Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 11:03 AMTo:'dan.liebling+sam@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Dan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: D Liebling [mailto:dan.liebling+sam@gmail.com] Sent: Thursday, January 26, 2017 5:15 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear council members:

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Cycling and walking on E Lk Sammamish Parkway was dangerous until the existing segments were completed. Now, there is a safe path, EXCEPT for the final segment, awaiting your approval.

Remember that once upon a time, people protested the Burke-Gillman trail, but now that same trail is seen as a huge asset and value-add for those neighbors bordering the trail.

D Liebling 156th Ave NE Redmond, WA 98052 206-000-0000

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 11:03 AMTo:'RAMON BELUCHE'Subject:RE: Comments on East Lake Sammamish Trail - B 60% Plans

Dear Ramon,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: RAMON BELUCHE [mailto:ramonandlinda@msn.com]
Sent: Thursday, January 26, 2017 5:07 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on East Lake Sammamish Trail - B 60% Plans

Ms. Ozbolt,

When my wife and I met with County staff during a prescheduled appointment on January 10, we specifically asked about access to the waterfront portion of our property at 1721 E. Lake Sammamish PL. SE. during construction. We were told by Ms. Donahue (I believe that is the name), who assisted us in reviewing the 60% plans, that access would be provided and safety arrangements would be made for it.

I have recently learned from some of my neighbors that they have been told by County staff at the City's plan review desk, that there will not be any access to the waterfront portions of the properties during construction. It would appear as if County staff is arbitrarily planning on preventing access to people's properties during what will likely be a minimum of a 12 month construction period.

Access to the waterfront portion of properties divided by the trail must be maintained during construction and the County must clearly address this particularly sensitive issue as part of the completion of the trail improvement plans. There needs to be clear and specific language in the construction plans and documents to address this issue.

I trust that our comments on the 60% plan review are being also reviewed by the City's staff and elected officials and that they too will participate in formulating solutions to these problems.

Thank you for your consideration,

Ramon A. Beluche

Lindsey Ozbolt

From:	Jeff Peterson <jpeterson@tollbrothersinc.com></jpeterson@tollbrothersinc.com>
Sent:	Friday, January 27, 2017 11:35 AM
То:	Lindsey Ozbolt
Subject:	RE: Comment on SSDP 2016-00415 - Trail

Thank you Lindsey. Hopefully your mailbox returns to normal shortly! Jeff

From: Lindsey Ozbolt [mailto:LOzbolt@sammamish.us]
Sent: Friday, January 27, 2017 11:02 AM
To: Jeff Peterson
Subject: RE: Comment on SSDP 2016-00415 - Trail

Dear Jeff,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Jeff Peterson [mailto:jpeterson@tollbrothersinc.com]
Sent: Thursday, January 26, 2017 4:48 PM
To: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>>
Subject: Comment on SSDP 2016-00415 - Trail

Lindsey:

Please accept this as public comment regarding plans for the trail improvement project in Sammamish. Early last year we worked on the feasibility of a property for development that receives a significant volume of water discharge from the Tamarack neighborhood. As you know, Tamarack was developed under the regulation and permitting requirements of King County. This trail improvement project represents a key element in the eventual solution to the problematic drainage issues in Tamarack that have developed in that neighborhood and have been the subject of many council meetings and a 2016 drainage study of the area. However, upon my cursory review of the plans, stormwater piping appears to be sized in the realm of 12" diameter pipe with type 1 catchbasins. These sizes appear to be inadequate to handle volumes being produced by the Tamarack neighborhood at this time (table 3 of the attached preliminary modeling memo), which currently discharge onto the property uphill of this project which is the subject of our feasibility. As the city has completed drainage studies for the Tamarack neighborhood, it seems advisable that the discharges be factored into the sizing of the storm system improvements which appear to have been designed prior to the drainage study.

As King county was the original approving agency for the Tamarack neighborhood, it seem fair the deficiencies in stormwater for that neighborhood are partially the responsibility of the county, and given the opportunity the county now has to contribute to the solution, it would be a poor use of public funds and effort to not consider these needed drainage facilities in the context of this project. Thank you for your consideration,

Jeff Peterson 9720 NE 120th PL STE 100 Kirkland, WA 98034

- DATE MAY 9, 2016
 - TO DERYA DILMEN, PROJECT ENGINEER, CITY OF SAMMAMISH
 - CC

FROM ROBERT PARISH, PE, PROJECT MANAGER, OSBORN CONSULTING, INC. JOSH VAN WIE, PE, PROJECT ENGINEER, OSBORN CONSULTING, INC.

SUBJECT TAMARACK DRAINAGE IMPROVEMENT PROJECT – MODELING MEMORANDUM

INTRODUCTION

The Tamarack neighborhood is located on the west side of the City of Sammamish bordering Lake Sammamish. The neighborhood contains properties in the area near the intersection of East Lake Sammamish Parkway and Louis Thompson Road NE.

The Tamarack basin contributes flow to Lake Sammamish through a culvert at the intersection of East Lake Sammamish Parkway and Louis Thompson Road. The basin is approximately 52 acres in size, and includes a system of storm drains, culverts, and ditches. Properties in the basin are zoned as R-4 residential, and land cover consists primarily of single family residential houses. Topography ranges in elevation from approximately 40 feet to 460 feet with slopes up to approximately 30% in the steepest areas.

The goal of this study is to use hydrologic and hydraulic modeling to assess the existing flows reaching Lake Sammamish and potential changes in peak flow due to future development in the Tamarack neighborhood. Modeling was performed using the Western Washington Hydrology Model (WWHM) and the EPA Storm Water Management Model (SWMM) through the PCSWMM platform.

SUBBASIN DELINEATION

The Tamarack basin was divided into 8 subbasins for performing modeling calculations. Subbasin boundaries were delineated using King County and City of Sammamish GIS data including elevation contours, streams, parcels, drainage pipes, culverts, manholes, and catch basins. Subbasins were divided by choosing specific points in the stormwater conveyance system and separating out the land area that contributes flow to each point.

Site visits were performed to verify subbasin boundaries. Subbasin boundaries were confirmed by locating high points at the edge of subbasins and by visually locating pipes or culverts that redirected flow to create a basin boundary. The subbasin delineations can be seen in **Figure 1**.

Subbasin 4 is currently undeveloped, and consists of forested area. The remaining subbasins are developed, with the majority of lots built out as single family residential. A few individual undeveloped lots exist in Subbasins 2, 6, and 7.

WWHM MODEL

WWHM was used for computing runoff in each subbasin for existing and future conditions. Input data required for WWHM includes impervious and pervious cover, slopes, and soil types.

Existing impervious areas were calculated using aerial imagery databases available in ArcGIS software. The most recent imagery available was from July, 2013. Impervious areas were traced using ArcGIS, and roadway impervious areas were separated from parcel impervious areas. Impervious cover on parcels was assumed to be 70 percent building area and 30 percent driveway area based on aerial photographs. Separation of individual buildings, driveways, and other impervious is beyond the scope of this work. Pervious areas were assumed to be 100 percent lawn in developed subbasins. In Subbasin 4, which is undeveloped, pervious areas were assumed to be 100 percent forest based on aerial imagery and site visit observations.

Proposed impervious areas were calculated assuming parcels will redevelop individually and increase impervious cover to the maximum allowable level. Developments in the Tamarack basin are required to use level 2 flow control standards according to the City of Sammamish flow control map. Under these standards, developments or redevelopments with greater than 5,000 square feet new or replaced impervious surface are required to install flow control. For the WWHM model, it was assumed that any existing lots with less than 5,000 square feet impervious would redevelop and add impervious area to reach 5,000 square feet. This added a total of 2.12 acres of impervious area for an increase in impervious cover of approximately 4 percent over the entire Tamarack Basin. A summary of existing and proposed conditions is provided in **Table 1**.

Subbasin 4 currently consists of a single large tract of land. The tract is expected to be subdivided and developed into residential lots in the future. The subdivision of the land for development will require installation of flow control meeting the level 2 standards for peak flows and flow durations. Subbasin 4 was modeled as forest, assuming that flow control will maintain predeveloped flows in the subbasin.

Slopes for each subbasin were calculated using GIS elevation contours. Slopes for the eight subbasins ranged from 6 to 29 percent, with an average slope of 17 percent. Soil information was taken from the Natural Resources Conservation Service Web Soil Survey, which compiles soil survey data from various sources. Soils in the Tamarack basin consist primarily of glacial outwash soils, which make up 86 percent of the basin. Some areas of glacial till are also present at the highest and lowest elevations in the basin. WWHM requires soils to be categorized as type A/B, type C, or saturated soils. Soil categories were assigned using the Stormwater Management Manual for Western Washington, which classifies the outwash soils in the basin as type A/B and the till soils as type C. Detailed soil information is provided in **Table 1**.

Under existing conditions, runoff from Subbasins 7 and 8 is collected in an 8-inch drainage system located at NE 4th Street and is released to an open channel that passes through Subbasin 4. Soils in Subbasin 4 consist of glacial outwash, and are expected to have a higher infiltration capacity than till soils. Runoff from basins 7 and 8 was routed through Subbasin 4 using a lateral flow basin in WWHM to estimate the infiltration and remaining runoff that continues through Subbasin 4 to the outfall.

Table 1 Summary of WWHM Parameters						
Subbasin	Total Area (AC)	Existing Percent Impervious	Future Percent Impervious	Slope	Percent Outwash Soil	Percent Till Soil
1	2.15	38%	38%	6%	29%	71%
2	1.61	33%	48%	9%	62%	38%
3	14.07	49%	51%	19%	100%	0%
4	5.82	2%	0%	14%	100%	0%
5	2.70	48%	58%	17%	100%	0%
6	16.25	34%	41%	13%	100%	0%
7	2.22	40%	47%	29%	42%	58%
8	4.51	39%	44%	22%	85%	15%

SWMM MODEL

SWMM was used to model flow from WWHM through the pipes and open channels in the lower part of the Tamarack basin. The drainage system for the model was constructed using survey data, record drawings, and field measurements. Pipes modeled in this study include the mainline pipes that extend from the downstream ends of Subbasins 3, 4, and 6 and continue to Lake Sammamish. A portion of the 8-inch drainage system in Subbasin 8 was also included. The model is meant primarily to provide an estimate of peak flows and velocities in the downstream end of the system. Because of the model's intended use, the full drainage system through the Tamarack basin was not included in the model.

Pipe invert elevations and lengths were taken primarily from survey data and record drawings. Survey data was used for the majority of pipes and culverts along Louis Thompson Road and for the pipes along NE 4th Street in Subbasin 8. Several areas of missing data were encountered for the pipes along Louis Thompson Road where existing manholes could not be located. Based on survey notes and site visits, it appears that existing manholes may have been paved over with asphalt. In these cases, pipe data was taken from record drawings. One area with missing data includes the pipes on the south side of Louis Thompson Road near the intersection with East Lake Sammamish Parkway NE. Record drawings show the system extending to the south along East Lake Sammamish Parkway NE and not connecting into the main Tamarack drainage system. However, no pipes along East Lake Sammamish Parkway NE could be verified during the site visit, and it appears possible that the existing pipes do connect to the main Tamarack system. The model was built assuming the pipes are connected to provide a more conservative estimate of flows. However, it should be noted that the future development will not alter the destination of any flows in the basin. The pipes used in the SWMM model can be seen in Figure 3.

Open channel and ditch areas were observed in the field to determine the bottom width, approximate side slope, and estimated channel roughness. Observations were taken at the ditch on the north side of Louis Thompson Drive and at the open channel section between East Lake Sammamish Parkway NE and the East Lake Sammamish Trail to the west of the roadway. The open channel that extends from the trail to Lake Sammamish could not be observed because the channel passes through private property that could not be accessed at the time of the site visit. Parameters for this channel were assigned using engineering judgement based upon the site photographs included as part of the Cooper Beach -Mitigation As built Memorandum (see attached).

