * * * * * *				
ACTIVJ <pls # - 2 4 6 3 7 END AC</pls 	TY 5 > *** # ATN CTIVITY	1P SNOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** Act IWAT S 1 1 1 1 1	cive S SLD I 0 0 0 0 0	ecti WG I 0 0 0 0 0	ons * QAL 0 0 0 0 0	* * * * *	****	* * * *	* * * * *	* * * *	****		

PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** 1 9 2 0 0 4 0 0 0 4 0 0 4 0 0 0 1 9 0 0 4 9 0 0 0 6 1 0 0 0 0 4 0 1 9 3 7 0 0 4 0 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 6 3 0 0 0 0 0 7 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2 * * * <PLS > # - # *** LSUR SLSUR NSUR RETSC 0.05 0.08 2 400 0.1 400 0.01 0.1 4 0.1 0.05 6 400 0.1 0.08 0.1 400 0.1 0.05 3 7 400 0.1 0.1 0.05 END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN 0 2 0 4 0 0 0 6 0 3 0 0 7 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 2 0 0 4 0 0 0 0 6 3 0 0 7 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK * * * <-Source-> * * * <Name> # <-factor-> <Name> # Tbl# Subbasin 3A*** perlnd 9 5.54 2 RCHRES 1 9 5.54 3 PERLND RCHRES 1 IMPLND 3 1.79 RCHRES 1 5 IMPLND 4 2.74 5 RCHRES 1 7 IMPLND 1.18 RCHRES 1 5 Subbasin 5*** PERLND 9 2 1.15 RCHRES 2 9 PERLND 1.15 RCHRES 2 3 3 4 IMPLND 0.52 RCHRES 2 5 2 IMPLND 0.73 RCHRES 5 7 0.31 RCHRES 2 5 IMPLND Subbasin 1*** 0.38 COPY 501 12 PERLND 8
PERLND 8	0.38	COPY	501	13
PERLND 17	0.94	COPY	501	12
TMDIND 2	0.94	COPI	501 501	15 15
IMPLIND Z IMDI.ND A	0.33	COPI	501	15
IMPLND 6	0.33	COPY	501	15
Subbasin 2***	0.11	0011	501	10
PERLND 8	0.52	COPY	502	12
PERLND 8	0.52	COPY	502	13
PERLND 17	0.32	COPY	502	12
PERLND 17	0.32	COPY	502	13
IMPLND 2	0.42	COPY	502	15
IMPLND 4	0.25	COPY	502	15
IMPLND 6	0.11	COPY	502	15
Subbasin 4***				
PERLND 2	5.82	COPY	504	12
PERLND 2	5.82	COPY	504	13
Subbasin 6***				
PERLND 8	9.37	COPY	506	12
PERLND 8	9.37	COPY	506	13
PERLND 17	0.03	COPY	506	12
PERLND 17	0.03	COPY	506	13
IMPLND 2	1.77	COPY	506	15
IMPLND 4	3.3	COPY	506	15
IMPLND 6	1.41	COPY	506	15
Subbasin 7***				
PERLND 9	0.52	COPY	507	12
PERLND 9	0.52	COPY	507	13
PERLND 18	0.77	COPY	507	12
PERLND 18	0.77	COPY	507	13
IMPLND 4	0.72	COPY	507	15
IMPLND 7	0.31	COPY	507	15
Subbasin 8***				
PERLND 9	2.2	COPY	508	12
PERLND 9	2.2	COPY	508	13
PERLND 18	2.13	COPY	508	12
PERLND 18	2.13	COPY	508	13
IMPLND 3	1.78	COPY	508	15
IMPLND 4	1.02	COPY	508	15
IMPLND /	0.44	COPY	508	15
Basin 3B^^^	1 20	CODI	502	1.0
PERLND 9	1.39	COPY	503	
PERLIND 9	1.39	COPI	603 E03	⊥∠ 1 2
DEDIND Q	1 20	COPI	503	13 12
	1.39	COPI	503	15
TMDLND 3	0.45	COPY	503	15
IMPLIND 4	0.45	COPY	503	15
IMPLND 4	0.69	COPY	603	15
TMPLND 7	0.29	COPY	503	15
TMPLND 7	0 29	COPY	603	15
	0.25	0011	005	10
*****Routing*****				
PERLND 9	5.54	COPY	3	12
IMPLND 3	1.79	COPY	3	15
IMPLND 4	2.74	COPY	3	15
IMPLND 7	1.18	COPY	3	15
PERLND 9	5.54	COPY	3	13
PERLND 9	1.15	COPY	5	12
IMPLND 3	0.52	COPY	5	15
IMPLND 4	0.73	COPY	5	15
IMPLND 7	0.31	COPY	5	15
PERLND 9	1.15	COPY	5	13
RCHRES 1	1	COPY	503	16
RCHRES 2	1	COPY	505	16
END SCHEMATIC				
NERRICOV				
NEIWORK	+ \"	< Tomas		< Come
<pre><pre><pre><pre><pre><pre>Momes</pre><pre>#</pre><pre><pre><pre><pre>Momes</pre><pre>#</pre><pre>#</pre><pre><pre><pre><pre><pre>Momes</pre><pre>#</pre><pre>#</pre><pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	c = 2 r a n	<namo></namo>	2L VOIS>	<-erb>
	JUL FBLLY		# #	

<-Member-> *** <Name> # # ***

COPY 50 COPY 50	1 OUTPUT 2 OUTPUT 4 OUTPUT 6 OUTPUT 7 OUTPUT 8 OUTPUT 3 OUTPUT 5 OUTPUT	MEAN MEAN MEAN MEAN MEAN MEAN MEAN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4	DISPLY DISPLY DISPLY DISPLY DISPLY DISPLY DISPLY	1INPU2INPU4INPU6INPU7INPU8INPU3INPU5INPU	JT TIMSER JT TIMSER JT TIMSER JT TIMSER JT TIMSER JT TIMSER JT TIMSER JT TIMSER JT TIMSER	1 1 1 1 1 1 1
<-Volume- <name> END NETWO</name>	> <-Grp> # RK	<-Memb <name></name>	er-><] ∙ # #<-f;	Mult>Tr actor->st	an <-Target rg <name></name>	t vols> <-G # #	rp> <-Membe <name></name>	er-> *** # # ***
RCHRES GEN-INF RCHRE # - 1 2 END GEN *** Sec	O S Tank 1 Trapezo -INFO tion RCH	Name idal Pc RES***	Ne: >< ond-056	xits Un > User 1 1 1 1	it Systems T-series in out 1 1 1 1	Printer Engl Metr I 28 0 28 0	LKFG 1 1	* * * * * * * * *
ACTIVIT <pls # - 1 2 END ACT</pls 	Y > ****** # HYFG A 1 1 IVITY	****** DFG CNF 0 0	Active G HTFG 0 0 0 0	Sections SDFG GQFG 0 0 0 0	********* OXFG NUFG 0 0 0 0	************* PKFG PHFG 7 0 0 0 0	* * * * * * * * * * * *	
PRINT-I <pls # - 1 2 END PRI</pls 	NFO > ****** # HYDR A 4 4 NT-INFO	******* DCA CON 0 0	**** Pr IS HEAT 0 0 0 0	int-flags SED GQL 0 0 0 0	********* OXRX NUTR 0 0 0 0	**************************************	PIVL PYR PIVL PYR 1 9 1 9	* * * * * * * *
HYDR-PA RCHRE # -	RM1 S Flags # VC A1 FG FG * *	for ea A2 A3 FG FG * *	ICh HYDR ODFVFG possib * *	Section for each le exit * * *	*** ODGTF(*** possil	G for each ble exit	FUNCT possibl ***	*** for each e exit
1 2 END HYDI	0 1 0 1 R-PARM1	0 0 0 0	4 0 4 0	0 0 0 0 0 0	0 () 0 0 0) 0 0 0	2 2 2 2	2 2 2 2 2 2
HYDR-PA # - < 1	RM2 # F'TA ><	BNO >< 1	LEN >< 0.03	DELTH	STCOR <> 0.0	KS <><- 0.5	DB50 > 0.0	* * *
2 END HYD HYDR-IN RCHRE # -	R-PARM2 IT S Initi # *** *** ac-	2 al cond VOL ft	0.01 litions Initia for eac	0.0 for each l value h possibl	0.0 HYDR section of COLIND e exit	0.5 on Initia for each	0.0 l value c n possible	*** of OUTDGT exit
< 1 2 END HYDI END RCHRE	>< R-INIT S	> 0 0	<>< 4.0 4.0	><> 0.0 0.0 0.0 0.0	<> 0.0 0.0 0.0 0.0	*** <><- 0.0 0.0	><><- 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
SPEC-ACTI END SPEC- FTABLES FTABLE 91 Dept	ONS ACTIONS 1 4 h A	rea	Volume	Outflow1	Velocity	Travel Time	<u>e</u> ***	

(ft)	(acres)	(acre-ft)	(cfs)	(ft/sec)	(Minutes)***
0 00000	0 00000	0 00000	0 00000	(-,,	
0 066667	0 004938	0 000220	0 070410		
0.133333	0.001930	0.000220	0.070110		
0.133333	0.000944	0.000020	0.099574		
0.200000	0.008456	0.001135	0.121953		
0.266667	0.009708	0.001742	0.140819		
0.333333	0.010790	0.002426	0.157441		
0.400000	0.011751	0.003178	0.172467		
0.466667	0.012616	0.003991	0.186286		
0.533333	0.013406	0.004858	0.199148		
0.600000	0.014132	0.005777	0.211229		
0.666667	0.014804	0.006741	0.222655		
0.733333	0.015430	0.007749	0.233522		
0 800000	0 016013	0 008798	0 243906		
0 866667	0 016560	0 009884	0 253865		
0 033333	0.017073	0 011005	0.263448		
1 000000	0.017556	0.011005	0.203440		
1.066667	0.010010	0.012200	0.272095		
1 122222	0.010010	0.013545	0.201030		
1.133333	0.010439	0.014560	0.290300		
1.200000	0.018843	0.015803	0.298/22		
1.266667	0.019224	0.017072	0.306908		
1.333333	0.019584	0.018366	0.314881		
1.400000	0.019924	0.019683	0.322657		
1.466667	0.020245	0.021022	0.330250		
1.533333	0.020547	0.022382	0.337672		
1.600000	0.020832	0.023761	0.344935		
1.666667	0.021100	0.025159	0.352048		
1.733333	0.021351	0.026574	0.359020		
1.800000	0.021587	0.028006	0.365859		
1.866667	0.021808	0.029452	0.372572		
1.933333	0.022015	0.030913	0.379167		
2 000000	0 022207	0 032387	0 385649		
2.066667	0 022385	0 033874	0 392024		
2.0000007	0.022505	0.035372	0.302021		
2.133333		0.035972	0.30207		
2.200000	0.022701	0.030000	0.404472		
2.200007	0.022039	0.030390	0.410555		
2.333333	0.022905	0.039923	0.410349		
2.400000	0.023078	0.041460	0.422457		
2.40000/	0.023179	0.043002	0.428285		
2.533333	0.023267	0.044550	0.434034		
2.600000	0.023343	0.046104	0.439/08		
2.666667	0.023408	0.047662	0.445309		
2.733333	0.023460	0.049224	0.450841		
2.800000	0.023501	0.050790	0.456306		
2.866667	0.023530	0.052358	0.461706		
2.933333	0.023548	0.053927	0.467044		
3.000000	0.023554	0.055497	0.472322		
3.066667	0.023548	0.057067	0.477541		
3.133333	0.023530	0.058637	0.482704		
3.200000	0.023501	0.060204	0.487812		
3.266667	0.023460	0.061770	0.492867		
3.333333	0.023408	0.063332	0.497871		
3.400000	0.023343	0.064891	0.502825		
3.466667	0.023267	0.066444	0.507731		
3.533333	0.023179	0.067993	0.512589		
3,600000	0.023078	0.069535	0.517402		
3.666667	0.022965	0.071069	0.522171		
3.733333	0.022839	0.072596	0.526897		
3.800000	0.022701	0.074114	0.531581		
3 866667	0 022549	0 075623	0 536223		
3 933333	0 022385	0 077121	0 540826		
4 000000	0 022200	0 078607	0 545200		
4 066667	0 022207	0 080081	0 540016		
4 122222	0.022010	0.000001	0.549910		
4 200000	0.021000	0.001042	0.004400		
1 266667	0.04130/	0.004909	0.000000		
т.∠0000/ / 222222	0.021351	0.004420 0 005005	0.0002/0		
A 400000	0.021100	0.0000000	0.50/000		
4.400000		0.00/233	0.5/2010		
4.40000/	0.02054/	0.088612	0.5/032/		
4.533333	0.020245	0.089972	0.580612		

4.600000 4.666667 4.733333 4.800000 4.866667 4.933333 5.000000 5.066667 5.133333 5.200000 5.266667 5.33333 5.400000 5.466667 5.53333 5.600000 5.666667 5.733333 5.800000 5.866667 5.933333 6.000000 END FTABLE 91 4	0.019924 0.019584 0.019224 0.018843 0.018439 0.018010 0.017556 0.017073 0.016560 0.016013 0.015430 0.014132 0.013406 0.012616 0.011751 0.010790 0.009708 0.008456 0.006944 0.004938 0.000000 E 1 2	0.091311 0.092628 0.093922 0.095191 0.096434 0.097649 0.098835 0.099989 0.101111 0.102196 0.103245 0.104253 0.105218 0.106136 0.10704 0.107816 0.109252 0.109252 0.109859 0.110374 0.110774 0.110994	0.584866 0.589089 0.593281 0.597445 0.601580 0.605686 0.609765 0.978910 1.648713 2.508517 3.508899 4.608973 5.768278 6.945177 8.097647 9.185308 10.17228 11.74437 12.31382 12.76044 13.13191		
Depth (ft) 0.00000 0.088889 0.177778 0.266667 0.355556 0.444444 0.533333 0.622222 0.711111 0.800000 0.888889 0.977778 1.066667 1.155556 1.24444 1.33333 1.422222 1.511111 1.600000 1.688889 1.777778 1.866667 1.955556 2.044444 2.133333 2.222222 2.311111 2.400000 2.488889 2.577778 2.666667 2.755556 2.844444 2.933333 3.022222 3.11111 3.200000 3.288889 3.377778 3.466667 3.555556 3.644444 3.73333	Area (acres) 0.013223 0.013280 0.01338 0.013395 0.013453 0.013511 0.013569 0.013627 0.013685 0.013743 0.013860 0.013918 0.013918 0.013918 0.013977 0.014036 0.014095 0.014095 0.014154 0.014213 0.014213 0.014273 0.014273 0.01452 0.01452 0.01452 0.01452 0.01452 0.014572 0.014572 0.014692 0.014572 0.014692 0.014572 0.014692 0.014572 0.014692 0.014572 0.014813 0.014873 0.014934 0.014995 0.015056 0.015177 0.015363 0.015424 0.015486 0.015548	Volume (acre-ft) 0.00000 0.001178 0.002361 0.003549 0.004742 0.005941 0.007144 0.008353 0.009567 0.010786 0.012010 0.013239 0.014474 0.015714 0.015714 0.015714 0.015714 0.015714 0.015759 0.018209 0.019465 0.020725 0.021991 0.023263 0.024539 0.024539 0.024539 0.024539 0.025821 0.027109 0.028401 0.029699 0.031002 0.032311 0.033625 0.034944 0.036269 0.037599 0.038935 0.040276 0.041622 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974 0.042974	Outflow1 (cfs) 0.000000 0.267497 0.378297 0.463318 0.598140 0.655230 0.707729 0.756594 0.802490 0.845898 0.887186 0.926635 0.964472 1.000880 1.036010 1.069986 1.102916 1.134892 1.165990 1.196281 1.225823 1.254670 1.282868 1.310460 1.337483 1.363970 1.389953 1.415459 1.440513 1.465139 1.489358 1.513189 1.536651 1.559759 1.582591 1.604979 1.627118 1.691797 1.712814 1.733576	Velocity (ft/sec)	Travel Time*** (Minutes)***