Two existing detention systems were included in the model. One is a detention pond located at the Subbasin 5 outlet that provides flow control for the residences near the intersection of 207th Avenue NE and NE 3rd Street. The second is an inline detention pipe located in the 205th Avenue NE right-of-way 29 SSDP2016-00415

003268

near the intersection with Louis Thompson Road. Parameters for both detention systems and their orifices were taken from record drawings.

Flows for the SWMM model were taken from WWHM results for 100-year peak runoff. Flow from each subbasin was applied as a constant flow at the appropriate model node. Flows from Subbasin 3 were split between two nodes because a portion of flow from the subbasin does not reach the conveyance system until near the downstream end. The total flow was divided based on contributing area, with 80 percent assigned to the main drainage line and 20 percent assigned to the farthest downstream node in the subbasin.

SHEAR STRESS CALCULATIONS

Shear stresses for the open channel at the Lake Sammamish outfall were calculated to determine the potential for erosion. The predicted shear stress for each scenario was calculated using equations developed for channel design by the Federal Highway Administration (Kilgore, 2005). The following equations were used for calculating shear stress applied by the modeled flow and permissible shear stress on the channel soil and vegetation:

$$\tau_0 = \gamma R S_0$$
 (Applied shear stress, FHWA Equation 2.3)

$$\tau_p = \frac{\tau_{p,soil}}{(1-C_f)} \left(\frac{n}{n_s}\right)^2$$
 (Permissible shear stress, FHWA Equation 4.7)

Values for flow rates, velocities and depths, and slopes were taken from the WWHM and SWMM models and used to calculate shear stress. Values for the grass cover factor and roughness were taken from the FHWA document or other literature sources. The bed material grain size where 75% of material is finer (i.e. D₇₅) was estimated to be 2 inches. This estimate was based on observations of the upstream channel near the trail and photos of the constructed channel provided in the Cooper Beach – Mitigation As built Memorandum.

MODELING RESULTS

The peak flow results predicted by WWHM are provided in **Table 2**. Peak flows for future conditions were greater than existing conditions due to increased impervious cover. Subbasins 2, 5, and 6 had flow increases of greater than 10 percent at the 100-year event. Subbasin 4 is predicted to have no significant change in flow due to expected installation of flow control during future development. This will ultimately depend on the design of the future development.

	Flows by Subbasin (CFS)							
Scenario	1	2	3	4*	5	6	7*	8*
Existing	0.42	0.27	2.97	0.05	0.57	2.40	-	-
2-year								
Existing	1.09	0.71	6.74	1.86	1.30	6.01	-	-
100-year								
Future 2-	0.42	0.36	3.07	0.01	0.67	2.78	0.49	0.91
year								
Future 100-year	1.09	0.83	6.92	0.03	1.47	6.67	1.19	2.14

*For existing conditions, subbasins 7 and 8 were modeled as lateral basins with total flow measured at the outlet of subbasin 4

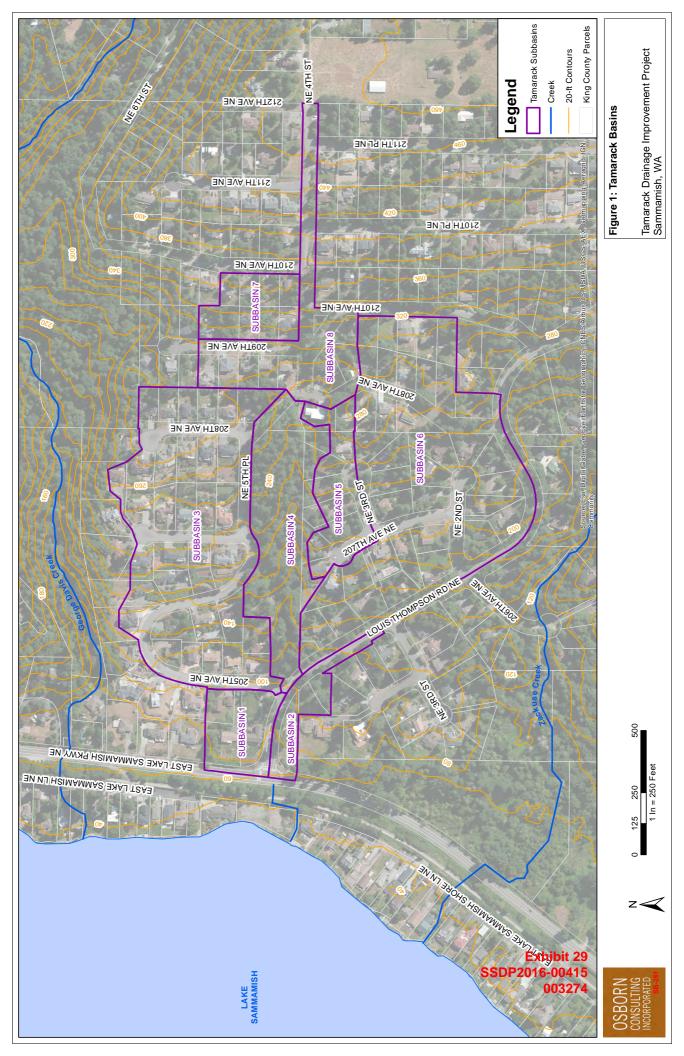
The peak flows and velocities predicted by SWMM for the ditch and open channel sections are listed in **Table 3**. Flows at the Lake Sammamish outfall are estimated to increase from 17.7 CFS under existing conditions to 20.3 CFS under future conditions during the 100-yr event. This constitutes a 15 percent increase in flow at the outfall. The primary reason for the increase is that runoff from Subbasins 7 and 8 will not be infiltrated as it flows over Subbasin 4. A smaller portion of the increase is caused by a higher percentage of impervious cover in all subbasins.

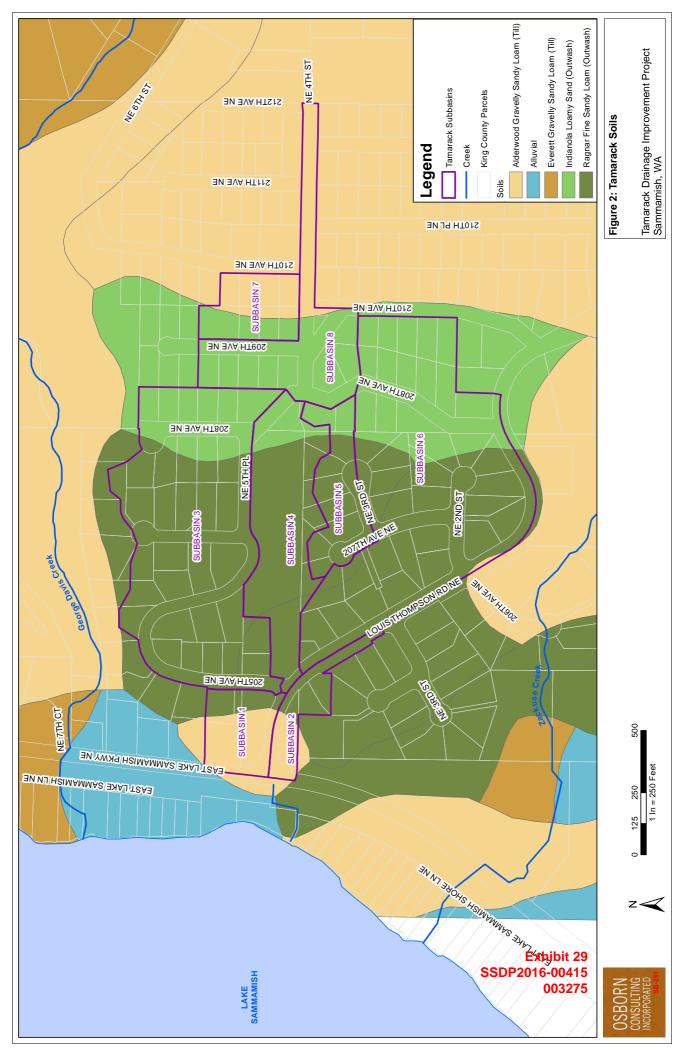
Velocities along Louis Thompson Road are near 10 feet per second for both existing and future conditions at the 100-year event. The high velocities are caused by steep slopes in the roadside ditch and a grass lined channel without rock material to provide increased roughness. Existing velocities in the open channel sections near Lake Washington are predicted to be 3.8 feet per second at the 100-year event, and are predicted to increase slightly with the higher volume of flow in the future.

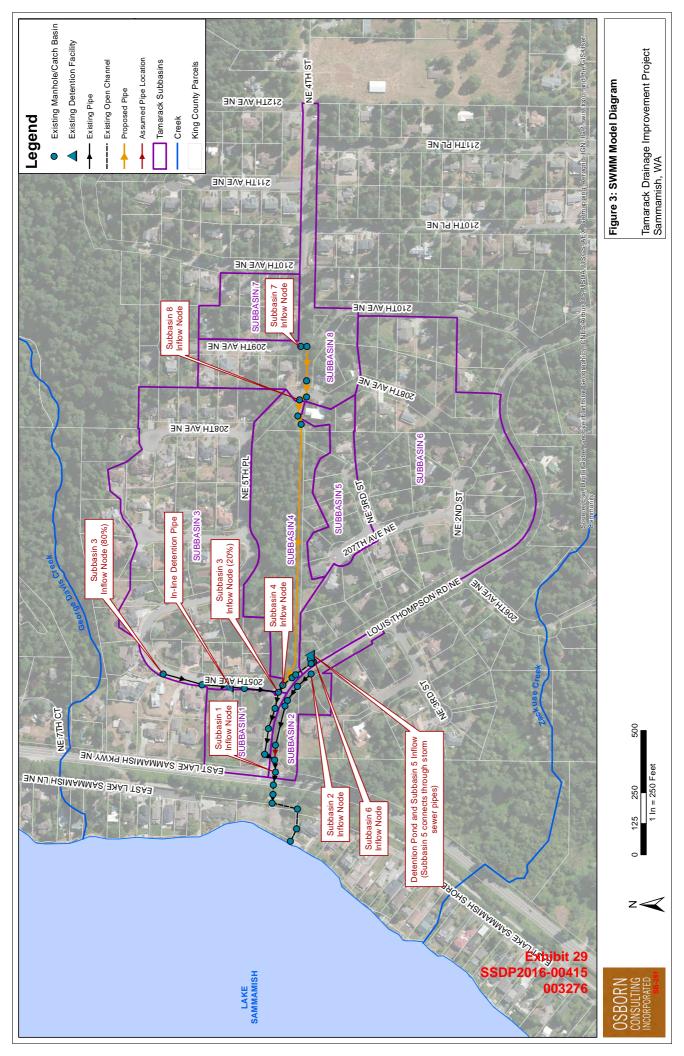
Table 3 SWMM Modeled Peak Flows and Velocities					
Location	Existing 100 year Peak Flow	Existing 100 year Velocity	Future 100 year Peak Flow	Future 100 year Velocity	
Ditch along Louis Thompson Road NE	7.3 cfs	9.0 ft/s	8.1 cfs	10.3 ft/s	
Open Channel between East Lake Sammamish Parkway NE and pedestrian trail	17.7 cfs	5.6 ft/s	20.3 cfs	5.8 ft/s	
Open Channel between pedestrian trail and Lake Sammamish outfall	17.7 cfs	3.8 ft/s	20.3 cfs	3.9 ft/s	

The permissible shear stress at the outfall channel was calculated to be 1.27 lb/sf. Calculated shear stresses for each storm event under existing and proposed conditions are shown in **Table 4**. The shear stresses are not expected to increase dramatically, and all predicted shear stresses are below the permissible shear stress. Because the permissible shear stress is based on site photos rather than field observations, there is room for refining the permissible stress calculation. Additional study is recommended during the design phase to investigate any potential erosive channel concerns and verify the level of shear stress that is appropriate for the channel. However, because of the relatively minor change in shear stress due to increased flows, the future conditions are expected to be similar to the existing conditions. If the existing channel is functioning without erosion concerns, then the future conditions will not likely create additional concern.

Table 4 Modeled Shear Stress at Outfall Channel					
Scenario	Flow	Velocity	Shear Stress		
Existing 2-year	6.7 cfs	2.9 ft/s	0.57 lb/sf		
Existing 100-year	17.7 cfs	3.8 ft/s	0.88 lb/sf		
Future 2-year	8.7 cfs	3.1 ft/s	0.64 lb/sf		
Future 100-year	20.3 cfs	3.9 ft/s	0.91 lb/sf		

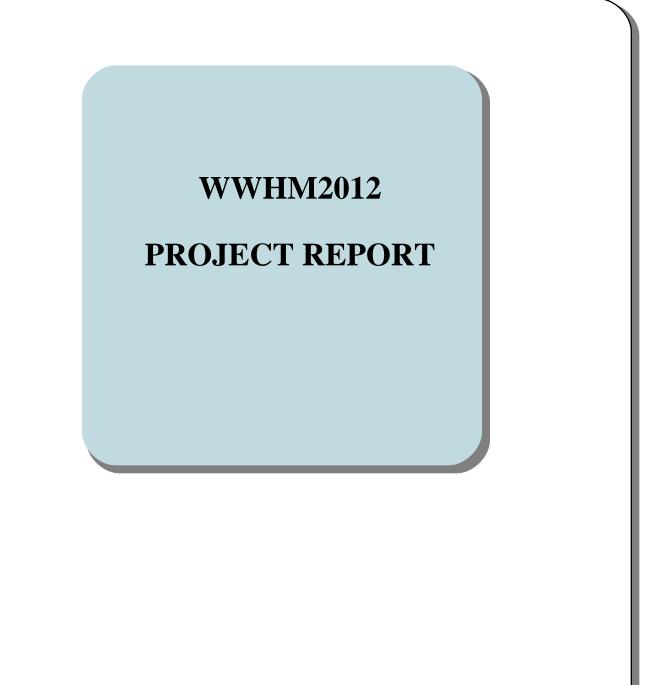

CONCLUSION


This modeling study developed runoff estimates for 8 subbasins in the Tamarack neighborhood for existing and future developed conditions. Peak flows are expected to increase by as much as 15 percent at the Lake Washington outfall due to increased impervious cover and the change in conveyance for Subbasins 7 and 8 to be conveyed through storm drains rather than an open channel that provides some level of infiltration capacity. Changes in velocity in the open channel near Lake Sammamish are expected to increase slightly due to the higher flow, but increases may not be a concern if there are no erosion or degradation concerns with the existing channel. It is recommended that the condition of the existing open channel be investigated prior to design and construction in Subbasin 4 to review erosion concerns and document existing conditions.


References

Kilgore, R.T. and Cotton, G.K., 2005, "Design of Roadside Channels with Flexible Linings," U.S. Department of Transportation, Federal Highway Administration, FHWA-NHI-05-114, Hydraulic Engineering Circular No. 15, Third Edition.

APPENDIX A FIGURES



APPENDIX B

MODELING DOCUMENTATION

General Model Information

Project Name:	Tamarack
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/9/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year
Low Flow Threshold for POC3:	50 Percent of the 2 Year
High Flow Threshold for POC3:	50 Year
Low Flow Threshold for POC4:	50 Percent of the 2 Year
High Flow Threshold for POC4:	50 Year
Low Flow Threshold for POC5:	50 Percent of the 2 Year
High Flow Threshold for POC5:	50 Year
Low Flow Threshold for POC6:	50 Percent of the 2 Year
High Flow Threshold for POC6:	50 Year
Low Flow Threshold for POC7:	50 Percent of the 2 Year
High Flow Threshold for POC7:	50 Year
Low Flow Threshold for POC8:	50 Percent of the 2 Year
High Flow Threshold for POC8:	50 Year

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 7.19
Pervious Total	7.19
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 2.24 3.25 1.39
Impervious Total	6.88
Basin Total	14.07

Element Flows To: Surface Inte

Interflow

Groundwater

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7
Element Elevia To:	

Element Flows To: Surface Interflow

Groundwater

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.62 0.04
Pervious Total	10.66
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.68 1.15
Impervious Total	5.6
Basin Total	16.26
Element Flows To: Surface	Interflow

Groundwater

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod Element Flows To:	acre 5.73	
Surface	Interflow	Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	2.89
Element Flows To:	
Outlet 1	Outlet 2
Basin 4 - Perv Lateral	Flow

Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.4 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No

Pervious Land UseacreC, Lawn, Steep.77Element Flows To:.77SurfaceInterflowBasin 4 - Perv LateralBassin 4 - Perv LateralBasin 4 - Perv LateralBassin 4 - Perv Lateral

Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .8 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .57 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.38 0.94
Pervious Total	1.32
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.33 0.14
Impervious Total	0.82
Basin Total	2.14
Element Flows To:	

Element Flows TO.		
Surface	Interflow	Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.52 0.32
Pervious Total	0.84
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.25 0.11
Impervious Total	0.78
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 6.93
Pervious Total	6.93
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 2.24 3.43 1.47
Impervious Total	7.14
Basin Total	14.07

Element Flows To: Surface Inter

Interflow

Groundwater

Subbasin 4 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.82
Pervious Total	5.82
Impervious Land Use	acre
Impervious Total	0
Basin Total	5.82

Element Flows To: Surface Interflow

Groundwater

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.15
Pervious Total	1.15
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.73 0.31
Impervious Total	1.56
Basin Total	2.71

Element Flows To: Surface Inter

Interflow

Groundwater

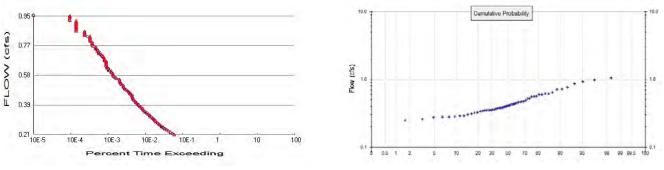
Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 9.61 0.03
Pervious Total	9.64
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 3.38 1.45
Impervious Total	6.6
Basin Total	16.24
Element Flows To: Surface	Interflow

Groundwater

Subbasin 7 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.5 0.68
Pervious Total	1.18
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.72 0.31
Impervious Total	1.03
Basin Total	2.21
Element Flows To:	

Element Flows To: Surface Interflow

Groundwater


Subbasin 8 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 2.22 0.74
Pervious Total	2.96
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.03 0.79 0.34
Impervious Total	2.16
Basin Total	5.12
Element Flows To: Surface	Interflow

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.32 Total Impervious Area: 0.82

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.4167965 year0.56731610 year0.67789525 year0.83055250 year0.954007

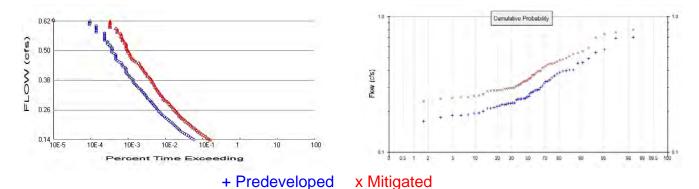
1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs) `
2 year	0.419476
5 year	0.570091
10 year	0.680611
25 year	0.83304
50 year	0.956208
100 year	1.087905

Annual Peaks

100 year


Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigate
1949	0.612	0.615
1950	0.594	0.595
1951	0.375	0.376
1952	0.249	0.251
1953	0.279	0.281
1954	0.341	0.343
1955	0.379	0.382
1956	0.346	0.347
1957	0.439	0.442
1958	0.321	0.323

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 0458 1 0461

1	1.0458	1.0461
2	0.9867	0.9861
3	0.9201	0.9251

4 5 6 7 8 9 10 11 23 44 5 6 7 8 9 10 11 23 44 5 6 7 8 9 10 11 23 44 5 6 7 8 9 20 21 22 32 4 25 6 7 8 9 30 31 23 34 5 6 37 8 9 0 41 42 33 45 6 7 8 9 0 11 12 33 45 6 7 8 9 30 31 23 34 5 6 37 8 9 0 41 45 16 7 8 9 20 21 22 32 4 25 6 27 28 9 30 31 23 34 5 6 37 8 9 0 41 45 16 7 8 9 0 31 23 34 5 6 37 8 9 0 41 45 16 7 8 9 0 31 23 34 5 6 37 8 9 0 41 45 16 7 8 9 0 31 23 34 5 6 37 8 9 0 41 45 16 7 8 9 0 31 23 34 5 5 6 7 8 9 0 41 45 16 7 8 9 0 31 23 34 5 5 6 7 8 9 0 41 42 33 45 5 6 7 8 9 0 41 42 33 45 5 6 7 8 9 0 41 42 3 3 45 5 6 7 8 9 0 41 42 3 3 45 5 6 7 7 8 9 0 41 42 3 3 45 5 6 7 7 8 9 0 41 42 3 3 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8561 0.7635 0.7165 0.7114 0.6369 0.6132 0.6116 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4695 0.4595 0.4595 0.4595 0.4590 0.4494 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.3487 0.3767 0.3759 0.3759 0.3759 0.3748 0.3662 0.3559 0.3559 0.3525 0.3487 0.3759 0.3759 0.3759 0.3759 0.3748 0.3662 0.3559 0.3559 0.3525 0.3487 0.3242 0.3207 0.3207 0.3093 0.2886 0.2876 0.2767 0.2740 0.2740 0.2579	0.8610 0.7655 0.7187 0.7138 0.6402 0.6173 0.6146 0.5974 0.5946 0.5617 0.5607 0.5269 0.5274 0.422 0.4729 0.4729 0.4729 0.4727 0.4622 0.4617 0.4520 0.4400 0.4326 0.4277 0.4275 0.4167 0.4129 0.4167 0.4058 0.3976 0.3953 0.3888 0.3782 0.3764 0.3592 0.3503 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3592 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3548 0.3503 0.3252 0.32411 0.3034 0.2800 0.2767 0.2604
59	0.2579	0.2604
60	0.2488	0.2508
61	0.2429	0.2455

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.84 Total Impervious Area: 0.78

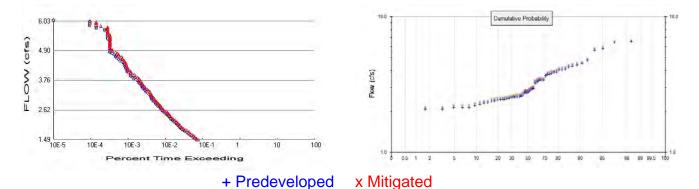
Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

Return Period	FIOW(CIS)
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2 **Return Period** Flow(cfs)

	110W(013)
2 year	0.357064
5 year	0.468532
10 year	0.548138
25 year	0.655564
50 year	0.740714
100 year	0.830382


Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigate
1949	0.378	0.484
1950	0.399	0.466
1951	0.247	0.308
1952	0.164	0.218
1953	0.189	0.263
1954	0.231	0.293
1955	0.249	0.333
1956	0.246	0.297
1957	0.270	0.356
1958	0.210	0.285
1959	0.210	0.293

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

Rallk	Fredeveloped	wiiliyale
1	0.7030	0.7957
2	0.6916	0.7627
3	0.5737	0.7415
4	0.5428	0.7039

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 6.93 Total Impervious Area: 7.14