3.822222 3.91111 4.00000 4.088889 4.177778 4.266667 4.355556 4.444444 4.533333 4.622222 4.711111 4.800000 4.888889 4.977778 5.066667 5.155556 5.244444 5.33333 5.422222 5.511111 5.600000 5.688889 5.777778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 6.666667 6.755556 6.844444 6.933333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 7.644444 7.733333 7.822222 7.91111 8.000000 END FTABLES	0.015797 0.015860 0.015923 0.015985 0.016048 0.016111 0.016175 0.016238 0.016301 0.016365 0.016429 0.016429 0.016492 0.016556 0.016620 0.016685 0.016685 0.016749 0.016813 0.016878 0.016943 0.017007 0.017072 0.017137 0.017203 0.017268 0.017333 0.017268 0.017399 0.017465 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017795 0.017785 0.017795 0.017795 0.017861 0.017928 0.017995 0.018861 0.018330 0.018397 0.018465 0.018872 LE 2	0.055388 0.056795 0.058208 0.059626 0.061050 0.062479 0.063914 0.065354 0.068253 0.069710 0.071173 0.072642 0.074117 0.075597 0.077083 0.078574 0.080072 0.081575 0.083084 0.084598 0.086119 0.087645 0.089177 0.090715 0.09259 0.092259 0.093808 0.095363 0.096925 0.096925 0.098492 0.10065 0.101643 0.103228 0.104819 0.106415 0.108018 0.109626 0.11241 0.112861 0.1124371 0.126040 0.127714	1.754092 1.774371 1.794421 1.814250 1.833864 1.853270 1.872476 1.891486 1.910307 1.928945 1.947404 1.965690 1.983807 2.001761 2.019555 2.037193 2.054680 2.072019 2.089215 2.106270 2.123188 2.139972 2.156626 2.173152 2.189553 2.205833 2.221993 2.253966 2.269783 2.253966 2.269783 2.253966 2.327666 2.327666 2.345699 2.380329 2.380329 2.380329 2.380329 2.363199 2.380329 2.363199 2.380329 2.467500 3.198544 4.316850 5.685745 7.207863 8.785919 10.32063 11.71823 12.90286 13.83219 14.51567 15.03487						
EXT SOURCES <-Volume-> <name> # WDM 2 WDM 2 WDM 1 WDM 1</name>	S <nember> S <name> # t PREC E PREC E EVAP E EVAP E</name></nember>	sysSgap <m em strg<-fa NGL 1 NGL 1 NGL 0.70 NGL 0.70</m 	Mult>Tran actor->strg	<-Targe <name> PERLND IMPLND PERLND IMPLND</name>	et vols: #	> <-Grp # 9 EXTNL 9 EXTNL 9 EXTNL 9 EXTNL	> <-Member <name> PREC PREC PETINP PETINP</name>	:-> ‡ #	* * *
END EXT SOU	JRCES								
EXT TARGETS <-Volume-> <name> # COPY 1 COPY 501 COPY 601 COPY 2 COPY 502 COPY 502</name>	G -Grp> <-M (Na OUTPUT MEA OUTPUT MEA OUTPUT MEA OUTPUT MEA OUTPUT MEA OUTPUT MEA	ember-> <m me> # #<-fa N 1 1 N 1 1 N 1 1 N 1 1 N 1 1 N 1 1</m 	Mult>Tran actor->strg 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.	<-Volum <name> WDM WDM WDM WDM WDM WDM WDM</name>	ne-> <ma # <na 701 FL0 801 FL0 901 FL0 702 FL0 802 FL0 902 FL0</na </ma 	ember> ame> OW OW OW OW OW OW	Tsys Tgap tem strg ENGL ENGL ENGL ENGL ENGL ENGL ENGL	Amd strg REPL REPL REPL REPL REPL REPL	* * *

COPY	4	OUTPUT	MEAN	1 1	48.4	WDM	704	FLOW	I El	JGL	REPL
COPY	504	OUTPUT	MEAN	1 1	48.4	WDM	804	FLOW	I El	JGL	REPL
COPY	604	OUTPUT	MEAN	1 1	48.4	WDM	904	FLOW	I El	NGL	REPL
COPY	6	OUTPUT	MEAN	1 1	48.4	WDM	706	FLOW	I El	NGL	REPL
COPY	506	OUTPUT	MEAN	1 1	48.4	WDM	806	FLOW	I EI	NGL	REPL
COPY	606	OUTPUT	MEAN	1 1	48 4	WDM	906	FLOW	 1:स 1:	JGL	REPL
COPY	7		MEAN	1 1	48 4	WDM	707	FLOW	1 <u> </u>	JGI.	REPL
COPY	507		MFAN	1 1	48 4	WDM	807	FLOW	ים. יים ו	JCI.	REDI.
COPY	607		MEAN	1 1	48 4		907	FLOW	ים. זים ז	JCI.	REI L PFDI.
COPY	007 Q		MEAN	1 1	10.1		709	L TOM	ים דים		
COPY	ENO	OUTFUT	MEAN	1 1	10.1		000	L TOM	ים דים		
COPI	500	OUTPUT	MEAN	⊥ ⊥ 1 1	40.4		000	FLOW		NGL	REPL
COPI	000	OUTPUT	MEAN		40.4		900 702	FLOW		IGL	REPL
COPY	5	OUIPUI	MEAN		48.4	WDM	/03	FLOW		IGL	REPL
COPY	503	OUTPUT	MEAN		48.4	WDM	803	F.TOM		IGL	REPL
COPY	603	OUTPUT	MEAN		48.4	WDM	903	F.TOM		1GL	REPL
RCHRES	1	HYDR	RO		1	WDM	1004	F.TOM		1GL	REPL
RCHRES	Ţ	HYDR	STAGE	ΤΤ	1	WDM	1005	STAG	; Fl	NGL	REPL
RCHRES	2	HYDR	RO	1 1	1	WDM	1006	FLOW	I El	JGL	REPL
RCHRES	2	HYDR	STAGE	1 1	1	WDM	1007	STAG	; El	JGL	REPL
COPY	5	OUTPUT	MEAN	1 1	48.4	WDM	705	FLOW	I El	JGL	REPL
COPY	505	OUTPUT	MEAN	1 1	48.4	WDM	805	FLOW	I El	JGL	REPL
COPY	605	OUTPUT	MEAN	1 1	48.4	WDM	905	FLOW	I El	JGL	REPL
END EXT	Г ТАF	RGETS									
MASS-L]	INK										
<volume< td=""><td>2></td><td><-Grp></td><td><-Membe</td><td>er->•</td><td><mult></mult></td><td><targ< td=""><td>ret></td><td></td><td><-Grp></td><td><-Membe</td><td>r->***</td></targ<></td></volume<>	2>	<-Grp>	<-Membe	er->•	<mult></mult>	<targ< td=""><td>ret></td><td></td><td><-Grp></td><td><-Membe</td><td>r->***</td></targ<>	ret>		<-Grp>	<-Membe	r->***
<name></name>			<name></name>	# #•	<-factor->	<name< td=""><td>></td><td></td><td></td><td><name></name></td><td># #***</td></name<>	>			<name></name>	# #***
MASS-	-LINF	ζ.	2								
PERLND		PWATER	SURO		0.083333	RCHRE	S		INFLOW	IVOL	
END N	ASS-	-LINK	2								
MASS-	-LINF	ζ.	3								
PERLND		PWATER	IFWO		0.083333	RCHRE	IS		INFLOW	IVOL	
END N	ASS-	-LINK	3								
			-								
MASS-	-T.TNF	ζ	5								
TMPLND		TWATER	SURO		0.083333	RCHRE	S		TNFLOW	TVOL	
END N	ASS-		5						2002 2000	1.01	
	100		5								
MASS-	-T.TNF	<	12								
					0 083333	CODV			TNIDIIT	MFAN	
	1700		12		0.003333	COFI			THEOT	MEAN	
	'IADD'		12								
MACC	TTNT	7	1 0								
MASS-	-LINI		13		0 000000	CODY			TNIDII	N (T) 3 3 1	
PERLIND	(A a a	PWAIER	IFWO		0.083333	COPI			INPUI	MEAN	
END N	IASS-	-LINK	13								
		-	1 -								
MASS-	-LINF	<	15			~~~~					
IMPLND		TMA.LER	SURO		0.083333	COPY			TND0.1.	MEAN	
END N	ASS-	-LINK	12								
MT 00	T T	7	1.0								
MASS-	-LINF	1 DOT 01-	Тρ			a0					
RCHRES		KOP, TOM	1.0			COPY			TNF0,1,	MEAN	
END N	ASS-	-ЦТИК	Тθ								

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX C

COOPERS BEACH - MITIGATION AS BUILT

May 5, 2011

AOA-3985

Kathy Curry City of Sammamish 801 228th Avenue SE Sammamish, WA 98075

REFERENCE: Cooper's Beach – 42x E. Lake Sammamish Shore Lane NE, Sammamish, WA (Corps # NWS-2009-476 Heen/Leseberg)

SUBJECT: Revised Mitigation As-built - Baseline Assessment Report

Dear Kathy:

This report has been prepared to document baseline conditions following installation of the wetland and shoreline mitigation area at the Cooper's Beach project site, and has been revised to address the comments presented in your March 3, 2011 e-mail to Evan Maxim (see Section 1.0 below). Also included in this report are the vegetation sample plots and photo-points that will be reviewed as part of the five year monitoring program.

1.0 PROJECT SUMMARY

Installation of the wetland mitigation area at the Cooper's Beach project site was generally completed in January 2011 according to the *Shoreline Restoration, Wetland Restoration, Clearing and Grading Permit* Plan (revised June 15, 2010), prepared by The Watershed Company. Site visits for the initial baseline assessment were conducted by AOA and occurred on January 13, and February 3, 2011. Following the initial baseline review, the mitigation area was slightly revised to ensure compliance with SMC 21A.50.351(3)(b). Under this code section, no more than 25% of the total lake frontage may be used for shoreline access.

As depicted on the current as-built plan, the mitigation area has been revised such that the existing bulkhead to remain is now 60 feet in total length (i.e., 25% of the total 240 feet of lake frontage). The remaining 180 feet of shoreline has been planted and will remain in a natural condition. In addition, the northern edge of the mitigation area has been revised slightly to ensure a minimum 45-foot buffer (Photos 1 and 2).

Kathy Curry May 5, 2011 Page 2 of 8

Photo 1: Revised maximum 60-foot long bulkhead to remain.

Photo 2: Revised log along northern edge of mitigation area (note darker bark coloration depicting revised location).

Kathy Curry May 5, 2011 Page 3 of 8

The large logs that have been placed along the 45-foot buffer boundary in lieu of fencing have been staked into the ground with re-bar to ensure that they will remain in place (Photo 3). In addition, the required critical areas sign on the 45-foot buffer boundary has also been installed (Photo 4).

Photo 3: Rebar stake through log along buffer boundary.

Photo 4: Installed critical area sign.

Kathy Curry May 5, 2011 Page 4 of 8

It is our understanding that the origin of the one remaining pipe in the northern portion of the site that discharges into the lake is likely from a rockery drain (Comment 1.e). The origin of this pipe will be confirmed during construction of the house and a plan will be designed to divert all water currently carried in this feature into the mitigation area during house construction.

The existing standpipe and drain line located along the northern edge of the mitigation area will be left in place for perpetuity or until such time as the upstream sediment problems are fixed (Comment 1.f). Since sediment from an off-site upstream ditch continues to erode and enter the on-site mitigation area, periodic maintenance may be required. It is our understanding that it is the subject property owner's intention to attempt to rectify this off-site condition. If the erosion is stabilized and the sediment source is eliminated or significantly reduced, then the standpipe and drain line could be removed.

The only plant substitution approved by The Watershed Company was that deer fern was substituted for lady fern. The revised as-built drawing for the site (**Figure 1**) depicts the actual location of the graded ponds and large woody debris placement. Grading was generally conducted per the approved plan, with some minor modifications in the southwest corner of the mitigation area to preserve two existing red alder trees. In addition, at our recommendation several of the conifers located within ponded areas were moved into drier portions of the mitigation site.

This as-built figure also includes the final total plant quantities and the location of the vegetation sample plots and photo-points. Dimensions were added to the as-built figure that reflect the approved mitigation boundaries and minor changes made in the field to ensure code compliance.

2.0 PERFORMANCE MONITORING

This report summarizes the baseline conditions encountered during our January 13, 2011 site review. The data collected during future site visits will be compared to the data collected during the baseline assessment.

Monitoring field reviews followed by preparation and submittal of annual summary reports will continue for a period of at least five years. This report, as well as future reports, will include: a) photo-documentation, b) estimates of percent vegetative cover, plant survival and undesirable species, c) wildlife usage, d) water quality, hydrology, and site stability, and e) an overall qualitative assessment of project success.

2.1 VEGETATION SAMPLE PLOTS AND PHOTO-POINT LOCATIONS

During the baseline assessment, three vegetation sample plots and three photopoint locations were established. These locations will continue to be monitored throughout the five-year performance monitoring period. Within the vegetation sample plot locations, all plant species will be recorded as well as relative percent Kathy Curry May 5, 2011 Page 5 of 8

cover of the dominant species within the vegetative strata. Photos will be taken throughout the monitoring period to document the general appearance and progress in plant community establishment. Review of the photos over time will provide a visual representation of success of the planting plan.

Attachment 1 contains photographs from the established photo-point locations.

2.2 VEGETATION DATA FROM SAMPLE PLOTS

VEGETATION SAMPLE PLOT 1 (Wetland Buffer)	
Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Douglas fir (Pseudotsuga menziesii)	1
Red flowering currant (Ribes sanguineum)	9
Tall Oregongrape (Mahonia aquifolium)	24
Red-osier dogwood (Cornus sericea)	3
Deer fern (Blechnum spicant)	5

SUMMARY OF PLOT 1 CONDITIONS

- Woody areal coverage of installed woody plants~20%
- Survival rate of installed plants: 100%
- No herbaceous vegetation coverage plot entirely mulched.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival (see Section 2.5 below).

VEGETATION SAMPLE PLOT 2 (Southwest Wetland).

Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Sitka willow (Salix sitchensis)	1
Sitka spruce (Picea sitchensis)	1
Nootka rose (Rosa nutkana)	4
Salmonberry (Rubus spectabilis)	5
Small-fruited bulrush (Scirpus microcarpus)	~20%
Watercress (Rorippa nasturtium-aquaticum)	~5%
Velvet grass (Holcus lanatus)	~5%

SUMMARY OF PLOT 2 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%
- Herbaceous coverage is ~30%.
- No significant invasive coverage (no control of velvet grass necessary).
- MAINTENANCE: Continue on-going routine maintenance.

• SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

Plant Species	Baseline
Nootka rose (<i>Rosa nutkana</i>)	4
Red-osier dogwood (Cornus sericea)	11
Deer fern (<i>Blechnum spicant</i>)	4
Watercress (Rorippa nasturtium-aquaticum)	~25%
Dagger-leaf rush (Juncus ensifolius)	~25%
Mannagrass (<i>Glyceria</i> sp.)	~5%

VEGETATION SAMPLE PLOT 3 (Southeast Wetland)

SUMMARY OF PLOT 3 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%.
- Herbaceous coverage ~55%.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

2.3 WATER QUALITY AND HYDROLOGY

During each monitoring event, an assessment will be made of the water regime within the mitigation area to ensure that hydrological conditions within the wetland and buffer are suitable to support the desired native plant communities. General observations will also be made of the extent and depth of soil saturation or inundation.

Water quality will be assessed qualitatively; unless it is evident there is a serious problem. In such an event, water samples will be taken and analyzed in a laboratory for suspected pollutants. Results will be reported quantitatively. Qualitative assessments of water quality include:

- oil sheen or other surface films,
- abnormal color or odor,
- stressed or dead vegetation or aquatic fauna,
- turbidity.