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	2.973468
5 year	3.869482
10 year	4.505279
25 year	5.35887
50 year	6.032374
100 year	6.739069

Flow Frequency Return Periods for Mitigated. POC #3Return PeriodFlow(cfs)2 year3.0724095 year3.98972310 year4.6395625 year5.510849

Annual Peaks

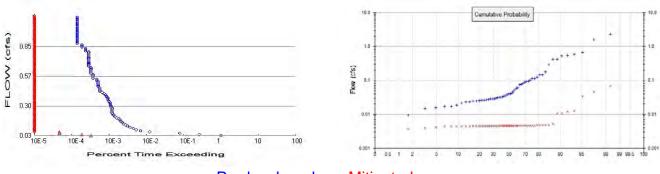
50 year

100 year

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

6.197513

6.917348


rear	Predeveloped	wiitigate
1949	3.768	3.901
1950	3.902	4.046
1951	2.580	2.650
1952	1.886	1.957
1953	2.299	2.382
1954	2.484	2.554
1955	2.734	2.833
1956	2.539	2.591
1957	2.809	2.913
1958	2.383	2.470
1959	2.570	2.661

Ranked Annual PeaksRanked Annual Peaks for Predeveloped and Mitigated.PankPredeveloped Mitigated

Rank	Predeveloped	Mitigate
1	6.5390	6.6531
2	6.4623	6.5467
3	5.8152	6.0252
4	5.6488	5.8498

5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 0 11 23 24 5 6 7 8 9 0 11 22 23 24 5 6 7 8 9 0 31 23 34 5 6 7 8 9 0 31 23 34 5 6 7 8 9 0 11 22 33 45 6 7 8 9 0 11 22 33 45 6 7 8 9 0 11 22 33 45 6 7 8 9 0 31 23 34 5 6 7 8 9 0 1 22 23 45 6 7 8 9 0 31 23 34 5 6 7 8 9 0 1 22 23 45 6 7 8 9 0 31 23 34 5 6 7 8 9 0 1 22 23 45 6 7 8 9 0 31 23 34 5 6 7 8 9 0 1 22 23 45 6 7 8 9 0 31 23 34 5 6 7 8 9 0 41 42 3 34 5 6 7 8 9 0 41 42 3 45 6 7 8 9 0 1 22 3 34 5 6 7 8 9 0 41 42 3 34 5 6 7 8 9 0 41 42 3 45 6 7 8 9 0 1 32 3 34 5 6 7 8 9 0 41 42 3 3 45 5 6 7 8 9 0 41 42 3 45 5 6 7 8 9 0 1 23 3 45 5 6 7 8 9 0 41 42 3 3 3 5 6 7 8 9 0 41 42 3 3 45 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 41 42 3 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.7425 4.5291 4.3855 4.3047 4.2518 4.0905 4.0446 4.0373 3.9032 3.9020 3.8253 3.7679 3.7243 3.6460 3.4154 3.4101 3.4084 3.3761 3.3761 3.2521 3.2348 2.9576 2.9405 2.9405 2.9405 2.9405 2.7563 2.7563 2.7563 2.7563 2.7563 2.7563 2.75655 2.5687 2.5655 2.5687 2.5655 2.5687 2.5687 2.5655 2.5388 2.5366 2.5795 2.5696 2.5317 2.4914 2.4844 2.4601 2.4360 2.4369 2.4369 2.4369 2.4369 2.3832 2.3663 2.3157 2.2991 2.2563 2.2098 2.1323 2.1323	4.8704 4.6184 4.5395 4.4488 4.4043 4.2414 4.1786 4.1313 4.0458 3.9683 3.9672 3.9010 3.8501 3.7386 3.5290 3.5282 3.5271 3.5000 3.4315 3.3721 3.3520 3.0646 3.0324 2.9900 2.9663 2.9127 2.8568 2.8537 2.8456 2.7060 2.6636 2.7060 2.6529 2.6501 2.6529 2.6501 2.5541 2.5541 2.5541 2.5541 2.5541 2.5541 2.5541 2.5541 2.5541 2.5557 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5257 2.5251 2.5257 2.5251 2.5257 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5251 2.5257 2.5257 2.5251 2.5257 2.5257 2.5251 2.5267 2.5257 2.5251 2.5267 2.5257 2.5251 2.5267 2.5267 2.5257 2.5251 2.5267 2.5257 2.5251 2.5267 2.5267 2.5267 2.527 2.5251 2.5267 2.527 2.5251 2.5267 2.527 2.5251 2.5267 2.5261 2.5267 2.5261 2.5267 2.5261 2.5267 2.5267 2.527 2.5261 2.5267 2.5261 2.5267 2.527 2.
55	2.2098	2.2857
56	2.1369	2.2111

POC 4

+ Predeveloped x

x Mitigated

Predeveloped Landuse Totals for POC #4Total Pervious Area:10.27Total Impervious Area:2.89

Mitigated Landuse Totals for POC #4 Total Pervious Area: 5.82 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4

Return Period	Flow(cfs)	
2 year	0.051811	Note: Includes basin areas from
5 year	0.156257	Predeveloped POC 7 and 8
10 year	0.302829	
25 year	0.655511	
50 year	1.120767	
100 year	1.862801	

 Flow Frequency Return Periods for Mitigated. POC #4

 Return Period
 Flow(cfs)

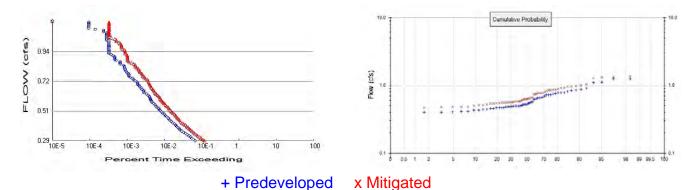
 2 year
 0.005048

 5 year
 0.008331

 10 year
 0.011249

 25 year
 0.020372

 100 year
 0.025655


Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

rear	Predeveloped	wiitigat
1949	0.037	0.004
1950	0.660	0.012
1951	0.146	0.012
1952	0.023	0.005
1953	0.024	0.005
1954	0.095	0.005
1955	0.042	0.005
1956	0.178	0.005
1957	0.031	0.005
1958	0.032	0.005
1959	0.046	0.005

Ranked Annual Peaks for Predeveloped and Mitigated. POC #4 Rank Predeveloped Mitigated

Nalik	Freuevelopeu	wiitiyate
1	2.3077	0.0675
2	1.5812	0.0453
3	0.6602	0.0335
4	0.5974	0.0123

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.15 Total Impervious Area: 1.56

Flow Frequency Method: Log Pearson Type III 17B

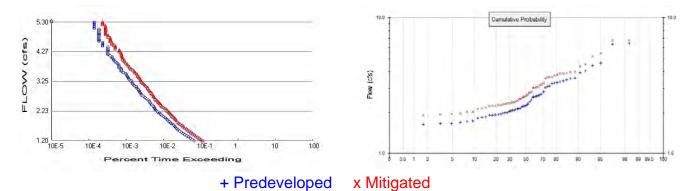
Flow Frequency Return Periods for Predeveloped. POC #5

Return Feriod	FIOW(CIS)
2 year	0.572797
5 year	0.745702
10 year	0.86843
25 year	1.03324
50 year	1.163309
100 year	1.29981

Flow Frequency Return Periods for Mitigated. POC #5 Return Period Flow(cfs)

2 year	0.667922
5 year	0.861329
10 year	0.997605
25 year	1.179534
50 year	1.322365
100 year	1.471646

Annual Peaks


Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigat
1949	0.723	0.851
1950	0.748	0.885
1951	0.494	0.562
1952	0.361	0.427
1953	0.443	0.522
1954	0.481	0.548
1955	0.527	0.621
1956	0.496	0.567
1957	0.537	0.637
1958	0.458	0.541
1959	0.496	0.583

$1960 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 1969 \\ 1970 \\ 1971 \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1976 \\ 1977 \\ 1978 \\ 1979 \\ 1980 \\ 1981 \\ 1982 \\ 1983 \\ 1984 \\ 1985 \\ 1986 \\ 1987 \\ 1988 \\ 1989 \\ 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ 1996 \\ 1997 \\ 1998 \\ 1999 \\ 2000 \\ 2001 \\ 2002 \\ 2003 \\ 2004 \\ 2005 \\ 2006 \\ 1000 \\ $	0.490 0.470 0.407 0.494 0.480 0.571 0.400 0.781 0.849 0.498 0.513 0.622 0.697 0.401 0.569 0.623 0.469 0.468 0.662 0.819 0.840 0.547 0.783 0.647 0.783 0.647 0.732 0.455 0.727 1.252 0.912 0.414 0.499 0.430 0.430 0.528 0.526 1.119 0.528 0.640 0.528 0.526 1.119 0.528 0.640 0.659 0.640 0.659 0.6430 0.430 0.430 0.430 0.444	0.569 0.553 0.483 0.577 0.565 0.659 0.469 0.865 0.996 0.592 0.606 0.734 0.787 0.472 0.671 0.738 0.550 0.553 0.774 0.965 0.977 0.649 0.928 0.766 0.481 0.624 0.558 0.868 0.536 0.481 0.624 0.558 0.846 1.364 1.320 0.623 1.320 0.624 0.771 1.282 0.771 1.282 0.511 0.510
2004	1.090	1.282
2005	0.430	0.511

Ranked Annual Peaks for Predeveloped and Mitigated. POC #5 Rank Predeveloped Mitigated

1	1.2519	1.3640
2	1.2408	1.3245
3	1.1187	1.3195
4	1.0902	1.2821

Predeveloped Landuse Totals for POC #6Total Pervious Area:10.66Total Impervious Area:5.6

Mitigated Landuse Totals for POC #6 Total Pervious Area: 9.64 Total Impervious Area: 6.6

Flow Frequency Method: Log Pearson Type III 17B

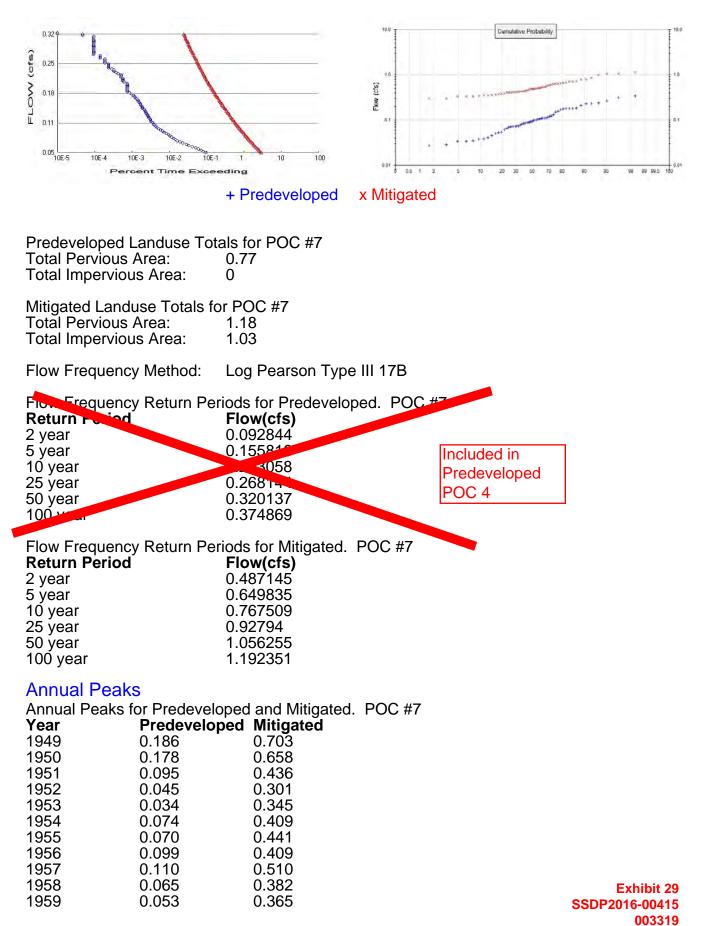
Flow Frequency Return Periods for Predeveloped. POC #6 Return Period

Return Fenou	FIUW(CIS)
2 year	2.403278
5 year	3.208207
10 year	3.802683
25 year	4.626862
50 year	5.296037
100 year	6.014415

Flow Frequency Return Periods for Mitigated. POC #6 **Return Period** 2 year 2 779573

z year	2.119513
5 year	3.662165
10 year	4.30737
25 year	5.194441
50 year	5.909335
100 year	6.672243

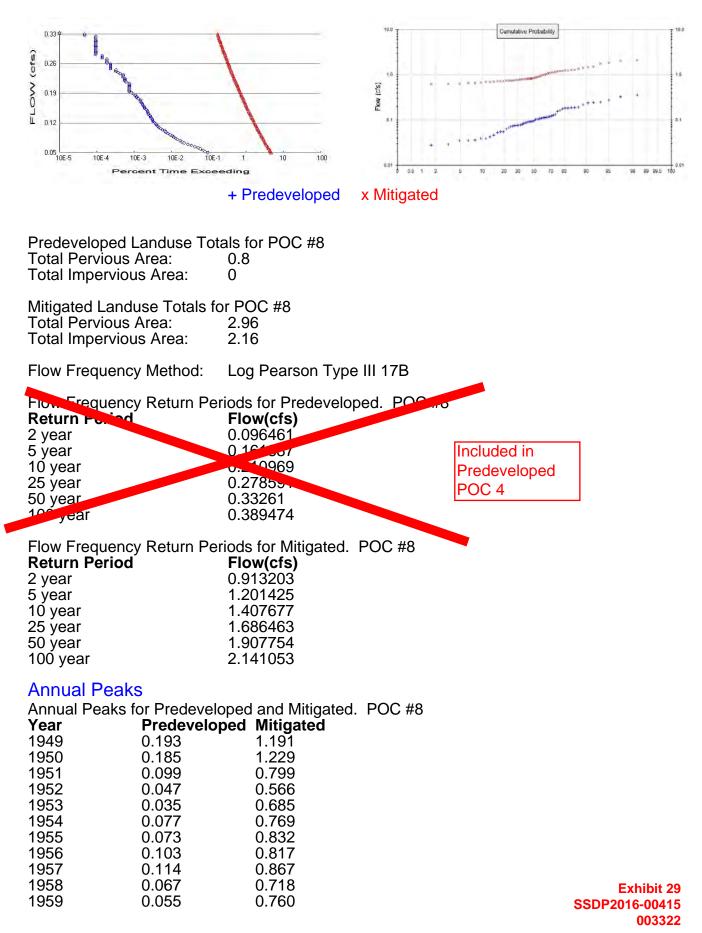
Annual Peaks


Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

leal	Freuevelopeu	wiitiyat
1949	3.043	3.548
1950	3.569	3.883
1951	2.231	2.505
1952	1.544	1.818
1953	1.808	2.120
1954	2.052	2.328
1955	2.186	2.559
1956	2.110	2.337
1957	2.276	2.674
1958	1.906	2.236
1959	2.034	2.380

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1990 2000 2001 2002 2003 2004 2005 2006	2.116 1.938 1.716 2.079 1.976 2.429 1.630 3.554 3.418 2.128 2.139 2.576 3.305 1.650 2.380 2.620 1.915 1.945 2.654 3.372 3.271 2.311 3.290 2.702 1.691 2.249 1.991 3.099 1.904 2.834 6.355 4.044 1.652 1.843 1.730 2.075 3.472 2.474 2.205 4.633 2.231 2.607 2.731 2.639 4.429 1.846 1.986	$\begin{array}{c} 2.378\\ 2.251\\ 2.016\\ 2.412\\ 2.314\\ 2.828\\ 1.901\\ 3.892\\ 3.992\\ 2.501\\ 2.508\\ 3.020\\ 3.666\\ 1.931\\ 2.787\\ 3.078\\ 2.231\\ 2.283\\ 3.095\\ 3.949\\ 3.797\\ 2.717\\ 3.864\\ 3.173\\ 1.964\\ 2.648\\ 2.342\\ 3.643\\ 2.235\\ 3.296\\ 6.803\\ 4.536\\ 1.942\\ 2.133\\ 2.014\\ 2.438\\ 3.725\\ 2.811\\ 2.588\\ 5.426\\ 2.614\\ 3.051\\ 3.214\\ 3.050\\ 5.181\\ 2.170\\ 2.250\\ \end{array}$
2005	1.846	2 170

Ranked Annual Peaks for Predeveloped and Mitigated. POC #6 Rank Predeveloped Mitigated


	Rank	Fredeveloped	wiitigate
	1	6.4664	6.8033
	2	6.3554	6.7976
	3	4.6326	5.4259
,	4	4.4292	5.1811

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	0.107 0.069 0.028 0.091 0.084 0.119 0.053 0.181 0.109 0.116 0.087 0.103 0.103 0.169 0.038 0.111 0.123 0.081 0.073 0.083 0.035 0.231 0.077 0.180 0.035 0.231 0.077 0.180 0.051 0.073 0.099 0.088 0.033 0.027 0.341 0.237 0.072 0.041 0.237 0.072 0.041 0.237 0.072 0.041 0.237 0.072 0.041 0.237 0.072 0.041 0.237 0.072 0.041 0.179 0.103 0.087 0.263 0.099 0.037 0.149 0.155 0.209 0.090 0.090 0.090 0.090 0.029	0.449 0.405 0.336 0.442 0.373 0.533 0.533 0.705 0.488 0.462 0.549 0.644 0.296 0.514 0.521 0.411 0.391 0.485 0.634 0.778 0.489 0.724 0.535 0.344 0.475 0.345 0.345 0.345 0.345 0.345 0.358 0.331 0.303 0.423 0.489 0.423 0.593 0.498 0.401 0.593 0.400 1.063 0.788
2009	0.130	0.577

Ranked Annual Peaks for Predeveloped and Mitigated. POC #7 Rank Predeveloped Mitigated

1	0.3415	1.1324
2	0.3163	1.0632
3	0.2630	1.0431
4	0.2373	0.9800

Ranked Annual Peaks for Predeveloped and Mitigated. POC #8 Rank Predeveloped Mitigated

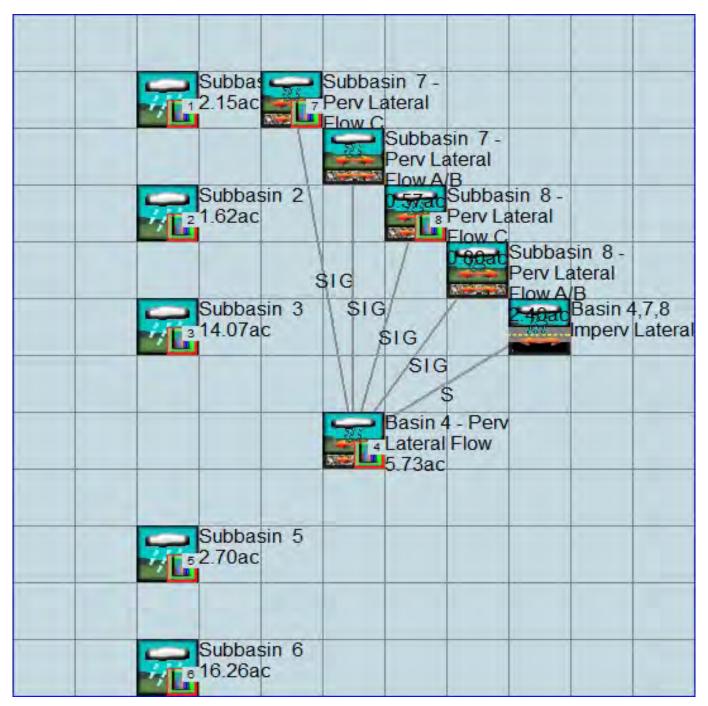
Г	Nalik	Fredeveloped	wiiliyale
1		0.3548	2.0730
2	2	0.3286	2.0503
3	3	0.2732	1.8212
2	1	0.2465	1.7675

POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.


PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

	Subbasin 1 12.14ac		
	Subbasin 2 1.62ac		
2	Subbasin 3 14.07ac		
	Subbasin 4		
	Subbasin 5 2.71ac		
	Subbasin 6 16.24ac		
	Subbasin 7 72.21ac		
	Subbasin 8 5.12ac		

Predeveloped UCI File

RUN

RUN INTERP OU	1948 10 01 END 2	2009 09 30 UNIT SYSTEM 1	
FILES <file> <un#> <-ID-> WDM 26 MESSU 25 27 28 30 31 32 34 35 36 37 33 END FILES</un#></file>	<file name<br="">Tamarack.wdm PreTamarack.MES PreTamarack.L61 PreTamarack.L62 POCTamarack1.dat POCTamarack2.dat POCTamarack3.dat POCTamarack5.dat POCTamarack6.dat POCTamarack7.dat POCTamarack8.dat POCTamarack4.dat</file>		>*** ***
OPN SEQUENCE INGRP PERLND PERLND IMPLND IMPLND IMPLND IMPLND IMPLND IMPLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND COPY COPY COPY COPY COPY COPY COPY COPY	INDELT 00:15 8 17 2 4 6 9 3 7 16 40 41 42 43 39 501 502 503 505 506 507 508 504 1 2 3 5 6 7 8 4 4 CE	*TRAN DIVI. DIG1 FIL1	PYR DIG2 FIL2 YRND
1 Si 2 Si 3 Si 5 Si	ubbasin 1 ubbasin 2 ubbasin 3 ubbasin 5 ubbasin 6	MAX MAX MAX MAX MAX MAX	1 2 30 9 1 2 31 9 1 2 32 1 2 34 1 2 35 1 2 30 1 2 31 9 1 2 31 9 1 2 31 9 1 2 35 1 3 35 1

PWAT-PARM1

	RTOP UZFG V(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	monthly parame CS VUZ VNN V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		INFC HWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
PWAT-PARM2 <pls> # - # ***F 8 17 9 40 41 42 43 39 END PWAT-PARM</pls>	POREST LZ. 0 0 0 4 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 0	5 0.8 5 0.03 5 0.8 5 0.8	*** LSUR 400 400 400 400 400 400 400 400	SLSUR 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.1	KVARY AGWR 0.3 0.99 0.5 0.99 0.3 0.99 0.3 0.99 0.5 0.99 0.5 0.99 0.5 0.99 0.5 0.99 0.5 0.99 0.3 0.99 0.3 0.99 0.3 0.99 0.3 0.99	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
PWAT-PARM3 <pls> # - # ***E 8 17 9 40 41 42 43 39 END PWAT-PARM</pls>	PETMAX PETM 0 0 0 0 0 0 0 0 0 0 0 0	info: Part 3 IN INFEXP 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	*** INFILD D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EEPFR E 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0
PWAT-PARM4	PWATER input CEPSC UZ 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.2 0	SN NSUR .5 0.25 25 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25 .5 0.25	INTFW 0 6 0 0 6 6 0 0 0	IRC 0.7 0.5 0.7 0.7 0.3 0.3 0.7 0.7	*** LZETP *** 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	
	an from 1990 CEPS SU 0 0 0 0 0 0 0 0 0 0 0 0 0	tions at start to end of 1992 RS UZS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			AGWS GWV 1 1 1 1 1 1 1 1	S 0 0 0 0 0 0 0 0 0
END PERLND IMPLND GEN-INFO <pls>< # - #</pls>	Name		ems Printer ies Engl Metr 2016 6:29:19 PM		Exhibit SSDP2016-004 0033	415