Observations and evaluations will be made of slope and soil stability in the mitigation area. Any erosion or slumping of soils will be recorded and reported so that corrective measures may be taken.

At the time of the baseline field investigation, soils throughout the created wetland were generally saturated to the surface with shallow ponding observed within the

Kathy Curry May 5, 2011 Page 7 of 8

graded depressions. Water quality appeared good and no significant erosion or other soil stability problems were observed within the mitigation area.

2.4 WILDLIFE

Wildlife species observed in the wetland and buffer areas (either by direct or direct means) will be identified and recorded during the monitoring events. Direct observations include actual sightings, while indirect observations include tracks, scat, nests, burrows, song, or other indicative signs.

Wildlife signs or observations at the Cooper's Beach site during the baseline review included the following: black-tailed deer (browse and scat), mallard, mole (uplift mounds), and American coot.

3.0 SUCCESS CRITERIA & CURRENT STATUS

The approved performance standards for the project as developed by The Watershed Company included:

- 100 percent survival of all planting during the first year of monitoring, 100 percent survival of trees during years 2-5, and an 80 percent survival of shrubs during years 2-5 of monitoring.
- 80 percent survival of groundcover and emergent vegetation in year 2
- 75 cover standard of groundcover and emergent vegetation by year 5

It is assumed based on the approved maintenance requirements that invasive species will be controlled at levels below 15% coverage. At the time of the January 2011 baseline monitoring there was 100% survival of all planted species and invasive species coverage was well below the 15% coverage threshold. Therefore all of success criteria are currently being met.

4.0 SUMMARY & MONITORING SCHEDULE

Overall, the site is performing well and is currently meeting the defined success criteria for the project. With proper on-going maintenance, the site should continue to establish successfully.

Assuming approval by the City, the next long-term monitoring event is scheduled for the late spring of 2011. The next report will then be prepared following the fall 2011 site visit. Monitoring will continue twice yearly, with the submittal of annual reports.

Should you have any questions or would like to schedule a site review, please call Simone Oliver or me at (425) 333-4535.

Kathy Curry May 5, 2011 Page 8 of 8

Sincerely,

ALTMANN OLIVER ASSOCIATES, LLC

ÐV

John Altmann Ecologist

Attachments

- Photographs
 Figure 1 As-built
- Roger MacPherson CC:

				FROLECT 3985
TREES				
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	SAMN SALE SALE SALE SALE SALE SALE SALE SALE
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
PSEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
THUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS		TOTAL		
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	ut
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	Z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	Ψ
HOLODISCUS DISCOLOR	OCEAN SPRAY	7	I GAL.	Ā
MAHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	Z III
PHYSOCARPUS CAPITATUS	NINEBARK	29	I GAL.	< ₽
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	πç
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL.	z s
ROSA NUTKANA	NOOTKA ROSE	34	I GAL.	은 풍
RUBUS SPECTABILIS	SALMONBERRY	25	I GAL.	
SALIX LASIANDRA	PACIFIC WILLOW	8	I GAL	© ₹¥
SAL IX SITCHENSIS	SITKA WILLOW	19	I GAL	É É É
SAMBICIS RACEMOSA	PED EL DEPREPRY	10	I GAL	2 20
VACCINIUM OVATUM	EVERGREEN HUCKI EBERRY	10		L + QB
PERENNIALS/GROUN	DCOVER		i or e.	NA A A A A A A A A A A A A A A A A A A
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	AS DE
BLECHUM SPICANT	DEER FERN	98	4" POTS	
GAULTHERIA SHALLON	SALAL	30	I GAL.	ΩĞΨŽ
MAHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	BOXX
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	目の本の
EMERGENTS				
		TOTAL	CIZE (CDA CINC	
		BOO	D CIL IN POTS & IS! OC	4944
UNCIG ENGLEOLIUG	DAGGER LEAVED RIGH	240	IC CU. IN POTS & IC C.C.	
	CMALL EPUITED BUI PUGU	270	IC CU. IN POTS & IO C.C.	
SCIPPIS I ACISTRIS	HAPD-STEM BUILDIGH	315	IC CU. IN POIS @ 18 C.C.	Anch
SCIRFUS LACUSTRIS	HARD-STEIN BULKUSH	515	10 CU. IN FOIS @ 24 U.C.	C
	NOTES			s, LL
		ATION PROVID		iate
ALE .	I. BASE INFORM	MATION PROVIL	JED BT MACPHERSON	SOC (425)
		IN & DESIGN, (4	425) 591-5555.	
	Z. SHE PLAN A	HED COMPANY	KIDKI AND HA (425)	er ,
		TED COMPANT,	, $NIRNLAND$, NA , (423)	vilu (1.1.0
	22-5242.			05- O5-
90 \		N WETLAND DE	STOPATION CLEADING	anı o5-
	AND GRADIN	G PERMIT' DAT	ED 6/15/2010	AB-
	DRAWINGS L	7 BY THE WAT	RSHED COMPANY	A POB
	210 0 11 100 1			0 0

				REALECT 3985
TREES				
SCIENTIFIC NAME	COMMON NAME	TOTAL PROJECT QTY.	SIZE/SPACING	
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	2 2 0 2 2 8 0 2 0 2 0
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
PSEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
THUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS		TOTAL		
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	ui.
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	Z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	Ψ
HOLODISCUS DISCOLOR	OCEAN SPRAY	7	I GAL.	₹
MAHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	z
PHYSOCARPUS CAPITATUS	NINEBARK	29	IGAL.	< ₩
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	ē ģ
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL	z s
ROSA NUTKANA	NOOTKA ROSE	34	I GAL	2 3
RUBUS SPECTABILIS	SALMONBERRY	25	IGAL	
SALIX LAGIANDRA	PACIFIC WILLOW	8	I GAL	© ₹_
SALLY SITCHENGIS	SITEA WILLOW	19	I GAL	Ε ΣΈ
SAMELICIE PACEMOGA	DED EL DEDBEDDY	10	I GAL	2 20
VACCINIUM OVATIM	EVED ODEEN HIVYI EBEDDY	10	I GAL	L'HOB
PERENNIALS/GROUN	DCOVER	TOTAL		HARE DEAC LAKE H, WA
SCIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	v⊢€
BLECHUM SPICANT	DEER FERN	98	4" POTS	
GAULTHERIA SHALLON	SALAL	30	I GAL.	ΩŪΨΣ
MAHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	BOXY
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	目 24 2
EMERGENTS				
SCIENTIEIC NAME	COMMON NAME	TOTAL	SIZE/SPACING	antes
FLEOCHARIS PALISTRIS	SPIKERIGH	BOO	IO CIL IN POTS @ 18" OC	4
UNCIS ENSIEN IUS	DAGGER-I EAVED PIGH	240	IO CIL IN POTS @ 18" OC	
SCIERIS MICROCAPPIS	SMALL -EPUITED BUL PUSH	220	IC CIL IN POTS @ 18" CC	
SCIRPUS LACUSTRIS	HARD-STEM BULRUSH	315	10 CU. IN POTS @ 24" 0.C.	And
				LC
	NOTES			es, L
	I. BASE INFORM	ATION PROVID	DED BY MACPHERSON	ciat symmetry
ALE .	CONSTRUCTIO	ON & DESIGN (425) 391-3333.	SSO like (42
\frown	2. SITE PLAN A	ND ORIGINAL T	DESIGN PREPARED BY	° N
/	THE WATERS	HED COMPANY	KIRKLAND, WA. (425)	Ver awg
N	+ 822-5242.		-,,,	-illo
	3. BASED ON A	PPROVED DRA	WING SHORELINE	nn (
90	RESTORATIO	N, WETLAND RE	ESTORATION, CLEARING	* of
	AND GRADIN	G PERMIT' DAT	TED 6/15/2010,	Altr Box 57
	DRAWINGS I-	7 BY THE WAT	ERSHED COMPANY.	<u>к</u> м
				(1)

PLANT LIST				
REES		TOTAL		101 - 101 -
CIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	5 CALE
BETULA PAPYRIFERA	PAPER BIRCH	3	2 GAL.	
PICEA SITCHESIS	SITKA SPRUCE	2	2 GAL.	
SEUDOTSUGA MENSIEZII	DOUGLAS FIR	3	5 GAL.	
HUJA PLICATA	WESTERN RED CEDAR	14	5 GAL.	
SHRUBS				
CIENTIFIC NAME	COMMON NAME	PROJECT ATY.	SIZE/SPACING	
ACER CIRCINATUM	VINE MAPLE	23	2 GAL.	ш
CORNUS SERICEA	RED-OSIER DOGWOOD	88	I GAL.	z
CORYLUS CORNUTA	BEAKED HAZELNUT	5	2 GAL.	쒿
IOLODISCUS DISCOLOR	OCEAN SPRAY	Т	I GAL.	<
1AHONIA AQUIFOLLIUM	TALL OREGON GRAPE	35	2 GAL.	Z III
PHYSOCARPUS CAPITATUS	NINEBARK	29	I GAL.	Y R
PRUNUS EMARGINATA	BITTER CHERRY	12	2 GAL.	₽ ¥
RIBES SANGUINEUM	RED FLOWERING CURRENT	34	I GAL.	N N
ROSA NUTKANA	NOOTKA ROSE	34	I GAL.	Ë 5
RUBUS SPECTABILIS	SALMONBERRY	25	I GAL.	AC I
ALIX LASIANDRA	PACIFIC WILLOW	8	I GAL.	<u></u> ₹4
ALIX SITCHENSIS	SITKA WILLOW	19	I GAL.	<u>₹</u> ₹5
SAMBUCUS RACEMOSA	RED ELDERBERRY	10	I GAL.	EN I
ACCINIUM OVATUM	EVERGREEN HUCKLEBERRY	П	I GAL.	
PERENNIAL SIGROUNT	COVER			면직찻국
		TOTAL		SEJI.
CIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	
BLECHUM SPICANT	DEER FERN	98	4" POTS	щщ́≼́₹
SAULTHERIA SHALLON	SALAL	30	I GAL.	₩ ₩ ₩ ₩ ₩ ₹
1AHONIA NERVOSA	LOW OREGON GRAPE	60	I GAL.	\$600
POLYSTICHUM MUNITUM	SWORD FERN	53	4" POTS	TO40
EMERGENTS		TOTAL		
CIENTIFIC NAME	COMMON NAME	PROJECT QTY.	SIZE/SPACING	. All a
LEOCHARIS PALUSTRIS	SPIKERUSH	800	IO CU. IN POTS @ 18" O.C.	
IUNCUS ENSIFOLIUS	DAGGER-LEAVED RUSH	240	10 CU. IN POTS @ 18" O.C.	A
CIRPUS MICROCARPUS	SMALL-FRUITED BULRUSH	220	IO CU. IN POTS @ 18" O.C.	
CIRPUS LACUSTRIS	HARD-STEM BULRUSH	315	10 CU. IN POTS @ 24" O.C.	SERE V
	NOTES			
	NOTES			ustaute
I =	I. BASE INFORM	ATION PROVID	DED BY MACPHERSON	ocia
	CONSTRUCTIO	DN & DESIGN, (4	425) 391-3333.	SSC Office (
	2. SITE PLAN A	ND ORIGINAL D	DESIGN PREPARED BY	a I
t/ \	THE WATERSH	ED COMPANY,	KIRKLAND, WA, (425)	1Ve
N	822-5242.			01 05-11
	3. BASED ON A	PPROVED DRA	WING SHORELINE	Canad
	RESTORATIO	N, WETLAND RE	SIORATION, CLEARING	and and a
	AND GRADIN	DAT		All POBox
	DRAMINOS 1-	IDI INE MAIL	ERSHED COMPANT.	340

Photo-point 1: View looking south.

Photo-point 1: View looking southwest.

Photo-point 1: View looking west.

Photo-point 2: View looking east.

Photo-point 2: View looking northeast.

Photo-point 2: View looking north.

Photo-point 3: View looking south.

Photo-point 3: View looking southwest.

Photo-point 3: View looking north.

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:58 AM
То:	'stocklimann67@gmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Michelle,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Michael Mann [mailto:stocklimann67@gmail.com] Sent: Thursday, January 26, 2017 3:59 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Micheal Mann

Michael Mann 1826 FRANKLIN AVE E SEATTLE, WA 98102 2069307501

From:Lindsey OzboltSent:Friday, January 27, 2017 10:58 AMTo:'m_w_r7@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Melissa,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Melissa Lail [mailto:m_w_r7@hotmail.com] Sent: Thursday, January 26, 2017 3:48 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I love riding my bike and this will give me a new place to explore. Also, I'm hoping to get my dad hooked on biking too and having a nice trail close by is key to my master plan. I know when I got into riding a few years ago that riding on a nice, safe trail was what really got me to enjoy getting some exercise. I hadn't ridden much since I was a kid but when I bought a bike and tired riding around my neighborhood it was a pretty disappointing experience. Riding around the neighborhood wasn't very fun when I got started because, I was pretty wobbly and there isn't much flat ground near my house and on top of that I had to worry about cars. When I started riding on bike paths, I was able to relax and enjoy. This allowed me to improve my bike handling and helped me to improve my confidence. I really want my dad to also have that same type of positive experience. I think having this trail completed and so close by will be very helpful.

Sincerely,

Melissa Lail

Melissa Lail 2524 97th PL SE Everett, WA 98208 253-468-6517

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:58 AM
То:	'Shannon Holman Ramirez'
Subject:	RE: Subject: Comments on ELST South Segment B (STA 375 - 380)

Dear Shannon,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Shannon Holman Ramirez [mailto:auntieshannon1@gmail.com]
Sent: Thursday, January 26, 2017 3:25 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Subject: Comments on ELST South Segment B (STA 375 - 380)

To Lindsey Ozbolt and other interested parties,

I am submitting comments on the proposed trail and fish passage changes included in the South Sammamish Segment B 60% plan. As part of researching and producing this commentary and feedback I reviewed the plan documents, discussed the various plan details and concerns with our neighbors, and also visited the City of Sammamish City Hall to discuss some of these issues with King County representatives in person. The neighbors in this discussion have expressed similar concerns and include the 10 homeowners of Whileaway Court who share ownership of the common private driveway that would be effected by this proposal.

I would also like to point out that in addition to living in the area for the past 20 years where the proposed changes would effect, I have also been very active in contributing to research and preservation of Kokanee salmon both in Pine Lake Creek but also in other capacities in the Sammamish water basin. I am also a volunteer member of the Kokanee Work Group lead by David St. John.

Given the quantity of feedback I have gathered I think it best to present the information in bullet form, after which I will comment further on a few of the key points.

New culvert under Whileaway court (reference pages AL39, FP1, and WP9):

- Good for the fish!
- Good for improved water flow, drainage, and creek flooding mitigation
- Property rights concerns
 - Most proposed construction is within private road (519710TRCT) that is not part of the trail ROW. All home owners have a shared ownership in this tract, so owner consent is required.
 - Why does the proposed construction extend into privately owned Gill Trust
 - lots 5197100135 and 5197100130 instead of remaining within the shared driveway 519710TRCT?
- It is very important to preserve the two massive ancient redwood trees at the west exit of the culvert, near 11+00 on the p-line and adjacent to rock walls #1 & #2. Does the "M" designation on the tree removal plan for these two trees reflect concern?
- Earth walls #42 and #43
 - Chain link fencing is not visually acceptable, would need a more aesthetically pleasing and natural fence choice that fits the style of the neighborhood and the beautiful natural surroundings of the creek passing there.
 - Length of "earth walls" is concerning, why are they so long?
 - In particular the south starting point of wall #43. That starting point should be moved at least 5 feet farther north. As it is located now it is likely to be a back-up hazard for cars backing out of the driveway from the 903 residence and turning to back up to the north.
 - Why does wall #42 run so far to the north, seems this could be substantially reduced?
- What is the relationship of culvert replacement plans to trail plans (tied together, different projects, timelines?)
- How does funding work, all paid for by King County?
- How will all the utilities be routed and what will the effect on utilities be during construction?
 - Gas, water, sewer are all underground in the road where culvert resides (as are cable and power in other road areas in the construction zone)
 - Current plan would require removal/replacement of power pole near south edge culvert. Could power on these poles be moved underground as part of this work?
 - FYI: There is a separate proposal for a fire hydrant to be added north of the proposed fish passage culvert work on 519710TRCT. This work should be coordinated.
- How will people have access to their homes during culvert/road construction?
- Road grading and drainage is an important concern. We already have issues with water on the road flowing towards residence driveways, in particular the driveways of 903, 909, or 915, so we would appreciate any grading changes improve upon the drainage conditions.
- Concern about current design reducing parking availability.
- What are landscape plans for this area after culvert replacement?