2 ROADS/MOD 4 ROOF TOPS/FLAT 6 DRIVEWAYS/MOD 3 ROADS/STEEP 7 DRIVEWAYS/STEEP 16 ROADS/MOD LAT END GEN-INFO *** Section IWATER***	in 1 1 1 1 1 1 1 1 1 1 1 1	out * 1 27 0 1 27 0 1 27 0 1 27 0 1 27 0 1 27 0 1 27 0	* *
ACTIVITY <pls> ********** A # - # ATMP SNOW IWAT 2 0 0 1 4 0 0 1 6 0 0 1 3 0 0 1 7 0 0 1 16 0 0 1 END ACTIVITY</pls>	ctive Sections SLD IWG IQAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***********	****
PRINT-INFO <ils> ****** Print- # - # ATMP SNOW IWAT 2 0 0 4 4 0 0 4 6 0 0 4 3 0 0 4 7 0 0 4 16 0 0 4 END PRINT-INFO</ils>	flags ******* SLD IWG IQAL 0	PIVL PYR ******** 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	
IWAT-PARM1 <pls> IWATER variable # - # CSNO RTOP VRS 2 0 0 0 4 0 0 0 6 0 0 0 3 0 0 0 7 0 0 0 16 0 0 0 END IWAT-PARM1</pls>		neter value flags ***	* * *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	at info: Part 2LSURNSUR0.050.10.010.10.10.10.10.10.10.10.10.1	RETSC 0.08 0.1 0.08 0.05 0.05	
-	ut info: Part 3 IMIN 0 0 0 0 0 0 0 0	3 ***	
IWAT-STATE1 <pls> *** Initial cond # - # *** RETS 2 0 4 0</pls>	ditions at star SURS 0 0	rt of simulation	SSE

6		0	()
3		0	()
7		0	()
16		0	()
END	IWAT-STATE1			

END IMPLND

SCHEMATIC <-Source->		<-Target->	MDTV	* * *
	<area/> <-factor->	<name> #</name>	MBLK Tbl#	* * *
Basin 4,7,8 Imperv Lateral *			IDI#	
IMPLND 16 Subbasin 8 - Perv Lateral F.	0.5044	PERLND 39	50	
PERLND 40	0.4188	PERLND 39	30	
PERLND 40	0.4188	PERLND 39	34	
PERLND 40	0.4188	PERLND 39	38	
Subbasin 7 - Perv Lateral F				
PERLND 43	0.0995	PERLND 39	30	
PERLND 43	0.0995	PERLND 39	34	
PERLND 43 Subbasin 7 - Perv Lateral Fi	0.0995	PERLND 39	38	
PERLND 41	0.1344	PERLND 39	30	
PERLND 41	0.1344	PERLND 39	34	
PERLND 41	0.1344	PERLND 39	38	
Subbasin 8 - Perv Lateral F				
PERLND 42	0.1396	PERLND 39	30	
PERLND 42	0.1396	PERLND 39	34	
PERLND 42 Subbasin 1***	0.1396	PERLND 39	38	
PERLND 8	0.39	COPY 501	12	
PERLND 8	0.39	COPY 501	13	
PERLND 17	0.95	COPY 501	12	
PERLND 17	0.95	COPY 501	13	
IMPLND 2	0.35	COPY 501	15	
IMPLND 4 IMPLND 6	0.32 0.14	COPY 501 COPY 501	15 15	
Subbasin 2***	0.14	COPI JUI	ТЭ	
PERLND 8	0.67	COPY 502	12	
PERLND 8	0.67	COPY 502	13	
PERLND 17	0.41	COPY 502	12	
PERLND 17	0.41	COPY 502	13	
IMPLND 2 IMPLND 4	0.42 0.08	COPY 502 COPY 502	15 15	
IMPLND 6	0.08	COPY 502	15	
Subbasin 3***	0.01	0011 002	10	
PERLND 9	7.19	COPY 503	12	
PERLND 9	7.19	COPY 503	13	
IMPLND 3	2.24	COPY 503	15	
IMPLND 4 IMPLND 7	3.25 1.39	COPY 503 COPY 503	15 15	
Subbasin 5***	1.39	COPI 505	ТЭ	
PERLND 9	1.39	COPY 505	12	
PERLND 9	1.39	COPY 505	13	
IMPLND 3	0.52	COPY 505	15	
IMPLND 4	0.55	COPY 505	15	
IMPLND 7 Subbasin 6***	0.24	COPY 505	15	
PERLND 8	10.62	COPY 506	12	
PERLND 8	10.62	COPY 506	13	
PERLND 17	0.04	COPY 506	12	
PERLND 17	0.04	COPY 506	13	
IMPLND 2	1.77	COPY 506	15	
IMPLND 4 IMPLND 6	2.68 1.15	COPY 506 COPY 506	15 15	
Basin 4 - Perv Lateral Flow*		COLI 200	CΤ	
PERLND 39	5.73	COPY 504	12	
PERLND 39	5.73	COPY 504	13	
Subbasin 7 - Perv Lateral F			1 0	SSD
PERLND 41	0.77	COPY 507	12	

0.77 COPY 507 13 PERLND 41 Subbasin 8 - Perv Lateral Flow C*** 0.8 COPY 508 12 0.8 COPY 508 13 perlnd 42 PERLND 42 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <Name> # <Name> # #<-factor->strg <Name> # #

 <Name>
 #
 <Name>
 #
 #
 <</td>
 Name>
 #</ <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG in out * * * * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES Exhibit 29 EXT SOURCES SSDP2016-00415 <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> 003335

Page 98

<name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP END EXT SOURCES</name></name>	<pre># tem strg<-factor->strg ENGL 1 ENGL 1 ENGL 0.76 ENGL 0.76</pre>	PERLND 1 999 IMPLND 1 999 PERLND 1 999	EXTNL PREC EXTNL PREC	‡ # ***
	MEAN148.4MEAN148.4MEAN148.4MEAN148.4MEAN148.4MEAN148.4		me> tem strg W ENGL W ENGL W ENGL W ENGL W ENGL W ENGL W ENGL	
MASS-LINK <volume> <-Grp> <name> MASS-LINK</name></volume>	<-Member-> <mult> <name> # #<-factor-> 12</name></mult>	<target> <name></name></target>	<-Grp> <-Member <name> ‡</name>	
PERLND PWATER END MASS-LINK	SURO 0.083333 12	COPY	INPUT MEAN	
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 0.083333 13	COPY	INPUT MEAN	
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 0.083333 15	СОРҮ	INPUT MEAN	
MASS-LINK PERLND PWATER END MASS-LINK	30 SURO 30	PERLND	EXTNL SURLI	
MASS-LINK PERLND PWATER END MASS-LINK	34 IFWO 34	PERLND	EXTNL IFWLI	
MASS-LINK PERLND PWATER END MASS-LINK	38 AGWO 38	PERLND	EXTNL AGWLI	
MASS-LINK IMPLND IWATER END MASS-LINK	50 SURO 50	PERLND	EXTNL SURLI	

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation START 1948 10 01 END 2 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 END GLOBAL	009 09 30 UNIT SYSTEM 1
FILES	>* * * * * *
END FILES	
OPN SEQUENCE INGRP INDELT 00:15 PERLND 8 PERLND 17 IMPLND 4 IMPLND 4 IMPLND 6 PERLND 9 IMPLND 7 PERLND 18 COPY 501 COPY 502 COPY 503 COPY 504 COPY 505 COPY 506 COPY 506 COPY 506 COPY 507 COPY 508 DISPLY 1 DISPLY 2 DISPLY 2 DISPLY 3 DISPLY 4 DISPLY 5 DISPLY 6 DISPLY 7 DISPLY 8 END INGRP END OPN SEQUENCE DISPLY	
DISPLY-INF01	*TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND MAX 1 2 30 9 MAX 1 2 31 9 MAX 1 2 32 9 MAX 1 2 33 9 MAX 1 2 33 9 MAX 1 2 34 9 MAX 1 2 35 9 MAX 1 2 35 9 MAX 1 2 36 9 MAX 1 2 36 MAX 1 2 36 MAX 1 2 36 MAX 1 2 36 MAX 1 2 37 MAX 1 2 36 MAX 1 2 36 MAX 1 2 36 MAX 1 2 36 MAX 1 2 37 MAX 1 2 36 MAX 1 2 37 MAX 1 2 36 MAX 1 2 37 MAX 1 3

17 9 2 18 END PWAT	0 0 0 -PARM2	4.5 5 5 4.5	0.03 0.8 2 0.03	400 400 400 400	0.1 0.15 0.1 0.15	0.5 0.3 0.3 0.5	0.996 0.996 0.996 0.996 0.996
8 17 9 2 18 END PWAT	PWATER ***PETMAX 0 0 0 0 -PARM3	input info PETMIN 0 0 0 0 0 0	Part 3 INFEXP 2 2 2 2 2 2 2 2	*** INFILD 2 2 2 2 2 2 2 2	DEEPFR 0 0 0 0 0 0	BASETP 0 0 0 0 0 0	AGWETP 0 0 0 0 0 0
PWAT-PAR <pls> # - # 8 17 9 2 18 END PWAT</pls>	PWATER CEPSC 0.1 0.1 0.1 0.2 0.1	input info: UZSN 0.5 0.25 0.5 0.5 0.15	Part 4 NSUR 0.25 0.25 0.25 0.35 0.25	INTFW 0 6 0 0 6	IRC 0.7 0.5 0.7 0.7 0.3	* 0.25 0.25 0.25 0.25 0.7 0.25	**
	*** Initial ran from *** CEPS 0 0 0 0 0 0	conditions 1990 to en SURS 0 0 0 0 0 0				*** AGWS 1 1 1 1 1	GWVS 0 0 0 0 0
# - # 2 4 6 3 7	ROADS/MOD ROOF TOPS/F DRIVEWAYS/M ROADS/STEEP DRIVEWAYS/S	Us LAT OD	er t-seri	ems Print Les Engl Me Dut 1 27 1 27 1 27 1 27 1 27 1 27			
ACTIVITY <pls></pls>	ion IWATER** **********************************	** Active S	Sections ** WG IQAL 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * *	****	* * * * * *	
	******** Pr ATMP SNOW I 0 0 0 0 0 0 0 0 0 0	-	****** PI WG IQAL 0 0 0 0 0 0 0 0 0 0 0 0	EVL PYR ********* 1 9 1 9 1 9 1 9 1 9 1 9		SSD	Exhibit 29 P2016-00415 003339

IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 3 7 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 * * * IWATER input info: Part 2 <PLS > # - # *** LSUR SLSUR NSUR RETSC 2 400 0.05 0.1 0.08 400 0.01 4 0.1 0.1 0.1 400 0.05 0.08 6 3 400 0.1 0.1 0.05 7 400 0.1 0.1 0.05 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 2 0 0 0 Ο 4 6 0 0 0 0 3 7 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 0 2 0 4 0 0 0 0 6 3 0 0 7 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC * * * <-Source-> <--Area--> <-Target-> MBLK * * * <Name> # <-factor-> <Name> # Tbl# Subbasin 1*** PERLND 8 0.38 COPY 501 12 0.38 501 13 PERLND 8 COPY perlnd 17 COPY 0.94 12 501 0.94 PERLND 17 COPY 501 13 2 0.35 COPY 501 15 IMPLND IMPLND 4 0.33 COPY 501 15 б 0.14 COPY 501 15 IMPLND Subbasin 2*** 8 COPY 502 PERLND 0.52 12 PERLND 8 0.52 COPY 502 13 PERLND 17 0.32 COPY 502 12 0.32 13 PERLND 17 COPY 502 IMPLND 2 0.42 COPY 502 15 4 0.25 COPY 502 15 IMPLND IMPLND 6 0.11 COPY 502 15 Subbasin 3*** 9 6.93 503 PERLND COPY 12 9 PERLND 6.93 COPY 503 13 IMPLND 3 2.24 COPY 503 15 IMPLND 4 3.43 COPY 503 15 7 1.47 COPY 503 15 IMPLND Subbasin 4*** 2 5.82 COPY 504 12 PERLND

PERLND 2	5.82	COPY	504	13		
Subbasin 5***						
PERLND 9	1.15	COPY	505	12		
PERLND 9 IMPLND 3	1.15 0.52	COPY COPY	505 505	13 15		
IMPLND 4	0.73	COPY	505	15		
IMPLND 7	0.31	COPY	505	15		
Subbasin 6***						
PERLND 8	9.61	COPY	506	12		
PERLND 8 PERLND 17	9.61 0.03	COPY COPY	506 506	13 12		
PERLND 17 PERLND 17	0.03	COPI	506	13		
IMPLND 2	1.77	COPY	506	15		
IMPLND 4	3.38	COPY	506	15		
IMPLND 6	1.45	COPY	506	15		
Subbasin 7***	0 5	CODV	507	12		
PERLND 9 PERLND 9	0.5 0.5	COPY COPY	507	13		
PERLND 18	0.68	COPY	507	12		
PERLND 18	0.68	COPY	507	13		
IMPLND 4	0.72	COPY	507	15		
IMPLND 7	0.31	COPY	507	15		
Subbasin 8*** PERLND 9	2.16	COPY	508	12		
PERLND 9 PERLND 9	2.16	COPI	508	13		
PERLND 18	0.37	COPY	508	12		
PERLND 18	0.37	COPY	508	13		
IMPLND 3	0.92	COPY	508	15		
IMPLND 4 IMPLND 7	0.74	COPY	508	15 15		
IMPLND 7	0.32	COPY	508	10		
*****Routing*****						
END SCHEMATIC						
NETWORK						
<-Volume-> <-Grp> <-Member-> <m< td=""><td></td><td></td><td></td><td></td><td></td><td>* * *</td></m<>						* * *
<name> # <name> # #<-fa</name></name>					<name> # #</name>	* * *
	8.4 8.4	DISPLY DISPLY		INPUT INPUT	TIMSER 1 TIMSER 1	
	8.4	DISPLY		INPUT	TIMSER 1	
COPY 504 OUTPUT MEAN 1 1 4	8.4	DISPLY	4	INPUT	TIMSER 1	
	8.4	DISPLY		INPUT	TIMSER 1	
	8.4	DISPLY		INPUT	TIMSER 1	
COPY 507 OUTPUT MEAN 1 1 4 COPY 508 OUTPUT MEAN 1 1 4		DISPLY DISPLY		INPUT INPUT		
COFI JUO COIFOI MEAN II -	0.1	ртрепт	0	INFUT	IIMOBIC I	
<-Volume-> <-Grp> <-Member-> <m< td=""><td>ult>Tran</td><td><-Tara</td><td>et vols></td><td><-Grn></td><td><-Member-></td><td>* * *</td></m<>	ult>Tran	<-Tara	et vols>	<-Grn>	<-Member->	* * *
<pre><name> # <name> # #<-fa</name></name></pre>					<name> # #</name>	* * *
END NETWORK						
RCHRES CEN_INFO						
GEN-INFO RCHRES Name Nex	its Unit	System	s Prin	ter		* * *
# - #<><-					G	* * *
		in ou				* * *
END GEN-INFO						
*** Section RCHRES***						
ACTIVITY						
<pls> *********** Active</pls>	Sections *	* * * * * * *	* * * * * * * *	* * * * * * *	* * * * * *	
# - # HYFG ADFG CNFG HTFG S	DFG GQFG C	XFG NUF	G PKFG P	HFG ***		
END ACTIVITY						
PRINT-INFO						
<pre></pre>	nt-flags *	* * * * * * *	* * * * * * * *	*** PIV	L PYR	
# - # HYDR ADCA CONS HEAT						hibit*29
END PRINT-INFO					SSDP201	6-00415
						003341

Page 104

HYDR-PARM1 * * * RCHRES Flags for each HYDR Section * * * * * END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR ks db50 * * * * * * <----><----><----><----> END HYDR-PARM2 HYDR-INIT * * * RCHRES Initial conditions for each HYDR section END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name># <Name> # tem strg<-factor->strg<Name># #<Name> # #<Name> # #<Name> # #***WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL0.76PERLND1999EXTNLPETINPWDM1EVAPENGL0.76IMPLND1999EXTNLPETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** END EXT TARGETS MASS-LINK PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 0.083333 COPY INPUT MEAN Exhibit 29 IMPLND IWATER SURO END MASS-LINK 15 SSDP2016-00415

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _ _ _ _ _ _ _ _ _____ Tamarack Basin - Existing Condition 2-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Data Source Type Interval Name _____ INTENSITY 15 min. Design 2-year * * * * * * * * * * * * Node Summary ********** Invert Max. Ponded Externa Elev. Depth Area Inflow External Туре Name _____ A01_UNKJUNCTION239.245.005000.0A02_CBJUNCTION244.014.055000.0A03_CBJUNCTION253.104.155000.0A04_CBJUNCTION253.524.185000.0A05_CBJUNCTION253.647.015000.0A06_CBJUNCTION292.1111.185000.0B01_MHJUNCTION37.398.440.0B02_CULJUNCTION42.645.005000.0 SSDP2016-00415

Exhibit 29

	TINOUTON		5.00		
B03_CUL	JUNCTION	53.47		5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
в05_МН	JUNCTION	56.60		5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
в09_мн	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
С02_СВ	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
С05_СВ	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02 CHAN	JUNCTION	33.07	4.00	0.0	
D03 CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary

		*	*	*	*	*	*	*	*	*	*	*	*	
--	--	---	---	---	---	---	---	---	---	---	---	---	---	--

Name	From Node	To Node	Туре	Length	%Slope Ro	ughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	В09_МН	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	Exhibit329	0.0450
				SSDP	2016-00415	
					003348	

003348

D03_CHAN_D02_CH	AND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_E	17_CBSTO_1_ORIFI	CE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10_MH_b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	 1	45.10
A01_ONK_B15_COL A02 CB A01 UNK	CIRCULAR		0.35	0.17	0.67		4.55
A03 CB A02 CB	CIRCULAR		0.35		0.67		4.50
	CIRCULAR		0.35		0.67		1.02
A05_CB_A04_CB			0.35		0.67		0.84
A06_CB_A05_CB	CIRCULAR		0.35	0.17	0.67		6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00		27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07		3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR		1.77	0.38	1.50		28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50		34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50		6.37
B11_MH_B10_MH_a	CIRCULAR	6.00			6.00	1	159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79		1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	1.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	\perp	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00		5.57
C03_CB_C02_CB		1.00	0.79	0.25	1.00		6.96
C04_CB_C03_CB		1.00	0.79		1.00		5.57
C05_CB_C04_CB		1.00	0.79		1.00		5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.50
D02_CHAN_D01_CHA		4.00		2.12		1	499.50
D03_CHAN_D02_CHA		4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.7	9 0.2	25 1	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	13.270	4.324
External Outflow	13.094	4.267
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.158	0.051
Continuity Error (%)	0.134	

```
Highest Continuity Errors
*****
Node B10_MH_a (1.42%)
Node B11_MH (1.31%)
```

Time-Step Critical Elements ***** Link B17_CB_B16_CUL (99.99%)

Highest Flow Instability Indexes ************************************** All links are stable.

Routing Time Step Summary		
Minimum Time Step	:	0.50 sec
Average Time Step	:	0.50 sec
Maximum Time Step	:	2.82 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	2.00

* * * * * * * * * * * * * * * * * *

Node Depth Summary *****

		-	Maximum			
		-	Depth			
Node		Feet				
A01_UNK	JUNCTION					
A02_CB						
A03_CB	JUNCTION	0.00	0.00	253.10	0	00:00
A04_CB	JUNCTION	0.00	0.00	253.52	0	00:00
A05_CB	JUNCTION	0.00	0.00	253.64	0	00:00
A06_CB	JUNCTION	0.00	0.00	292.11	0	00:00
B01_MH	JUNCTION	0.53	0.54		0	
B02_CUL						06:27
303_CUL	JUNCTION	0.44	0.44	53.91	0	
304_MH		0.74				06:11
305_MH	JUNCTION	0.51	0.52	57.12	0	06:22
306_CB	JUNCTION	0.41	0.42	62.32	0	06:25
307_CB				76.21		06:16
308_CB	JUNCTION	0.46	0.47	82.67	0	06:25
09_MH	JUNCTION	0.42	0.42	89.72	0	06:11
10_MH_a	JUNCTION		7.34	98.43	0	01:21
10_MH_b	JUNCTION	0.63	0.64	91.73	0	01:34
11_MH	JUNCTION	6.40	6.52	98.43	0	01:00
12_CB			0.45	108.36	0	00:09
313_CUL	JUNCTION	0.37	0.37	97.94	0	06:10
314_CUL	JUNCTION	0.26	0.28	101.49	0	00:01
315_CUL	JUNCTION	0.41	0.41	102.95	0	06:09
316_CUL	JUNCTION	0.26	0.26	109.08		06:09
317_CB	JUNCTION	0.43	0.43	109.55	0	06:10
B18_CUL	JUNCTION	0.43	0.46	109.77	0	00:00
						SS

C02_CB	JUNCTION	0.35	0.35	68.15	0	00:26
C03_CB	JUNCTION	0.13	0.14	89.09	0	00:10
C04_CB	JUNCTION	0.15	0.16	91.11	0	00:01
C05_CB	JUNCTION	0.15	0.15	97.07	0	00:08
C06_CB	JUNCTION	0.14	0.14	105.47	0	00:08
D02_CHAN	JUNCTION	0.56	0.56	33.63	0	06:31
D03_CHAN	JUNCTION	0.53	0.54	35.48	0	06:14
STO_1_ORIFICE	JUNCTION	0.12	0.12	113.72	0	06:08
D01_CHAN	OUTFALL	0.45	0.46	32.22	0	06:14
STORAGE_1	STORAGE	0.61	0.61	114.21	0	06:10

* * * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * * * *

		Maximum	Maximum			Lateral	Total
		Lateral	Total	Time	of Max	Inflow	Inflow
		Inflow	Inflow		irrence	Volume	Volume
Node	Гуре	CFS	CFS	days	hr:min	10^6 gal	10^6 gal
A01_UNK	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A02_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A03_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A04_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A05_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A06_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
В01_МН С	JUNCTION	0.00	6.69	0	06:27	0.000	4.271
B02_CUL	JUNCTION	0.00	6.69	0	06:11	0.000	4.271
B03_CUL	JUNCTION	0.00	6.69	0	06:11	0.000	4.272
В04_МН С	JUNCTION	0.42	6.69	0	05:58	0.269	4.272
В05_МН С	JUNCTION	0.00	6.27	0	06:11	0.000	4.003
B06_CB 3	JUNCTION	0.00	6.00	0	06:11	0.000	3.828
в07_Св С	JUNCTION	0.00	6.00	0	06:25	0.000	3.828
B08_CB	JUNCTION	0.00	6.00	0	05:56	0.000	3.828
В09_МН С	JUNCTION	0.59	6.00	0	06:11	0.384	3.829
B10_MH_a 3	JUNCTION	0.00	3.13	0	00:49	0.000	1.517
B10_MH_b 3	JUNCTION	0.00	2.38	0	01:21	0.000	1.495
B11_MH 3	JUNCTION	0.00	2.38	0	00:19	0.000	1.537
B12_CB	JUNCTION	2.38	2.38	0	00:00	1.537	1.537
B13_CUL	JUNCTION	0.05	3.03	0	06:00	0.033	1.953
B14_CUL	JUNCTION	0.00	2.98	0	06:15	0.000	1.920
B15_CUL C	JUNCTION	0.00	2.98	0	06:08	0.000	1.920
B16_CUL	JUNCTION	0.00	2.98	0	05:57	0.000	1.921
B17_CB	JUNCTION	0.00	2.98	0	06:06	0.000	1.921
B18_CUL C	JUNCTION	2.40	2.40	0	00:00	1.553	1.553
C02_CB	JUNCTION	0.00	0.27	0	00:10	0.000	0.176
С03_СВ С	JUNCTION	0.00	0.27	0	00:02	0.000	0.176
C04_CB	JUNCTION	0.00	0.27	0	00:08	0.000	0.176
С05_СВ С	JUNCTION	0.00	0.27	0	00:08	0.000	0.176
—	JUNCTION	0.27	0.27	0	00:00	0.176	0.176
D02_CHAN C	JUNCTION	0.00	6.69	0	06:14	0.000	4.268
D03_CHAN	JUNCTION	0.00	6.69	0	06:12	0.000	4.270
STO_1_ORIFICE	JUNCTION	0.00	0.57	0	06:10	0.000	0.368
D01_CHAN C	OUTFALL	0.00	6.69	0	06:14	0.000	4.267
STORAGE_1	STORAGE	0.57	0.57	0	00:00	0.370	0.370