New trail plan (reference pages AL20 and LA12):

- Is it necessary for the trail around 378+00 to meander into and destroy existing delightful landscaping adjacent to 929?
 - o Plan will destroy numerous large very mature Rhododendrons, Oregon Grape, Aspen, and Fir trees
 - Can the meander be avoided here or moved somewhere else along the trail?
 - o At minimum can the meander be reduced to preserve more of the mature trees and bushes?
 - If infringement on wetlands is a concern, the designation of the area east of the trail here as wetland 23C is questionable. Can this be reevaluated and the plans changed to avoid destruction of the Rhododendron, Oregon Grape, Aspen and Fir trees?
- Where grass area is replaced just south of Driveway #10 access, please ensure only very low growing plants are added to the enhancement area to replace the grass. This is required for good visibility onto trail and parkway from the driveway.

To expand on some of the key points I will first focus on the new culvert plans under Whileaway court. One concern here is it is important to preserve the two large, majestic, redwood trees that are planted here just to the west of the culvert. I am pleased to see that, to my understanding, feedback given to folks planning the culvert changes during an onsite meeting in April of 2016 (Kelly Donahue from King County and several representatives from Parametrix) was incorporated. It appears the plans have offset the new proposed culvert further away from the two redwoods in order to reduce the disturbance to the tree roots during required excavation. The trees were planted in the 40's and are a keystone of the landscape in our neighborhood, they must be seen in person to be fully appreciated and cannot be sacrificed!

We are also very interested in the improved fish passage that the new culvert will provide, and in particular the increased capacity the new culvert will have in allowing storm water to pass through. The old/current culvert there is much smaller and has been a concern of ours for plugging and overflowing.

We have additional concerns about several other details of the proposed plan outlined above, in particular the chain link fencing and earth walls. It's important to us that the new culvert aesthetically look very pleasing and fit into the neighborhood landscaping and natural look and feel. Chain link fencing does not meet that requirement, we would like this to be changed to some other suitable more natural material. It appears the earth walls will be constructed of precast concrete blocks which will mostly be buried down to the road surface level, and only exposed where the cut of the creek bed slopes down. If so, we believe this would be suitable if they did not have chain link fence attached.

My final point for the culvert plans is that I want to emphasize that in this section, unlike the trail ROW, the proposed changes to the culvert occur on private property. There are important property rights and consent that need to be adhered to here.

Secondly I would like to comment further on the trail deviation outlined in AL20. We are dismayed to see that the current plan has the trail diverting to the west such that a significant and very beautiful naturally landscaped area will be destroyed by the trail. The area has been maintained for nearly 20 years in its current state, and contains many native plants and trees including other much older vegetation including mature Rhododendrons, Oregon Grape, Aspen, and Fir trees. We would ask that as much of that landscaping be preserved as is possible. Are there changes that can be made to the trail path in this section that can avoid or minimize that destruction? Can it be moved more towards the existing trail path or shifted in some other way? If the reason for the diversion is due to the designated wetland 23C east of the trail in this section, then we would respectfully request that this designation be reevaluated. It really does not look like a wetland, it is a hill sloping down with a ditch carrying water away north and south. It would also be very illustrative for folks in charge of planning the trail in this section to come down and see the current state and landscaping in person if that hasn't been done already. The landscaped area is well worth preserving and it would be a terrible waste to destroy it.

Overall, we are happy to see the trail plans progress, and we see several benefits to the fish passage culvert work as well. We welcome and encourage a dialog between the county trail planners and our neighborhood to discuss the concerns, adjust the plans, and make some beneficial changes.

Can you please provide more information in your response to this email regarding how the feedback will be processed, how it will be communicated to king county, how we will hear about incorporation of the feedback, and if there is additional opportunity for feedback after any changes are considered and made? Also, sharing the timeline of the entire review process leading up to eventual approval and construction would also be helpful.

Thanks for your attention and consideration, and please let us know if you have any questions. We appreciate your follow-up on this matter.

Shannon and Chris Ramirez

909 E LK Sammamish Sh LN SE

Sammamish, WA

425.836.5384

From:Lindsey OzboltSent:Friday, January 27, 2017 10:57 AMTo:'mark.bike.anderson@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Mark,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Mark Anderson [mailto:mark.bike.anderson@gmail.com] Sent: Thursday, January 26, 2017 3:04 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I've ridden this trail many times and hate the fact that I have to jump to the road in the middle. I support the completion and support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. It will accommodate walkers, runners and bikers.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

This will be a great community amenity when completed. Please complete the trail and keep me off the road.

Sincerely,

Mark Anderson

Mark Anderson 3242 56th Ave. SW Seattle, WA 98116 2069383244

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:55 AM
То:	'Thomas Leach'
Subject:	RE: 821 E. Lake Sammamish Pkwy NE (Trail #'s 447 - 448)

Dear Thomas,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Thomas Leach [mailto:tom_leach@me.com]
Sent: Thursday, January 26, 2017 2:46 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: 821 E. Lake Sammamish Pkwy NE (Trail #'s 447 - 448)

Hi Lindsey:

I just met with Kelly today and she was a tremendous help in reviewing the trail and construction plan. We came up with the following comments / concerns:

- We have a substantial tree located on our property. The tag number is 8173. We noticed that the tree location differed between the tree preservation plan and the 60% plan. It is unclear as to whether this tree will be removed or not. The tree preservation plan shows removal but it is not located properly on the tree preservation plan.
- Staircase number 68 has a structural landing within the C&G area. I will need to know the following:
 - Will this be cleared out, If so, who is responsible for the reconstruction of the staircase?
 - Will there be access to the staircase during construction as this is the only way into the property.
 - Will there be any permanent security gate made to the staircase when the trail is complete? If there is a gate who is responsible for the cost?
- There is a significant bluff between the trail and my residence. There is currently a line of arborvitae that is approximately 20 feet tall that is right on the CG line. It is not clear if those will be removed or not. I am not clear if they do get removed if a fence will replace them.
- The trail currently bisects my parking area and my house. I have been using the public space between the trail and East Lake Sammamish Parkway for parking. I had the Special Use Permit but I just found out it has expired and I need to reapply. I will reapply within the coming weeks. There is currently no other access or parking available. My questions are the following:
 - Can I expect no net loss of parking available to me during and after construction?
 - During the construction phase will crews be using the public land for staging equipment and crew vehicles?
 - Will there be a way to build some sort of car port for vehicle protection in the public area when the construction phase is complete?

• Alternatively I might be able to construct a garage and access it through the same alley that my neighbor to the south uses (trail number 446-447). I believe the street name is E. Lake Sammamish Shore Lane NE. Thus you would not have any additional access point across the trail to worry about.

Take care,

Tom Leach

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:54 AM 'Michelle Eden' RE: Comments RE: Trail construction

Dear Michelle,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Michelle Eden [mailto:mmeden@hotmail.com]
Sent: Thursday, January 26, 2017 2:47 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments RE: Trail construction

Dear Ms. Ozbolt,

Four neighbors met on Wednesday, January 25, 2017 with Kelly Donahue from King County. Kelly reviewed the trail plans and our specific feedback, and said that our final comments need to be sent to you. Kelly suggested we amend our earlier document to you to address concerns as they are related to the formal county plans. In that regard we are looking for solutions to our issues in area 353 to 355. My specific property is nearest to 353.50. Our concerns are as follows:

1. During construction the CG line for fencing on the west side of these sections will keep us from entering any of our properties. Even assuming we could get past area 355 we could not get past the tree nor could the Roberts family turn into their garage.

2. Post construction the 60% plans, as drawn, will not allow access for emergency vehicles, delivery trucks (FedEx, UPS, DHL etc.) and perhaps larger residential vehicles.

3. Post construction the 60% plans, as drawn, will not allow the Roberts family (area 353) to safely pass parked vehicles parked at our location, the Eden residence (area 353 + 50). It is currently a tight fit as built now.

We are asking that prior to construction the following changes are made to the 60% plans.

1. The CG fence line be adjusted to allow access for emergency, residential and commercial vehicles to our properties. Practically speaking the CG fence should not be further west than the current fence/bollards are now.
2. The trail center line be moved east at least another two to three feet in sections 353 to 355 to allow for access to our properties. In essence move the trail east such that our final fence/bollards are no further west than they are currently on the temporary trail.

3. The north end of the proposed wooden barrier be moved south to its current endpoint (or further south) to allow for safe vehicle access.

The good news is that the county already is proposing to develop the permanent trail east of its current temporary location. We are only asking that it be moved a few feet further east allowing us to have the access as we currently have now. Given the nature of the existing terrain in our areas (353 - 355) and the proposed work in the 60% plan this request would not significantly change the construction details and would allow our neighborhood safe access during and after construction.

I would like to track the progress and process of my requests. Please let me know how I can do that.

Sincerely,

Michelle Eden 1633 E Lk Samm Place SE Sammamish, WA 98075 206-650-6804

From:Lindsey OzboltSent:Friday, January 27, 2017 10:53 AMTo:'ny nuon'Subject:RE: South Sammamish Trail section 2b design, markers 470-473 Comments

Dear Ny,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: ny nuon [mailto:nynuon@hotmail.com]
Sent: Thursday, January 26, 2017 2:44 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: South Sammamish Trail section 2b design, markers 470-473 Comments

Dear Ms. Ozbolt,

Please see attached.

Thank you,

Ny Nuon

To whom it may concern,

The proposed trail plans on East Lake Sammamish Parkway NE, Sammamish, WA 98074 are concerning to me. The area of concern uses trail markers 470-473. There is a pickle ball court that I have been playing on for the last 10 years. We have played multiple tournaments there and it has been a source of great fun for my friends and I. I have even coached some of my friends there on how to be a better tennis and pickle ball player. The proposed new plans, destroys the pickle ball court. It makes the space unusable for pickle ball. I would really like it if you changed the plans.

Thank you,

Ny Nuon, 4583 N Ainsley Way Prescott Valley, AZ 86314

nynuon@hotmail.com

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:39 AM 'charlesdavidwilliams@gmail.com' RE: Approval needed for Segment 2B of the ELST

Dear Charles,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Charles Williams [mailto:charlesdavidwilliams@gmail.com] Sent: Thursday, January 26, 2017 2:20 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Approval needed for Segment 2B of the ELST

Dear

Dear city of Sammamish,

The form part so you know what this is about:

------I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

The part that I'm writing with a story:

The East Lake Sammamish trial is in a pretty great location. It is a great commuting pathway and wonderful for summertime recreation along the lake. However, the weak point is that the narrow sections and dirt sections make the trail harder to access for all ages and abilities. I rode it several times with less experienced cyclists this summer and saw two of them crash despite exercising caution. They didn't get more than a scrape or two but we know that every crash carries with it a risk of a more substantial injury. We can prevent these by completing the proposed trail improvements.

Please approve the permit, as submitted.

Sincerely,

Charles Williams 2203 MINOR AVE E SEATTLE, WA 98102 2067925827

From:Lindsey OzboltSent:Friday, January 27, 2017 10:38 AMTo:'smith.madison.m@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Maddie,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Madison Smith [mailto:smith.madison.m@gmail.com] Sent: Thursday, January 26, 2017 2:20 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

As a daily bike commuter in the area, I have experienced first hand how important trails are for commuting. With trails that are safe and accessible, many more feel comfortable commuting by bike or foot.

Please approve the permit, as proposed, with expediency.

Sincerely, Maddie Smith

Madison Smith 7501 Greenwood Ave N #101 Seattle, WA 98103 3609270263

From:Lindsey OzboltSent:Friday, January 27, 2017 10:38 AMTo:'sita24@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sita,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Sita Bhaskaran [mailto:sita24@gmail.com] Sent: Thursday, January 26, 2017 2:11 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I am 67 years old and have recently moved to Washington state to be closer to my daughter. I love to ride the Burke Gilman to Sammamish river trail to Marymoor park. Would be great if I could ride on a paved East Lake Sammamish trail onto Sammamish and Issaquah.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely, Sita Bhaskaran sita24@gmail.com 18501 69th Lane NE, Apt 109 Kenmore, WA 98028

Sita Bhaskaran 18501 69th Lane NE, Apt 109 Kenmore, WA 98028 2486471984

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:38 AM 'frankmckulka@comcast.net' RE: Notes regarding the trail

Dear Frank,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: frankmckulka@comcast.net [mailto:frankmckulka@comcast.net]
Sent: Thursday, January 26, 2017 2:10 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: rissberger, william <williamrissberger@comcast.net>; roberts, steve <steve@roberts.org>; Jerry
<jerryj27@msn.com>
Subject: Fwd: Notes regarding the trail

Dear Lindsey,

We met on Wednesday with Kelly Donahue from King County. Kelly reviewed the plans and our comments and said that comments need to be sent to you for sending on to King County. My name is Frank McKulka and our home is in section 354 with our group of four neighbors in sections 353 to 355. The neighbors are myself, William Rissberger, Michelle Eden and Steve Roberts. The properties are shown in exhibit 1.

Our concerns are as follows:

-1. During construction the CG line for fencing on the west side of these sections will keep us from entering our properties. Refer to attachment re.

property accessibility. Realizing that this is a 60% plan one would expect some errors, this is one of them. We also noted with Kelly that the culvert in this section does not run continuously as would be expected.

-2. Post construction the 60% plans as drawn will not allow access for emergency equipment, trucks (FedEx, UPS, DHL etc.) and perhaps larger residential vehicles. Photos that show this issue and are also included in Bill Rissberger's letter.

We are asking that during construction the following changes are made to the 60% plans.

-1. The CG fence line be adjusted to allow access for emergency, residential and commercial vehicles to our properties.

-2. The trail center line be moved east approximately two+ feet in sections 353 to 355 to allow for access to our properties.

-3. The wooden barrier be moved south to its current endpoint to allow for vehicle access.

In addition we would like to know how this review will work and when our concerns will be addressed with a response to us. We would also like to know how reasonable requests like these have been dealt with in Segment A.

Thank you for your efforts to construct a trail that is workable for all, Frank and Pam McKulka, 425 557 0725

Proposed Wood Barrier

From:Lindsey OzboltSent:Friday, January 27, 2017 10:28 AMTo:'adam.k.carlton@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Adam Carlton [mailto:adam.k.carlton@gmail.com] Sent: Thursday, January 26, 2017 11:47 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Adam Carlton 4040 NE 204 ST Lake Forest Park, WA 98155 2067698584

E-mail Ada Loving. Ontlook.compage 1 of 2 206-714-1674 Ada McKee and David F. McKee ANZOZOTT TAX PARCEL NO. 062406 9106 CITY OF SAWMAMISH

Retaining Wall = Stair No. #48 is just in front of retaining wall consequently any removal of stair #48 for widening could jeopardize the structure of retaining wall for the house.

2. Stair No. # 47= which is set to be elininated during construction. Construction crew needs to be careful of sprinkler system when removing steps towards the lake. Homeowher will place markers.

Stair No. # 45 = Homeowner suggests installing gate leading Envards lake for safety of personal property I.e., boat, jetski, ski equipment.

4.

3.

1.

Signs = signs should be installed at entrance with rules of the (uage) usage of trail. Homeowner has witnessed a biker riding after dark. The biker uses a bright light that is seen from the homeowners Kitchen. Homeowner with photograph for evidence

Ada McKee and David F. McKee 0624069186 2012 1901 East Lake Sammamish PL SE

5. Usage by Public= Please do not allow motorcycles or horses, to use the trail. Horses will deposit manure of which will be a health hazard. Motorized vehicles pose a threat to the safety of the public.
6. AA SHTO = Please abide by the national guidelines outlined in AASHTO which require a 12 feet trail with 12 feet shoulders.

Comments: Homeowner has lived on the lake for many years and look forward to working with the county to create a safe trail to enjoy with my children for years to come.

Thank Yow, Jda McKel

From:Lindsey OzboltSent:Friday, January 27, 2017 10:21 AMTo:'apailthorp@msn.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Aaron,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Aaron Pailthorp [mailto:apailthorp@msn.com] Sent: Thursday, January 26, 2017 9:45 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Trails like this provide a welcome recreational outlet as well as an inexpensive transportation alternative. I like to leave the city to ride in the hills and spend money along the way.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I'm looking forward to coming to the area to use the trail and leaving my spending money behind.

Sincerely,

Aaron Pailthorp 1806 30th Ave S Seattle, WA 98144 206-310-6113

From:Lindsey OzboltSent:Friday, January 27, 2017 10:27 AMTo:'aschearer@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Alex,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alex Schearer [mailto:aschearer@gmail.com] Sent: Thursday, January 26, 2017 11:11 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing in support of completing the ELST and approving permit SSDP2016-00415.

I'm an avid cyclist in the area and have been looking forward to riding on the completed trial for some time. Once complete, this trial will be a jewel in the area for people who want to enjoy the lake and surrounding area.

Thanks, Alex

Alex Schearer 902 18th ave Seattle, WA 98122 2069925737

From:Lindsey OzboltSent:Friday, January 27, 2017 10:32 AMTo:'paperjam@serv.net'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sue,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: B.Sue Johnson [mailto:paperjam@serv.net] Sent: Thursday, January 26, 2017 12:39 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I have lived on Bainbridge Island since 1985, but grew up in the region and have been a recreational and commuting cyclist for over 45 years. I cannot adequately express my appreciation for the regional trail systems that have developed in those decades, not just for the increased safety they provide for non-motorized transportation, but also the sheer pleasure of connectivity without auto traffic that they provide me. One of my favorite training rides is what I call my "Lakes and Trails Loop", using the Myrtle Edwards, Interbay, South Canal, Burke-Gilman, Sammamish, 520, Mercer Slough, and I-90 trails. When I'm feeling ambitious, I expand this loop to include the East Lake Sammamish, and I have used the Issaquah-Preston and Snoqualmie Valley trails as well. Because the system has such great connectivity now, missing links really stand out as barriers to safe cycling.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

B.Sue Johnson Bainbridge Island, WA

B.Sue Johnson 5419 Lynwood Center Rd NE Bainbridge Island, WA 98110 2068428242

From: Sent: To: Subject: Brad Moore
bgmoore77@gmail.com>
Thursday, January 26, 2017 9:12 AM
Lindsey Ozbolt
Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

I work in Bellevue; my family and I all bike both for recreation and transportation/commuting. Completing this trail makes both of these activities better.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Brad Moore 1408 - 140th Place NE, Suite 150 Bellevue, WA 98007 2069206247

From:Lindsey OzboltSent:Friday, January 27, 2017 10:36 AMTo:'bvandroo@comcast.net'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Barbara,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Barbara Van Droof [mailto:bvandroo@comcast.net] Sent: Thursday, January 26, 2017 1:54 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

You may wonder why I am writing? I lead bike rides for Northshore Senior Center and Cascade Bike Club. Most of the older riders like to ride on safe trails or less traveled rural roads. I do at least 2-4 rides on the east side.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Barbara Van Droof 11523 Exeter Ave. NE Seattle, WA 98125 2063633606

From:Lindsey OzboltSent:Friday, January 27, 2017 10:20 AMTo:'Christine Calderon'Subject:RE: Comments re: East Lake Sammamish Trail

Dear Christine,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Christine Calderon [mailto:christine.calderon@gmail.com]
Sent: Thursday, January 26, 2017 9:37 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments re: East Lake Sammamish Trail

Attn: Lindsey Ozbolt

As a homeowner in the area included in segment B of the East Lake Sammamish Trail, I am asking the Council to defer granting any development permit until the concerns of the homeowners affected by this plan are heard and answered.

I have reviewed the preliminary plans that are quite frankly challenging for the lay person to comprehend. I started by reading the mission: To develop an alternative transportation corridor in a former railroad corridor. Well – that seems easy enough to understand. I know where the railroad tracks were. The document notes: The existing gravel trail will be widened to 12 feet and paved with 2 ft gravel shoulders on both sides. I'm very familiar with the Burke Gillman trail through the University District and through Bothell where it runs along the Sammamish Slough. I know what that type of a trail looks like. It's well used by commuters as well as recreational bikers and walkers and I support that.

Then my eye goes back to the plans. How can something so "simple" become so elaborate? One of the major areas of concern for me is the assumption by King County that they have the right to take as much as 100 feet of private land and call it public property. The federal court of claims ruled that the railroad only had an easement over private property for rail purposes and this easement has passed to the county to develop an alternative transportation corridor in a former railroad corridor.

When I look at the proposed plans for my home, the first thing I think I see is the creation of a wetland where I have grown vegetables and flowers, have apple and pear trees and where, at times, I park cars or store trailers and lake toys. This is not a natural wetland. If there is expected run-off from the paved trail, the run-off can be directed to the east side of the trail which is undeveloped and is a naturally occurring wetland. Much more cost-effective than creating something for which there is no need.

It also appears that a great portion of the trail will be lined with a chain link fence. I would hope that there is as much concern for the deer that need access to the lake as there appears to be for fish. The other day there were three young bucks in the yard headed for the lake. How are they going to reach water?

And, again, if I'm understanding what I'm reading, it seems as though there are a number of trees on private property, outside the trail footprint, that are slated for removal. By whose authority?

The plan seems unnecessarily grandiose and I wonder who is paying for it. Resources, particularly in the Parks Department, are scarce and should be carefully managed.

I urge you to carefully review what is at stake and not recommend any shoreline development permit until legitimate questions from the affected homeowners are answered and a more complete description of the project is made available. This plan is sort of what they are going to do, maybe.

Thank you for listening to my concerns -

Christine Calderon

211 E Lake Sammamish Shorelanes NE

From:Lindsey OzboltSent:Friday, January 27, 2017 10:27 AMTo:'chrislangs@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Chris,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Chris Langston [mailto:chrislangs@gmail.com] Sent: Thursday, January 26, 2017 10:47 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. This is an important piece of infrastructure that will keep cyclists off of the busy arterial and improve conditions for all involved.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Chris Langston Graham Seattle, WA 98118 2068535376

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:29 AM 'Chris McKinsey' RE: East lake sammamish trail SSDP comments

Dear Chris,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Chris McKinsey [mailto:chris_mckinsey@msn.com]
Sent: Thursday, January 26, 2017 12:07 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Chris McKinsey <chris_mckinsey@msn.com>
Subject: East lake sammamish trail SSDP comments

Hello,

Chris M. McKinsey 273 East Lake Sammamish Shore LN NE Sammamish, WA, 98074

Hello, I am the property owner of the above address which is located between Lake Sammamish and the former BNSF right-of-way currently being used by King County as a trail. This mail is in regards to my comments regarding the 60% plans for East Lake Sammamish Trail section South B SSDP applied for by King County.

I would like to raise the following concerns to the city:

- King County has not provided a chain of title demonstrated fee simple ownership in my section of the trail. Unlike some sections, my chain of title clearly shows an easement was granted to the railway. As such, the County does not have standing to be able to change the trail alignment or width in this section outside of the original interim trail profile.
- 2. Along my section of the trail, the current proposed 60% plan moves the center alignment several feet towards my property. As this is over a 160 foot section, this causes serious intrusion into my property and requires significant clear cutting of mature landscaping. In particular, a row of 25 20 foot high cedars would be removed. In addition to enhancing the natural character of the area, it also serves as a natural barrier to parkway road noise and screening to water run-off from the trail. As this landscaping also lies within multiple wetland buffers,

the City should either preserve the original alignment and landscaping, or provide the appropriate mitigation elsewhere.

- 3. Moving the trail center line towards my property also means a large reduction in my parking area reducing accessibility to my property. This is an established use dating back to the original residence construction in 1936.
- 4. The newly proposed design shows no drainage outfall to the lake, instead dumping it off into a "dispersion" area which essentially increases the water table of my up land soils of my residence. Today the current landscaping that they propose to remove actually helps to mitigate runoff. You can imagine the struggle we face down here with keeping water under control on our properties (bottom of hill, adjacent to lake, wet soils). The county should keep the original footprint and rely on existing vegetation in this area, or regrade the trail to force runoff to the other side, which is currently labeled as a wetland, as the dispersion area. The City should not allow the County to approve a plan that dumps drainage onto neighboring trail side owners without their permission or some kind of improved dispersion. This is just government passing the problem on to residence when it should in fact be the other way around.
- 5. The county 60% plans say they are removing my lots dedicated access (a small wooden stairway) to the trail bed that was installed prior to the county's claimed ownership. They also claim they will run a chain-link fence down the entire length of my neighborhood. The "Shorelands" neighborhood is 1/4 mile long, which means without my dedicated access stairs my kids will have to walk 1/4" mile down a road to access the trail to ride their bikes. I would propose the county be required to preserve, either reuse or rebuild in place, any dedicated trailside residence accesses that were established prior to their taking interest in the trail.
- 6. The chain link fence they propose will block wildlife access. I have deer on a daily basis crossing my property on the lake side and then crossing the parkway to work their way back up the plateau to graze.
- 7. The county is proposing to rebuild the private bridge over Zacusse creek that lies outside of the trail right-of-way. Rather this is the private access road that I use to legally access my property. The county must be required to design a bridge that meets all access requirements. The bridge must be strong enough and wide enough to support fire trucks, garbage trucks, concrete trucks for resident wanted to renovation/repair, etc... This must be a stipulation of the permit the city grants.

Thank you, and please feel free to contact me to discuss further if there are questions.

Chris McKinsey 425-327-4667

From:Lindsey OzboltSent:Friday, January 27, 2017 10:33 AMTo:'Chris Powers'Subject:RE: South Sammamish Trail Section 2b Desin, Markers 470-473 Comments

Dear Chris,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Chris Powers [mailto:chris@allegraprescott.com]
Sent: Thursday, January 26, 2017 12:43 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: South Sammamish Trail Section 2b Desin, Markers 470-473 Comments

See attached.

Thanks,

Chris Powers Production Manager

Allegra Marketing Print and Mail 1026 Spire Drive Prescott, AZ 86305 928.445.6262 www.allegraprescott.com

To whom it may concern,

The proposed trail plans on East Lake Sammamish Parkway NE, Sammamish, WA 98074 are concerning to me. The area of concern uses trail markers 470-473. There is a pickle ball court that I have been playing on for the last 10 years. We have played multiple tournaments there and it has been a source of great fun for my friends and I, and something I look forward to when I come back to visit my friends. I have even coached some of my friends there on how to be a better pickle ball player. The proposed new plans destroy the pickle ball court. It makes the space unusable for pickle ball. I would really like it if you changed the plans.

Thank you,

Chris Powers, 4583 N Ainsley Way Prescott Valley, AZ 86314

From:Lindsey OzboltSent:Friday, January 27, 2017 10:27 AMTo:'windcaller@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Chester,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Chester ZELLER [mailto:windcaller@gmail.com] Sent: Thursday, January 26, 2017 11:12 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

It is trails like this that get kids out away from electronics and increase the health of our children.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Chester ZELLER 919 2ND AVE W. 207 SEATTLE, WA 98119 2064348349

From:Lindsey OzboltSent:Friday, January 27, 2017 10:36 AMTo:'deyvidmckay@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear David,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: David McKay [mailto:deyvidmckay@gmail.com] Sent: Thursday, January 26, 2017 1:41 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I'm a 70 yo retired health professional and love cycling. I live on Capitol Hill in Seattle, but love doing a loop trip across the I-90 bridge to Marymoor Park, then following the East Lake Sammamish, Sammamish River and Burke Gilman Trails back home, around the north end of Lake Washington. To me, finishing the ELST trail ranks up there in priority with the Ballard "missing link" section of the Burke Gilman trail, and it would be a beautiful thing to see this finally completed.

Thanks, David McKay 1501 17th Ave Apt 1110 Seattle, WA 98122

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.
As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

David McKay 1501 17th Ave, Apt 1110 Seattle, WA 98122 2064654888

From:Lindsey OzboltSent:Friday, January 27, 2017 10:15 AMTo:'goldensrgr8@comcast.net'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Diane,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Diane Porter [mailto:goldensrgr8@comcast.net] Sent: Thursday, January 26, 2017 8:10 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Diane Porter P.O. Box 1407 Milton, WA 98354 253-988-1088

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:18 AM 'Eric Donelson' RE: ELST ?'s

Dear Eric,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Eric Donelson [mailto:eric.systemaire@outlook.com]
Sent: Thursday, January 26, 2017 9:22 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Calvin White (Seasquirl@comcast.net) <Seasquirl@comcast.net>
Subject: ELST ?'s

Lindsey,

We are members of the View Point Park Community Assoc. (VPPCA) and have been following the latest plan for the trail revisions. Couple of questions I have that are in addition to what has been our collective concerns. The chain-link fence on the west side of the trail (sections 339 to 342) and the wooden fence to the east side of the trail (section 339) will be removed during construction. What is the plan to replace these existing fences? If replacement is part of the scope of work for the trail revision effort, fine. If not, what can be done to retrieve the removed fences so that we (VPPCA) can replace as needed?

Would appreciate your response.

thanks,

Eric & Pat Donelson 2206 - 190th Pl. S.E. Sammamish, Wa. 98075

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:23 AM 'Gene Beall' RE: East Lake Sammamish Trail, Segment B - feedback

Dear Gene,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Gene Beall [mailto:gene-beall@comcast.net]
Sent: Thursday, January 26, 2017 10:11 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: East Lake Sammamish Trail, Segment B - feedback

Ms. Ozbolt, the purpose of this email is to provide feedback and ask some questions regarding the proposed plans for the East Lake Sammamish Trail, Segment B.

First, I applaud the city/county efforts on the trail to date and, in general, the plans for Segment B. I appreciate the efforts to improve fish habitat for migrating salmon along the associated streams and the efforts to develop the trail in ways that make it as widely usable as possible by the community-at-large.

For background, my wife and I live at 915 E Lake Sammamish Shore Lane SE. We and the 9 other property owners along this little stretch of E Lake Sammamish Shore Lane SE (aka Whileaway Court) use Driveway #10 that crosses the trail. This stretch of E Lake Sammamish Shore Lane SE is a private road, collectively owned by the 9 parties who own the associated lots.

I have two areas of concern and some related questions and suggestions.

1. Please save the big, beautiful Aspen and Douglas Fir trees

The Tree Preservation Plan TP12 (on page 12 of the Tree Preservation Sheets) shows that several big Aspen trees and several of the big Douglas Fir trees currently located along the western edge of the trail, just south of Driveway #10, are to be removed. We would very much like for all of these big, beautiful trees to be saved...somehow. Here are some ideas/suggestions for how that might be accomplished. The essence is this:

- a) designate the area east of this stretch of trail something other than wetland (because it's not wetland)
- b) move the centerline of the new trail to the east of the current trail centerline (rather than to the west)
- c) install stop signs on our Driveway #10 (if that helps)

Here is a more complete explanation of those steps:

- a) AL20 (page 52) of the Segment B plans show this stretch of the trail, specifically from our common Driveway #10 to the south about 175 feet, near STA 377+00. The plan shows that the centerline of the trail along this stretch is being moved to the west of the centerline of the current gravel trail. The relocation of the trail centerline may be driven partly by the designation of wetland along the eastern border of this stretch of trail and the desire/requirement not to diminish wetland areas. I certainly applaud the design guideline to preserve wetland areas but I would respectfully ask that someone go out and re-evaluate that bit of land. It's not wetland. It's a slope down from the parkway to a ditch along the east side of the tail. The area is covered mostly with blackberry bushes and other brush, not wetland flora. And it most certainly does not include big, beautiful, mature trees.
- b) If that area along the east side of the trail could be designated other than wetland, it might allow the centerline of the trail to be moved to the east of the centerline of the current gravel trail, rather than to the west. This is exactly what is being done immediately south of STA 377+00 so perhaps it can also be done north of STA 377+00. This would reduce the area that needs to be cleared on the west side of the trail where the big trees are.
- c) Another contributor to the proposed removal of these trees may be the sight distant requirements associated with our Driveway #10. I certainly applaud the city/county efforts to ensure/improve the safety of the trail crossings. I cannot see in the plans, if a stop sign is planned to be installed for cars using our Driveway #10. If a stop sign were installed, it would reduce the site distance triangle and thereby further reduce the area that needs to be cleared along the west side of the trail in order to ensure the proper site distances, and thus help to save the big trees.

One final comment on this topic: if you stand in our Driveway #10 and look south down the trail, you will see a row of big, beautiful trees and shrubs along the right side of the trail. To the left of the trail, you will see mostly brush and a few small straggly trees. To think that we would sacrifice all those big, beautiful trees on the right and save the brush on the left is simply unconscionable...and I believe unnecessary. Please consider modifying the trail design as I've suggested, and with other creative ideas that you can come up with, to save these big, beautiful trees. Where there is will, there is a way.

2. Pine Lake Creek Culvert #2

Mike and Jackie Schmidt (who reside two doors to the north of us at 903 E Lake Sammamish Shore Lane SE) submitted a comprehensive set of comments and questions regarding the work at Pine Lake Creek Culvert #2. My wife and I have all the same questions and concerns so rather than restating them in different words, I will simply restate the Schmidt's feedback here in italics (with their permission):

"New culvert under Whileaway court (reference pages AL39, FP1, and WP9):

- Good for the fish!
- Good for improved water flow, drainage, and creek flooding mitigation
- Property rights concerns
 - Most proposed construction is within private road (519710TRCT) that is not part of the trail ROW. All home owners have a shared ownership in this tract, so owner consent is required.
 - Why does the proposed construction extend into privately owned Gill Trust lots 5197100135 and 5197100130 instead of remaining within the shared driveway 519710TRCT?
- It is very important to preserve the two massive ancient redwood trees at the west exit of the culvert, near 11+00 on the p-line and adjacent to rock walls #1 & #2. Does the "M" designation on the tree removal plan for these two trees reflect concern?
- Earth walls #42 and #43
 - Chain link fencing is not visually acceptable, would need a more aesthetically pleasing and natural fence choice that fits the style of the neighborhood and the beautiful natural surroundings of the creek passing there.
 - Length of "earth walls" is concerning, why are they so long?

- In particular the south starting point of wall #43. That starting point should be moved at least 5 feet farther north. As it is located now it is likely to be a back-up hazard for cars backing out of the driveway from the 903 residence and turning to back up to the north.
- Why does wall #42 run so far to the north, seems this could be substantially reduced?
- What is the relationship of culvert replacement plans to trail plans (tied together, different projects, timelines?)
- How does funding work, all paid for by King County?
- How will all the utilities be routed and what will the effect on utilities be during construction?
 - Gas, water, sewer are all underground in the road where culvert resides (as are cable and power in other road areas in the construction zone)
 - Current plan would require removal/replacement of power pole near south edge culvert. Could power on these poles be moved underground as part of this work?
 - FYI: There is a separate proposal for a fire hydrant to be added north of the proposed fish passage culvert work on 519710TRCT. This work should be coordinated.
- How will people have access to their homes during culvert/road construction?
- Road grading and drainage is an important concern. We already have issues with water on the road flowing towards residence driveways, in particular the driveways of 903, 909, or 915, so we would appreciate any grading changes improve upon the drainage conditions.
- Concern about current design reducing parking availability.
- What are landscape plans for this area after culvert replacement?

...

To expand on some of the key points I will first focus on the new culvert plans under Whileaway court. One concern here is it is important to preserve the two large, majestic, redwood trees that are planted here just to the west of the culvert. I am pleased to see that, to my understanding, feedback given to folks planning the culvert changes during an onsite meeting in April of 2016 (Kelly Donahue from King County and several representatives from Parametrix) was incorporated. It appears the plans have offset the new proposed culvert further away from the two redwoods in order to reduce the disturbance to the tree roots during required excavation. The trees were planted in the 40's and are a keystone of the landscape in our neighborhood, they must be seen in person to be fully appreciated and cannot be sacrificed!

We are also very interested in the improved fish passage that the new culvert will provide, and in particular the increased capacity the new culvert will have in allowing storm water to pass through. The old/current culvert there is much smaller and has been a concern of ours for plugging and overflowing.

We have additional concerns about several other details of the proposed plan outlined above, in particular the chain link fencing and earth walls. It's important to us that the new culvert aesthetically look very pleasing and fit into the neighborhood landscaping and natural look and feel. Chain link fencing does not meet that requirement, we would like this to be changed to some other suitable more natural material. It appears the earth walls will be constructed of precast concrete blocks which will mostly be buried down to the road surface level, and only exposed where the cut of the creek bed slopes down. If so, we believe this would be suitable if they did not have chain link fence attached.

My final point for the culvert plans is that I want to emphasize that in this section, unlike the trail ROW, the proposed changes to the culvert occur on private property. There are important property rights and consent that need to be adhered to here."

Thank you for the opportunity to provide feedback to the trail plans! If you have any questions about our comments, please do not hesitate to contact us. We appreciate all the effort to make the trail the best it can be!

Gene & Sally Beall 915 E Lake Sammamish Shore Lane SE Sammamish, WA 98075-7494 Home phone: 425-868-0232

From:Lindsey OzboltSent:Friday, January 27, 2017 10:33 AMTo:'gbelau@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Geoff,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Geoff Belau [mailto:gbelau@yahoo.com] Sent: Thursday, January 26, 2017 12:58 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

I am a father of two young boys, ages 7 and 3, who are/will be learning to explore the region where they live by bike. It is important to me that we have opportunities to ride in relative safety as a family. I also strongly believe that the expansion of our regional trail system offers many public benefits, including health, environment, quality of life, and racial/socio-economic equity.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Geoff Belau

Geoff Belau 9017 4th Ave S Seattle, WA 98108 206.851.0055

From:Lindsey OzboltSent:Friday, January 27, 2017 10:24 AMTo:'gregrehm@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Greg,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Greg Rehm [mailto:gregrehm@gmail.com] Sent: Thursday, January 26, 2017 10:35 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

As a bike camper this connection will allow greater flexibility in reaching the Cascades.

Sincerely, Greg Rehm

Greg Rehm 5911 18th ave South Seattle, WA 98108 2066013763

From:Lindsey OzboltSent:Friday, January 27, 2017 10:24 AMTo:'ummhayley@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Hayley,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Hayley Bonsteel [mailto:ummmhayley@gmail.com] Sent: Thursday, January 26, 2017 10:31 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail. As a survivor of a bicycle crash with a vehicle, safety is of the utmost importance to me - facilities MUST be designed with bicyclists' safety in mind. I do not want others to experience what I have experienced in the years since my crash (chronic pain, spine problems, PTSD--the works).

When complete, the trail will be an even greater community amenity than in its interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail, so that future generations will be able to experience the amazing assets of our region.

Sincerely,

Hayley Bonsteel 418 E Loretta Pl #208 Seattle, WA 98102 4102592782

From:Lindsey OzboltSent:Friday, January 27, 2017 10:17 AMTo:'hollykoenig@altaplanning.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Holly,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Holly Koenig [mailto:hollykoenig@altaplanning.com] Sent: Thursday, January 26, 2017 9:16 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Holly Koenig 1402 3rd Avenue, Suite 206 Seattle, WA 98101 2066933050

From:Lindsey OzboltSent:Friday, January 27, 2017 10:16 AMTo:'jklepack@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear John,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: John Klepack [mailto:jklepack@gmail.com] Sent: Thursday, January 26, 2017 8:14 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

Lake sammamish is a beautiful feature of our area and both bikers and pedestrians deserve first-class facilities to enjoy it. We've surrounded the lakes by roads, providing one nice trail is an important step toward a less car-oriented future.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

John Klepack 7065 7th Ave Nw Seattle, WA 98117 6073421301

From:Lindsey OzboltSent:Friday, January 27, 2017 10:12 AMTo:'jlaudolff@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear James,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: James Laudolff [mailto:jlaudolff@gmail.com] Sent: Thursday, January 26, 2017 5:41 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

I commute on the north part of the trail every single day and it is tremendously valuable to me.

Sincerely,

James Laudolff 24518 SE37th St, 4 Issaquah, WA 98029 4252134727

From:Lindsey OzboltSent:Friday, January 27, 2017 10:16 AMTo:'janauss@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Jacob,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Jacob Nauss [mailto:janauss@gmail.com] Sent: Thursday, January 26, 2017 8:45 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Completing this trail will be a huge success for walking/cycling in King Country, and will open up more opportunities for businesses to capitalize on another source of customers coming in/by their businesses via the trail.

Please approve the permit, as proposed, with expediency.

Jacob Nauss 4711 50th Ave SW Seattle, WA 98116 2069620503

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:30 AM 'Justin.resnick@gmail.com' RE: I support the Permit for Segment 2B of the ELST

Dear Justn,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Justn Resnick [mailto:Justin.resnick@gmail.com] Sent: Thursday, January 26, 2017 12:30 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: I support the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Multiuse paths and trails are a valuable community asset.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Justn Resnick 3023 18th Ave S Seattle, WA 98144 2157791056

From:Lindsey OzboltSent:Friday, January 27, 2017 10:32 AMTo:'jseeman4@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Julianne,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Julianne Seeman [mailto:jseeman4@gmail.com] Sent: Thursday, January 26, 2017 12:47 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Julianne Seeman 13229 Linden North 105B Seattle,, WA 98133 206 641 5854

From:Lindsey OzboltSent:Friday, January 27, 2017 10:29 AMTo:'kyle.r.b@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Kyle,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Kyle Brown [mailto:kyle.r.b@gmail.com] Sent: Thursday, January 26, 2017 12:12 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

I already ride the interim trail occasionally. It makes for a nice recreational ride and a convenient and safe route between Issaquah and Redmond.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Kyle Brown 1740 Melrose Ave., #702 Seattle, WA 98122 6086980421

From:Lindsey OzboltSent:Friday, January 27, 2017 10:30 AMTo:'kstevens97@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Kevin,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Kevin Stevens [mailto:kstevens97@yahoo.com] Sent: Thursday, January 26, 2017 12:25 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

My wife and I ride our bicycles on trails from our home in Seattle, through Redmond, Sammamish, and Issaquah, often stopping for lunch or coffee. The development of the ELST so far has added to the enjoyment and safety of our adventures. When we are forced back out to East Lake Sammamish Parkway, we lose some of that. While we are seasoned cyclists, there are many people who would not at all if the road were their only choice.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in its interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely, Kevin Stevens

Kevin Stevens 322 NW 54th St Seattle, WA 98107 206-297-1985

From:Lindsey OzboltSent:Friday, January 27, 2017 10:22 AMTo:'vorosk@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Kim,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Kim Voros [mailto:vorosk@gmail.com] Sent: Thursday, January 26, 2017 9:56 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Kim Voros

Kim Voros 315 NE 159th Shoreline, WA 98155 5037015769

From:Lindsey OzboltSent:Friday, January 27, 2017 10:35 AMTo:'loisboulder1@comcast.net'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Lois,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Lois Hayes [mailto:loisboulder1@comcast.net] Sent: Thursday, January 26, 2017 1:31 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Paving the trail will make it much less painful for those of us who have shoulders with arthritis.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users.

Please approve the permit, as proposed, with expediency.

Sincerely,

Lois Hayes 4501 134th Place SE Bellevue, WA 98006 From:Lindsey OzboltSent:Friday, January 27, 2017 10:13 AMTo:'larrylusch@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Larry,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Larry Lusch [mailto:larrylusch@gmail.com] Sent: Thursday, January 26, 2017 6:48 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

Please approve the final segment of the East Lake Sammamish Trail. This beautiful trail is a gem in the crown of the city. My wife and I love this trail. We walk it and ride our bikes on it.

Gail and I are both in our mid-60's. We're working hard to stay fit and healthy. While we do go to a gym in bad weather, the ELST is our "go to" source of fresh air and outdoor enjoyment.

The improvements made to the trail so far are outstanding. It's a joy to see children and people of all ages walking, biking, or being pushed in a stroller along ELST. For young parents who push their infants in strollers, the paved surface is so much better.

We were overjoyed when the approval came for the segment that is being worked on now. We assumed the "battle" was over. It was so disappointing to realize 29 or so people were trying to hold up the final segment.

Please listen to the majority in this situation and approve completion of the final segment.

Thanks for listening and thanks for serving the community.

Larry Lusch

Larry Lusch 35203 SE Ridge Street Snoqualmie, WA 98065 636-542-0633
From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:35 AM 'Mike Koppel' RE: Resident comments re:station #408- address 169 SE

Dear Mike,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Mike Koppel [mailto:koppelfive@icloud.com] Sent: Thursday, January 26, 2017 1:40 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Resident comments re:station #408- address 169 SE

Hello Lindsey,

I had a meeting today to review the currents trail plans of the South Segment B and here is what I came away with that could use some clarification.

1. Access to parkway during construction

-current access is designated for construction vehicles/access -there will be pavement added west of the trail to create a new access for us

~What is planned for us to best access the parkway, receive guests and packages, retrieve mail and put out garbage during the construction phase?

2. Current landscape

- it appears on the plan that the current cedar hedge west of the trail is outside of the CG line

~Will that hedge in fact remain as is?

3. Removal of access driveway to parkway -plans show no restoration of current driveway area west of trail

~Will there be vegetation added to assist in privacy from trail users having access to our property?

Thank you for considering my concerns.

Shari Koppel

Sent from my iPad

From:Lindsey OzboltSent:Friday, January 27, 2017 10:22 AMTo:'Amy Brockhaus'Subject:RE: Mountains to Sound Greenway comments on East Lake Sammamish Trail shoreline
permit

Dear Amy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Amy Brockhaus [mailto:amy.brockhaus@mtsgreenway.org]
Sent: Thursday, January 26, 2017 9:36 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Mountains to Sound Greenway comments on East Lake Sammamish Trail shoreline permit

Hi Lindsey,

Please accept the attached letter of comment for the East Lake Sammamish Trail Shoreline Substantial Development permit for segment 2B. Thank you!

Amy Brockhaus Deputy Director

Mountains to Sound Greenway Trust D 206.382.5565 x24 | C 206.327.1732 amy.brockhaus@mtsgreenway.org

Invest in the Future of Our Region | mtsgreenway.org/donate

Sally Bagshaw (X), Councilmember, City of Seattle Jim Becker, Founder, SmartLab Toys, becker&mayer! Gary Berndt, Civic Leader, Cle Elum Mark Bovar (*), President Middle Fork Outdoor Recreation Coalition Kevin Brown, Director, King County Parks & Recreation Will Castillo, Principal, GGLO Dow Constantine (X), King County Executive Kitty Craig, Deputy Director, Washington Program The Wilderness Society Karl Forsgaard, President Alpine Lakes Protection Society Ava Frisinger, Former Mayor, City of Issaquah Todd Glass, Partner Wilson, Sonsini, Goodrich & Rosati PC Kari Glover, Global Integration Partner, Retired K&L Gates Peter Goldmark (X), Commissioner of Public Lands Washington State Department of Natural Resources Rich Grillo, Community at Large Representative Cle Elum Bruce Gryniewski, Partner, Gallatin Public Affairs

Bruce Gryniewski, Yarther, Gallahn Public Attars Don Hoch (X), Direator Washington State Parks & Recreation Commission Laura Hoffman, Amazon Publishing, Copper Ridge Farm Cora Johnson, Geotechnical Engineer GeoEngineers

Andrew Kenefick, Senior Legal Counsel Waste Management of Washington, Inc. Jamie Kingsbury (X), Supervisor

Mt. Baker-Snoqualmie National Forest Janet Knox, Principal Environmental Geochemist Pacific Groundwater Group

Ken Konigsmark, Issaquah Alps Trails Club Leon Kos, City Administrator (retired), City of Issaquah Paul Kundtz, Northwest Director

The Trust for Public Land

Helen Lee, Financial Advisor

Morgan Stanley Wealth Management Danny Levine, President, NationAd Communications Arlene Levy (*), Partner, Social Venture Partners Josh Lipsky (*), Partner, Cascadia Law Group PLLC Robert Manelski, Senior Director, 787 Program

The Boeing Company Gordon McHenry Jr (*), President & CEO, Solid Ground Sue McLain (*), Former Senior VP Delivery Operations, Puget Sound Energy

Chad Nesland, Director, Microsoft Procurement Mary Norton, City of Snoqualmie Parks Board Meadowbrook Farm

Thomas O'Keefe, Pacific NW Stewardship Director American Whitewater

Julia Parrish, Associate Dean of Academic Affairs College of Environment, University of Washington Marie Quasius(*), Attorney, K&L Gates LLP Charles Raines, Director Cascade Checkerboard Project Sierra Club

Janet Ray (*), Asst VP, Corporate Affairs & Publishing AAA Washington

AAA Washington Jim Reinhardsen (*), Principal & Senior Managing Director, HEARTLAND LLC

Grant Ringel, Communications Director Puget Sound Energy Floyd Rogers, Environmental Advocate

Vik Sahney, Divisional Vice President, Sustainability REI Co-op

Al Smith, Partner, Perkins Coie LLP David Sturtevant (*), Retired, Vice President, CH2M

Maryanne Tagney Community at Large Representative

Leah Tivoli, Organizational Performance Manager City Budget Office, Seattle

Mike Williams (X), Supervisor

Okanogan-Wenatchee National Forest Kathy Williams, Former Senior Vice President,

HomeStreet Bank Joel Yoker, Solution Architect, Microsoft

(*) Executive Committee Membe (X) Ex-Officio {non-voting} Directo

MTSGREENWAY.ORG

Founding President Jim Ellis, Chairman Emeritus Washington State Convention Center

> Immediate Past President Bill Chapman (*), President and CEO Millenium Bulk Terminals, Longview

Secretary John Baier (*), Attorney Baier Law Firm

Treasurer, Operations Committee Chair Jason Broenneke (*), Partner KPMG LLP Fundraising Committee Chair Ken Krivanec (*), President Quadrant Homes

Board Engagement Committee Chair Eric Artz (*), EVP/COO REI Co-op Program Committee Chair Doug McClelland (X*), Assistant Region Manager Washington State Department of Natural Resources

Executive Director Jon Hoekstra (*) Mountains to Sound Greenway Trust

January 20, 2017

Lindsey Ozbolt, Associate Planner City of Sammamish City Hall 801 228th Avenue SE Sammamish, Washington 98075

Re: Support for East Lake Sammamish Trail

Dear Lindsey,

President

Kurt Fraese (*), President

Tod McDonald (*), Principal

GeoEngineers, Inc.

President-Elect

Cypress Advisors

I am writing on behalf of the Mountains to Sound Greenway Trust to express our strong support for the King County's application for a Shoreline Substantial Development permit for Segment 2B of the East Lake Sammamish Trail, specifically the 3.5 mile section between Inglewood Hill Road and SE 33rd Street, through the city of Sammamish.

The East Lake Sammamish Trail is an integral part of our regional trail system. King County's acquisition of this trail corridor in 1998 played a critical role in connecting trails through the Puget Sound region and throughout the Mountains to Sound Greenway, the scenic landscape surrounding Interstate 90 between Puget Sound and central Washington State. The unpaved section in Sammamish is the last missing link in a 44-mile corridor from the Burke-Gilman Trail in Seattle, all the way to downtown Issaquah.

Full development of the East Lake Sammamish Trail will be one of the most significant regional trail accomplishments in our region.

The East Lake Sammamish Trail also connects to the proposed Emerald Necklace, a trail corridor across the Sammamish Plateau that will create a loop trail around Sammamish.

We strongly support paving and other improvements to the final section of the East Lake Sammamish Trail. Finishing this trail will provide access to Lake Sammamish in accordance with the Shorelines Management Act, and will be a benefit to recreation for people of all abilities and the ecological heath of the region.

The Mountains to Sound Greenway Trust supports a comprehensive transportation system with connected regional trails and pedestrian walkways, in order to improve transportation options, enhance work environments and quality of life, increase opportunities for recreation, improve public health and reduce traffic congestion and greenhouse gas emissions.

Completion of the East Lake Sammamish Trail represents the culmination of a long-term vision for connecting communities by trail around the lake, and leaves a tremendous legacy to benefit our entire region.

Please accept our strong support for permitting and completion of the East Lake Sammamish Trail.

Sincerely,

NOC librars Amy Brockhaus, Deputy Director

Jim Berry, Greenway Trust Board of Advisors Sammamish resident

From:Lindsey OzboltSent:Friday, January 27, 2017 10:15 AMTo:'nathan_joel@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Nathan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Nathan Hancock [mailto:nathan_joel@hotmail.com] Sent: Thursday, January 26, 2017 7:25 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I'm a frequent rider through this area and think the missing link will be great for bringing the local and regional community outdoors. The for all ages trail is more comfortable for many opposed to the parallel road with steep segments and turning vehicles.

Nathan Hancock 2440 Dexter Ave N Apt 2 Seattle, WA 98109 4697423205

From:Lindsey OzboltSent:Friday, January 27, 2017 10:12 AMTo:'Rangotti2004@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Robin,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Robin Angotti [mailto:Rangotti2004@gmail.com] Sent: Thursday, January 26, 2017 5:00 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Robin Angotti 17433 Bothell Way NE unit B301 Bothell, WA 98011 206-940-1417

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:21 AM 'Reid Brockway' RE: Comments on ELST

Dear Reid,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Reid Brockway [mailto:waterat@comcast.net]
Sent: Thursday, January 26, 2017 9:39 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on ELST

Lindsey,

Attached please find my comments on the ELST 60% plans and on the project in general. I offer these for consideration with regard to the SSDP permit application presently under review.

Thanks, Reid Brockway 425-868-7899

Comments concerning ELST Segment 2B and 60% plans

Reid Brockway 167 E Lk Sammamish Sh Ln NE

1. Dispersion areas intrusive and unnecessary

The dispersion areas shown on sheets AL28 – AL31 (and elsewhere) intrude into portions of the rail corridor currently used for gardens, parking, and other improvements long-since established. These areas can be eliminated by simply sloping the trail pavement so it drains to the east. Most of the area east of the trail in this region, despite being labeled "wetlands" in some portions, is basically a large man-made ditch between the parkway and railbed that has long served as a catch basin. Besides avoiding unnecessary impact on citizens, this will be a significant cost savings.

2. Dispersion areas inadequately defined

Although not stated, the "dispersion areas" shown on various AL sheets are apparently to be vegetated areas to handle storm water runoff from the trail surface. They are inadequately defined in the 60% plans. Typical Section D (P.30) and E (P.31) appear to show these, and Construction Notes 9 and 10 say "See LA sheets for planting schedule", but there is no planting schedule provided. Without this detail, and in the absence of a maintenance plan specific to these areas, plan reviewers cannot assess the impact on their neighborhoods. The SSDP should not be approved until this information is provided and the public has had a chance to review it.

3. Chain link fence is barrier to wildlife

A chain link fence is shown running almost continuously on sheets AL28 – AL32. Deer and other wildlife frequently come down to the lakeshore in this area, and this fence will constitute a barrier to their passage. If this fence is absolutely necessary for safety, there should at least be more openings in it at to allow the animals to pass.

4. Unnecessary removal of trees

According to the Tree Preservation Plans, there are 16 trees slated for removal as reflected on sheet TP16 that are outside the planned trail footprint, and a few more like that on sheets TP17 and TP18. These trees should not be removed. It appears this is intended only to allow construction of the dispersion area, but:

- 1. Trees absorb moisture and contribute significantly to dispersion of runoff, and
- 2. The dispersion area should be located on the other side of the trail.

Tree retention is a key issue with trailside residents, and every effort should be made to preserve existing trees.

5. Wetland buffers shown to cross trail and roads

The county has argued that the wetland exemption stipulated in SMC 21A.50.290(2)(a) means that wetland buffers stop at one side (generally the east side) of the trail. The code supports this as long as:

the isolated part of the buffer does not provide additional protection of the wetland and provides insignificant biological, geological or hydrological buffer functions relating to the wetland

This code also allows wetland buffers to terminate at roads.

The 60% plans show buffers continuing on the west side of the trail and across some neighborhood access roads. See for example sheets AL29, wetland 26C, and sheet AL34, wetland 28E. Since the land generally slopes downhill to the west, these isolated sections of buffer typically do not provide the above functions. Such buffers encumber the adjacent properties. The county should not apply one standard to itself and another to the properties adjacent to or bisected by the trail. Except where it can be shown by scientific analysis that these isolated buffer regions *do* have significant effect across the trail or road, these buffers should be shown as stopping at the edge of the trail or road, whichever applies.

6. Permits conditional on 90% plans

The SSDP should not be approved by the city until the various issues the public identifies with the 60% plans have been addressed, necessary redesign occurs, that redesign is reflected in the 90% plans, the public review cycle for the 90% plans has taken place, and any remaining design issues have been satisfactorily resolved. To the extent the clearing and grading permit is impacted by any redesign, the same thing applies. The city's permitting authority is the only real leverage the public currently has with the county, and to issue the permits before this process has been fully carried out takes away that leverage.

7. Government trampling on property rights

Many trailside property owners believe that they have fee interest in the rail corridor. They believe that the Judge Pechman decision was badly flawed, and that the ruling of the Federal Claims Court will ultimately be shown to be accurate. That is to say, the railroad easement was extinguished at the time of abandonment and replaced, through rail banking, by a surface easement for trail use only. The property owners have appealed the Pechman decision and believe they will ultimately prevail and show fee interest in the underlying land.

In addition there is the adverse possession issue in state court. Those property owners intend to show that the railroad, and thus the county, only acquired the right to control a narrow strip of land that the railroad actually used, not a 100 foot wide corridor.

However the county's trail design goes far beyond the mere installation of a hiking and biking trail. It uses substantial portions of the full corridor for wetland mitigation and restoration,

dispersion of stormwater runoff from the trail, construction of structures made necessary by shifting and widening the trail, etc. As a consequence, many long standing uses the adjacent property owners have made of the rail corridor are being compromised or destroyed. These uses, which the county calls "encroachments", have been there, with the railroad's tacit permission, in some cases for 100 years or more. Further, many mature trees are being unnecessarily removed. This would never be allowed if those property owners' fee interest in the rail corridor was recognized. And once that fee interest is affirmed in court, these property owners will feel justified in suing for damages.

Notwithstanding the claim that this is an "Essential Public Facility", this is a project being proposed on land where the permit applicant's claim of ownership is tenuous at best. The 60% design reflects a project that goes well beyond the mere installation of a hiking and biking trail. Both the city and county should recognize that they are at risk if a project of this scale is allowed to proceed.

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:28 AM 'Reid Brockway' RE: Comments protocol

Hi Reid,

I am working my way through my emails as quickly as possible. Everyone submitting a comment is receiving a confirmation of receipt as I get to the email.

Thanks,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Reid Brockway [mailto:waterat@comcast.net]
Sent: Thursday, January 26, 2017 11:17 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments protocol

Lindsey,

People have been asking me if they should expect an acknowledgment when they submit comments on the ELST. Could you tell me what the protocol is that that?

Thanks, Reid

From:Lindsey OzboltSent:Friday, January 27, 2017 10:17 AMTo:'spiralcage@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Robert,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Robert Kirkpatrick [mailto:spiralcage@gmail.com] Sent: Thursday, January 26, 2017 9:12 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Robert Kirkpatrick 1727 South Horton Street, #2 Seattle, WA 98144 (360) 292-3927

From:Lindsey OzboltSent:Friday, January 27, 2017 10:23 AMTo:'richknox@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Rich,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Rich Knox [mailto:richknox@gmail.com] Sent: Thursday, January 26, 2017 10:06 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Rich Knox 1111 18th Ave, Apt 2 Seattle, WA 98122 2062579922

From:Lindsey OzboltSent:Friday, January 27, 2017 10:18 AMTo:'rick_pressley@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Richard,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Richard Pressley [mailto:rick_pressley@yahoo.com] Sent: Thursday, January 26, 2017 9:22 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Richard Pressley 13716 Lake City Way NE #308 Seattle, WA 98125 206-713-1108

From:Lindsey OzboltSent:Friday, January 27, 2017 10:28 AMTo:'ron.whitman@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Ron,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Ronald Whitman [mailto:ron.whitman@gmail.com] Sent: Thursday, January 26, 2017 11:18 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Do not let a handful of self-interested NIMBY homeowners derail this critical link in the Sammamish Trail.

This trail isn't just about recreation. By providing a viable alternative to driving on roads, this trail will not only enable people to commute and do other trips by bike, it will also take cars off of our roadways, easing traffic congestion. Given that much of this trail is already built, completing this link is an extremely cost effective way of improving the overall transportation network in our area.

Please approve the permit, as proposed, with expediency.

Sincerely, Ron Whitman 6117 34th Ave NW Seattle, WA 98107

Ronald Whitman 6117 34th Ave NW Seattle, WA 98107 206-985-8775

From:Lindsey OzboltSent:Friday, January 27, 2017 10:35 AMTo:'rcwood88@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Rachel,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Rachel Wood [mailto:rcwood88@gmail.com] Sent: Thursday, January 26, 2017 1:24 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

The ELST provides a valuable transportation and recreation outlet for many people, myself included. It's completion would enhance its accessibility, safety, and use. Providing bicycle and walking trails additionally encourages alternative means for commuting, which relieves traffic stress and increases the safety of roadways. It also decreases greenhouse emissions and environmental impacts that adversely affect human health.

Therefore, I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Thank you, Rachel

Rachel Wood 32nd ave seattle, WA 98117 4436149972

From:Scott Bonjukian <scott.bonjukian@hotmail.com>Sent:Thursday, January 26, 2017 12:14 PMTo:Lindsey OzboltSubject:Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I am regular cyclist in the region and am extremely optimistic for the connections and other benefits the ELST will provide. Please complete the ELST and approve permit # SSDP2016-00415 as submitted.

Approval will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. I occasionally bike on the eastside today, and completion of the trail will enable me to visit your community more and spend more tourist dollars in your local economy.

The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect AASHTO industry standards.

A 12-foot trail with 2-foot shoulders will create a safe trail with space for people running, walking and bicycling. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Scott Bonjukian 328 Bellevue Avenue E Seattle, WA 98102 (360) 286-9519

From:Lindsey OzboltSent:Friday, January 27, 2017 10:35 AMTo:'sean.pender@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sean,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Sean Pender [mailto:sean.pender@gmail.com] Sent: Thursday, January 26, 2017 1:40 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm a bicyclist who likes to ride all over the region, so even though I live in Seattle, I ride to Lake Forest Park to go to the bookstore, I ride to Newcastle or Renton to visit relatives and today I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards will allow for safe use by a variety of different users, including people who walk and bike.

The priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

I'm hoping that I can someday use this trail to more easily get to the Eastside and visit relatives and spend time and money in communities along the way.

Sincerely,

Sean Pender 6529 28th Ave NE Seattle, WA 98115 206-526-2440

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:37 AM 'Ted Davis' RE: Comments on the Shoreline Substantial Development Plan

Dear Ted,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Ted Davis [mailto:ted.Davis@comcast.net]
Sent: Thursday, January 26, 2017 2:04 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on the Shoreline Substantial Development Plan

Date: January 26, 2017

Lindsey Osbolt <u>lozbolt@sammamish.us</u> Associate Planner City of Sammamish 801 228th Avenue SE Sammamish, Washington 98075

Request to Rescind the "Permit Application Complete" for the Shoreline Substantial Development Trail Segment 2B-SSDP2016-00415 of the Lake Sammamish Trail is based on comments to the Sammamish City Council and our review of the 60% plans.

Ted and Elaine Davis <u>Ted.Davis@Comcast.net</u> 3137 East Lake Sammamish Shore Lane SE Sammamish, WA98075 See LANDSCAPE PLAN LA3 296+50

Our Property is located on PLAN AND PROFILE AL3 adjoining marker number 296.50 and on EXISTING CONDITIONS AND PLANS EX3. We have questions regarding the open and unresolved land ownership issue and the 60% REVIEW SUBMITTAL recently published and ask the Shoreline Substantial Development Permit no. 2016-00415 be rescinded until these questions are addressed and answered.

Comments to the Sammamish City Council Meeting on January 10, 2017

In the process of coming to decisions, on issues before you, much of the research and investigation is not performed by you individually, but by staff, consultants and other types of contractors working for the city.

That is why I believe, regarding the decision on December 13 that deemed the Sammamish "<u>Trail Application Complete</u>" you may not have all the information needed/required to make that decision regarding Corridor Parcel 292506-9007 of the East Lake Sammamish Trail Segment 2B.

If you have lived in your home for over 18 years the same structure prior owners lived in since 1968 and you recently discovered your house had a ROW line drawn, on the proposed 60% trail parcel maps, through the front entry of your home, through the upstairs bedroom walk in

closet and through most your carport.... **you would be concerned**, and I believe you would want to resolve the issue. **(See Images # 1 and # 2)**

This is especially important to us when the City Attorney's letter dated 14 December, 2016, references comments such as: "That real property included within the legal description of for the Corridor Parcel is under King County Control and use," "Free and clear of all claims by the Plaintiffs." This opinion also indicates that King County "is entitled to the exclusive use and possession of the area on, above, and below the surface for railroad purposes and incidental uses permitted under Washington law".

I believe you would agree, if you were us, you would want clarification as prescribed under SMC 20.05.040 Application Requirements (1) (r) Verification of that property is in the exclusive ownership of the applicant.

I mentioned earlier you may not have had all the information needed to make your decision. The information you are missing *is* Several Lake Sammamish home owners have ongoing litigation with King County, challenging the original ownership of portions of the ROW and the width of the easement used by the railroad. That was not mentioned, perhaps his office did not know, in the letter from the City Attorney to the City Council. The case is 15-2-20483-1 SEA

We are not part of the Pechman case or that litigation. Our purpose before you today is to request the Sammamish City Council rescind the Permit Application Complete until the litigation at the state court level, regarding who has clear title to the land in the "Corridor" has been resolved or we meet with representatives of King County to solve the land ownership and easement issues for the good of all.

Comments regarding questions to be answered in the 60% plans

We have reviewed the 60% plans and see in several areas close to us, the needs of the trail have been balanced while trying to minimizing the impact on the adjoining property owners.

1 Will the Concrete block wall remain after the trail construction has been completed?

As we review the CG (Clearing and Grading) we cannot determine if the concrete block wall plans simply have not been addressed, if there was an omission of the plans or what is the planned future for the wall. The concrete block wall is between 12 and 14 feet from the trail center line. The CG touches and splits a portion of the concrete block wall, but not the entire wall. The single vehicle lane where our house is located, is inside the ROW and has one way in and the same way out. The lane provides very limited parking for residents, delivery trucks, maintenance personnel and guests. Daily, our neighbors and our family use the area between the asphalt lane in front of our houses and the concrete block wall for parking. Most importantly, this area provides a wide spot on the lane for emergency vehicles and regularly aids other vehicles in turning around instead of having to back all the way up the lane. (See image # 3 Wall)

2 Will the CG (Clearing and Grading) remove the cedar fence and the plants that are currently between the concrete wall and the gravel trail during construction and what type of fence will replace the current fence?

Currently, as indicated on the 60% plans a permitted 6-foot tall cedar fence separates the gravel trail from the top of the wall. What is not noted on the plans is the 4-foot height from the top of the wall to the gravel parking area below. **(See image # 3 Wall)**

3 Will parking, continue along the concrete block wall, by marker 296.50 during construction?

Parking spaces along our lane are scarce under normal conditions. Any reduction in available parking will be burden on the home owners and or anyone wanting to park in along the lane. How does the King County plan to accommodate parking along East Lake Sammamish Shore Lane SE during the construction?

5. Stairs/steps (#5 at marker 296.60?) to the trail are shown, on the 60% plans as existing. How will the county accommodate a gate to the trail, currently accessed by stairs (#5 at marker 296.60)? Part of the stairs (#5) are outside of the ROW how will they be incorporated into the final plan? (See Image #4 Steps)

6. We do not see there are no plans for replacement steps on the east side of the trail close to marker 295.20 that lead to East Lake Sammamish Parkway SE. Was this an omission or simply the plans for steps have not been completed?

The current steps are used daily by residents on the entire lane homeowners to access their mailboxes and areas along the East Lake Sammamish SE Parkway for parking. If the steps are not replaced individuals must walk approximately ½ mile round trip on East Lake Sammamish Shore Lane SE and along a dangerous curved section of the Parkway to access their mail and overflow parking. At least 4 home owners are retired and the absence of a stairway for access to their mailboxes and parking will be burden to them. What can the county do to address this issue and accommodate these concerns? **(See image # 5)**

7 During construction how does the county plan to replace our access to the mailboxes and the parking areas, currently accessed by the stairs, along East Lake Sammamish Parkway SE?

Until these concerns, along with the land ownership issues, are addressed the City of Sammamish will not have enough information on which to determine if the application is complete and should not move forward with their final decision on the permit.

Images referenced above on next page

Image # 1 Photo of homes with ROW imposed;

Image #2 Davis home (3137) with ROW marker next to north side of home.

Image # 3 Concrete Block Wall with 6 ft. Cedar Fence

Image # 4 Steps to Trail

Image # 5 Steps from Trail to East Lake Sammamish Parkway SE

End of Images/End of Comments

Respectfully submitted,

Ted & Elaine Davis

From:Lindsey OzboltSent:Friday, January 27, 2017 10:11 AMTo:'t737p@aim.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Thomas,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Thomas Parsons [mailto:t737p@aim.com] Sent: Thursday, January 26, 2017 1:50 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Thomas Parsons 4210 Brooklyn Ave NE, 4 SEATTLE, WA 98105 4402429358

From:Lindsey OzboltSent:Friday, January 27, 2017 10:15 AMTo:'wesleyducey@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Wesley,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Wesley Ducey [mailto:wesleyducey@gmail.com] Sent: Thursday, January 26, 2017 7:54 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. I've personally used the completed sections of trail for bike training for rides like the STP, RedBell 100, and hopefully a few new ones this summer.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Wesley Ducey 4015 49th Ave SW Seattle, WA 98116 206-395-7096
Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 10:25 AMTo:'zachary.b.williams@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Zach,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Zach Williams [mailto:zachary.b.williams@gmail.com] Sent: Thursday, January 26, 2017 10:41 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

My wife and I made the choice to give up to sell our car, and biking is a main component of how we get around. Safe facilities that separate people biking from car traffic with more than paint allow us a vital lifeline for transportation -- not just for recreation. Completing this section of the trail would provide a connection that was hitherto unavailable to us.

The opposition I have heard to the permit has echoes of the uproar over the creation of the Burke Gilman Trail in Seattle in the 70s. The concerns ended up amounting to nothing, and the trail now provides an invaluable benefit to the thousands of people who use it every day.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Zach Williams 2031 Franklin Ave E Seattle, WA 98102 3609906673

RE: Trail segment 2 b comment

Lindsey Ozbolt

Fri 1/27/2017 10:19 AM

To:cindeefj@gmail.com <cindeefj@gmail.com>;

Dear Cynthia,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415) and Inglewood Hill Parking Lot (SSDP2016-00414).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: cindeefj@gmail.com [mailto:cindeefj@gmail.com] Sent: Thursday, January 26, 2017 9:36 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Trail segment 2 b comment

Dear Ms. Ozbolt,

The split driveway that services Trail Markers 470-473 culminates at our residence, 1537 East Lake Sammamish Parkway NE, and appears will be most impacted by the recent Inglewood Hill Parking Lot/Trail 60% Plan. In the spirit of creating a "WIN-WIN" situation for both the county, community & residences (470-473) we respectfully request an opportunity to meet with the County Planners to review the following areas of concern. To that end, we are willing to provide input and participate financially, if necessary, to come up with a plan to either keep the existing ADA portion of the driveway or redesign it to successfully serve the needs of our common community.

ADA COMPLIANT

Our split driveway was built to accommodate our family members and guests with disabilities. Those requiring

wheel chairs, walkers, scooters or canes can only access the trail via the gently sloped portion of our driveway that is ADA Compliant and currently begins at the trail and angles towards the south of our home... the adjoining driveway is way too steep. Our garages are purposefully angled to the south as well, to provide smoother entry access and to maximize the "best use" of the tight space. Our home, dock and boat launch are also ADA Compliant.

We host the WOUNDED WAR VETERANS (and many other guests w disabilities) to provide them with a safe place to come and participate in water sports and enjoy the trail. Many arrive in vehicles w gate lifts needed to facilitate their wheelchairs & necessities. The vehicles access the property at the apex of East Lake Sammamish Pkwy NE then veer off to the left to access the ADA Compliant driveway, leaving them in a position to unload passengers, wheelchairs, etc... and safely exit the property to the right via the steep sloped portion of the driveway.

The Ingelwood Hill Parking Lot/Trail 60% Plan needs to keep the existing or redesign to include an ADA Compliant driveway to the Kokomo Place residences.

SAFETY

The ADA Compliant portion of our driveway also allows EMERGENCY "911" vehicles to enter and exit the property quickly. Any large vehicle...garbage trucks, mail, UPS or delivery trucks faces the same safety issue if the ADA Compliant portion of our driveway is removed. The apex of the driveway beginning on East Lake Sammamish Pkwy NE is both steep and narrow. If it were to become the sole entrance/exit, then these large vehicles would be forced to back up the driveway into the oncoming traffic on East Lake Sammamish putting many at risk.

Additionally, we have 17 children, ages 9 and under in our marker block (470-473), that play daily on the sport court. They access the trail as well as the property via the ADA Compliant portion of our driveway with their scooters, bicycles and wagons; the other portion of the driveway is way too steep. The circular flow of traffic serves those residences to the north and south of us as well while simultaneously keeping our community a safe place to be whether a child playing or a disabled person.

PRIVACY & SECURITY

The lack of privacy poses a potential threat to the homeowner. Although beautifully designed, the community parking lot provides a perfect setup for a "grab & Go" thief. Homeowners risk potential theft & vandalism due to the elimination of privacy landscaping. Additionally, homeowners are left feeling like anyone on the trail could be watching them at anytime. According to Google, there are 80 registered sex offenders in the zip code of 98074.

To protect the privacy of the homeowner we would like the option to keep existing or plant new landscaping between the public trail and our residences not to exceed a height limit of six (6) feet. We understand the need for visibility to the lake for all but to implement a plan that totally disregards the privacy of the homeowner is disrespectful. Increasing the landscaping height limit to "six (6) feet or less" would satisfy both sides of this

issue. Additionally, allowing the homeowner to install a security gate that aligns w the county's chain link fence would provide a deterrent and potentially lower the crime rate.

Thank you for the opportunity to express these concerns. We look forward to hearing from you with a meeting time and place that we can find solutions to these common community issues.

Respectfully,

Cynthia F. Jobe 1537 East Lake Sammamish Parkway NE(markers 470-473) <u>425 985 5979</u> E: <u>cindeefj@gmail.com</u>

redesigning the existing driveway is paramount. It needs to continue be ADA COMPLIANT.

RE: East Lake Samammish Trail - Stealing Land

Lindsey Ozbolt

Fri 1/27/2017 10:34 AM

To:Coleen Staples <coleenstaples@yahoo.com>;

Dear Coleen,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415) and Inglewood Hill Parking Lot (SSDP2016-00414).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Coleen Staples [mailto:coleenstaples@yahoo.com] Sent: Thursday, January 26, 2017 12:59 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: East Lake Samammish Trail - Stealing Land

Hello Lindsay,

As an Issaquah resident, I have enjoyed the use of our improved trails along East Lake Sammamish and throughout town. However, I am shocked, angry and worried about the plan to widen the trail at the expense of property owners. I am not alone in feeling that this is a dishonest interpretation of the law.

Our friends purchased property on the lake in section 415 with clearly declared property lines, which they paid for. It was appraised based on these property lines and all property owners should be paid for the land they are losing so the city can build an over-sized trail.

Can a precedence be sited for situation in the area where such a wide trail is built through a residential area? A video on the city website said they would not take the land unless owners approved of it. I know many owners do not approve but they are being forced to give it up. The city is confiscating property for the" good of the community" and making them tear down long standing buildings and 100 year old blueberry bushes. Frankly... regardless of the benefits for "the greater good"... this is a **dishonest interpretation of the law. Just because you can, doesn't mean you should.** How is this different than other

times in history when government or private investors took land from people who had few resources to defend their rights? This is shameful and outrageous.

I realize that improving the trail is a positive effort, but I ask that you pay owners for their land or find another way.

Concerned citizen,

Coleen Staples

RE: East Lake Sammamish Trail

Lindsey Ozbolt

Fri 1/27/2017 10:50 AM

To:Wizard <wizard11@isomedia.com>;

Dear Jen,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415) and Inglewood Hill Parking Lot (SSDP2016-00414).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Wizard [mailto:wizard11@isomedia.com] Sent: Thursday, January 26, 2017 2:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Cc: James Stenson <wizard@isomedia.com> Subject: East Lake Sammamish Trail

Ms Osbolt:

I am writing to you as a resident that lives in the "completed" section of the East Lake Sammamish Trial ("ELST") or better known as Section 1A in the City of Sammamish. Suffice it to say that the design and construction/paving of the trail resulted in well documented, seriously detrimental water run off issues for me and my neighbors. Many meetings were held; King County attended all of them along with their engineers. The City of Sammamish was also well represented at the meetings. A plan of action to try and mitigate the damaging water run off was agreed upon by all parties present…and then King County reneged on their verbal agreement, with no explanation other than "they weren't responsible" for the water issues that were created ONLY after they finished paving and regrading the trail. When Senator Andy Hill saw the video of the run off problems created by the King County design and build of the trail, his comment was "That is killing Salmon". Clearly the construction of the trail followed the design – so one can only come to the conclusion that the design and engineering is not very well done. And yet King County seems to think that they bear no responsibility. About the same attitude they take when asked to produce legal proof that they in fact "own" the land on which they are intending to pave.

To the credit of the City of Sammamish, they have done what they can to help us mitigate the water issues and try to keep from washing all of the dirt and rock from our driveway in the Lake Sammamish.

I will be happy to go on record as saying that King County has been unresponsive, unprepared and unwilling to do anything other than what they want to do. No consideration for anything other than their own poorly engineered agenda. Property rights, common safety, common courtesy are not issues that they care to address or in which to engage. Fooling the City of Sammamish once – shame on King County – Fooling the City of Sammamish into permitting a demonstrably poor design a second time – Shame on the City of Sammamish.

Feel free to reach out to Susan Cezar, as she is familiar with our plight in dealing with King County. I would be happy to discuss any/all of the above with you if you feel so inclined.

Regards,

James Stenson

This communication (including any attachments) may contain privileged or confidential information intended for a specific individual and purpose, and is protected by law. If you are not the intended recipient, you should delete this communication and/or shred the materials and any attachments and are hereby notified that any disclosures, copying or distribution of this communication, or the taking of any action based on it, is strictly prohibited.

Thank you