Surcharging occurs when water rises above the top of the highest conduit. Exhibit 29
SSDP2016-00415
003351

Node	Туре		Ab	ove Cro	own	in. Depth Below Rim Feet		
B11_MH	JUNCTION							
* * * * * * * * * * * * * * * * * * * *	۰ ۲ ۲ ۲							
Node Flooding Summ	ary							
No nodes were floo	ded.							
**************************************	mary							
	Average	Avg	E&I	Мах	imum	Max	Time of Max Occurrence	Maximur
Storage Unit	1000 ft3	Full	Loss	1000) ±t3 	Full	days hr:min	CFS
STORAGE_1	0.355	7	0	(.357	8	0 06:10	0.5
Outfall Node	Flow Freq. Pcnt.	Flow CFS	Flow CFS	v N 101	olume 6 gal			
D01_CHAN								
System								
**************************************						Maaa (
- ' 1		Maximum Flow	Time of Occurr	ence	Maximu Veloc	Full	Full	
Link	Туре	CFS	days hr		ft/se			
A01_UNK_B13_CUL	CONDUIT	0.00		0:00	0.0		0.09	
A02_CB_A01_UNK A03_CB_A02_CB	CONDUIT CONDUIT	0.00 0.00		0:00	0.0		0.00 0.00	
A03_CB_A02_CB A04_CB_A03_CB	CONDUIT	0.00		0:00	0.0		0.00	
A04_CB_A03_CB A05 CB A04 CB	CONDUIT	0.00		0:00	0.0		0.00	
A06_CB_A05_CB	CONDUIT	0.00		0:00	0.0		0.00	
B01_MH_D03_CHAN	CONDUIT	6.69		6:12	2.6		0.13	
B02_CUL_B01_MH	CONDUIT	6.69		6:27	11.2		0.14	
B03_CUL_B02_CUL	CONDUIT	6.69		6:11	4.0		0.11	
B04_MH_B03_CUL	CONDUIT	6.69		6:11	8.5		0.30	
B05_MH_B04_MH	CONDUIT	6.27	0 0	5:58	8.8		0.42	
B06_CB_B05_MH	CONDUIT	6.00	0 0	6:11	12.8	2 0.17	0.31	
B07_CB_B06_CB	CONDUIT	6.00		6:11	15.4	4 0.16	0.27	
в08_СВ_В07_СВ	CONDUIT	6.00	0 0	6:25	12.7		Exhibit 29 DP2016-00415	
							003352	

B09_MH_B08_CB	CONDUIT	6.00	0	05:56	13.60	0.17	0.30
в10_MH_b_в09_МН	CONDUIT	2.38	0	01:33	3.50	0.37	0.41
B11_MH_B10_MH_a	CONDUIT	3.13	0	00:49	2.71	0.02	1.00
B12_CB_B11_MH	CONDUIT	2.38	0	00:19	6.89	0.42	0.73
B13_CUL_B09_MH	CONDUIT	3.03	0	06:11	11.62	0.29	0.37
B14_CUL_B13_CUL	CONDUIT	2.98	0	06:00	7.13	0.03	0.16
B15_CUL_B14_CUL	CONDUIT	2.98	0	06:15	12.91	0.32	0.33
B16_CUL_B15_CUL	CONDUIT	2.98	0	06:08	5.20	0.03	0.17
B17_CB_B16_CUL	CONDUIT	2.98	0	05:57	17.04	0.38	0.34
B18_CUL_B17_CB	CONDUIT	2.61	0	00:00	9.46	0.42	0.43
C02_CB_B05_MH	CONDUIT	0.27	0	00:26	2.04	0.05	0.33
C03_CB_C02_CB	CONDUIT	0.27	0	00:10	4.20	0.04	0.14
C04_CB_C03_CB	CONDUIT	0.27	0	00:02	4.92	0.05	0.14
C05_CB_C04_CB	CONDUIT	0.27	0	00:08	3.71	0.05	0.15
C06_CB_C05_CB	CONDUIT	0.27	0	00:08	4.09	0.04	0.14
D02_CHAN_D01_CHAN	CONDUIT	6.69	0	06:14	2.90	0.01	0.13
D03_CHAN_D02_CHAN	CONDUIT	6.69	0	06:14	2.61	0.01	0.14
STO_1_ORIFICE_B17_CB	CONDUIT	0.57	0	06:06	3.29	0.03	0.27
OR1	ORIFICE	0.57	0	06:10			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.74	0	00:50			1.00
OR2_RISER	ORIFICE	1.64	0	01:21			0.35

Flow Classification Summary

	Adjusted		Fracti		Time i				Avg.	Avg.
	/Actual		Up	Down	Sub	Sup	Up	Down	Froude	Flow
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Number	Change
A01_UNK_B13_CUL	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A02_CB_A01_UNK	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A03_CB_A02_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A04 CB A03 CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A05_CB_A04_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A06 CB A05 CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
B01 MH D03 CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.75	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.69	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.19	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.30	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.89	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	5.04	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.85	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.23	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.90	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.01	0.85	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.94	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.37	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.60	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.25	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.40	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.32	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.23	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.18	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.03	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.33	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.83	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	Exhibit ₂ 29	0.0000
								SSDF	2016-00415	

003353

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B11_MH_B10_MH_a	23.20	23.20	23.20	0.01	0.01

Analysis begun on: Mon May 09 18:10:57 2016 Analysis ended on: Mon May 09 18:11:04 2016 Total elapsed time: 00:00:07

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ Tamarack Basin - Existing Condition 100-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Data Source Type Interval Name _____ 100-year INTENSITY 15 min. Design * * * * * * * * * * * * Node Summary ********** Invert Max. Ponded Externa Elev. Depth Area Inflow External Туре Name _____ A01_UNKJUNCTION239.245.005000.0A02_CBJUNCTION244.014.055000.0A03_CBJUNCTION253.104.155000.0A04_CBJUNCTION253.524.185000.0A05_CBJUNCTION253.647.015000.0A06_CBJUNCTION292.1111.185000.0B01_MHJUNCTION37.398.440.0B02_CULJUNCTION42.645.005000.0 SSDP2016-00415

Exhibit 29

	TINOUTON		5.00		
B03_CUL	JUNCTION	53.47		5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
в05_МН	JUNCTION	56.60		5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
в09_мн	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
С02_СВ	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
С05_СВ	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02 CHAN	JUNCTION	33.07	4.00	0.0	
D03 CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary

		*	*	*	*	*	*	*	*	*	*	*	*	
--	--	---	---	---	---	---	---	---	---	---	---	---	---	--

Name	From Node	To Node	Туре	Length	%Slope Ro	ughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	B16_CUL	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	Exhibit 29	0.0450
				SSDP	2016-00415	
					003356	

D03_CHAN_D02_CH	AND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_E	17_CBSTO_1_ORIFI	CE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10_MH_b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02 CB A01 UNK	CIRCULAR		0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77		1.50		35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50		38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50		28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50		
B10_MH_b_B09_MH	CIRCULAR		1.77	0.38	1.50		
B11_MH_B10_MH_a	CIRCULAR	6.00			6.00		159.01
B12_CB_B11_MH	CIRCULAR		0.79		1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00		5.57
	CIRCULAR	1.00	0.79	0.25	1.00		6.96
C04_CB_C03_CB		1.00	0.79	0.25	1.00		5.57
C05_CB_C04_CB		1.00	0.79		1.00		5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.50
D02_CHAN_D01_CHA		4.00		2.12			499.50
D03_CHAN_D02_CHA		4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.7	9 0.2	25 1	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	35.108	11.440
External Outflow	34.868	11.362
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.220	0.072
Continuity Error (%)	0.057	

Routing Time Step Summary			
Minimum Time Step	:	0.50	sec
Average Time Step	:	0.50	sec
Maximum Time Step	:	1.18	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	2.00	

* * * * * * * * * * * * * * * * * *

Node Depth Summary

				Maximum	Time	of Max
		Depth	Depth	HGL	Occi	urrence
Node	Type	Feet	Feet	Feet	days	hr:min
A01_UNK	JUNCTION		0.00			00:00
A02_CB		0.00		244.01	0	00:00
A03_CB	JUNCTION	0.00	0.00	253.10	0	00:00
A04_CB	JUNCTION	0.00	0.00	253.52	0	00:00
A05_CB	JUNCTION	0.00	0.00	253.64	0	00:00
A06_CB	JUNCTION	0.00	0.00	292.11	0	00:00
B01_MH	JUNCTION	0.88	0.89	38.28	0	14:27
B02_CUL	JUNCTION	0.67	0.67	43.31	0	14:50
B03_CUL	JUNCTION	0.76	0.76	54.23	0	14:25
B04_MH	JUNCTION	1.33	1.33	55.33	0	14:25
В05_МН	JUNCTION	0.90	0.90	57.50	0	15:23
B06_CB	JUNCTION	0.70	0.70	62.60	0	14:44
в07_Св	JUNCTION	0.67	0.67	76.48	0	14:35
B08_CB	JUNCTION	0.80	0.80	83.00	0	14:36
в09_мн	JUNCTION	0.71	0.72	90.02	0	14:34
B10_MH_a	JUNCTION	7.81	7.87	98.96	0	00:46
B10_MH_b	JUNCTION	1.08	1.09	92.18	0	00:47
B11_MH	JUNCTION		7.05	98.96	0	00:46
B12_CB	JUNCTION	3.72	5.76	113.67	0	00:19
B13_CUL	JUNCTION	0.72	0.72	98.29	0	14:34
B14_CUL	JUNCTION	0.45	0.46	101.67	0	00:00
B15_CUL	JUNCTION	0.68	0.68	103.22	0	14:37
B16_CUL	JUNCTION	0.44	0.44	109.26	0	14:36
B17_CB	JUNCTION	0.76	0.76	109.88	0	14:36
B18_CUL	JUNCTION	0.79	0.87	110.18	0	00:00
С02_СВ	JUNCTION	0.44	0.44	68.24	0	00:22
C03_CB	JUNCTION	0.22	0.22	89.17	0	00:24
C04_CB	JUNCTION	0.25	0.25	91.20	0	00:01
C05_CB	JUNCTION	0.24	0.24	97.16	0	00:06
C06_CB	JUNCTION	0.22	0.22	105.55	0	00:05
D02_CHAN	JUNCTION	0.90	0.90	33.97	0	14:47
D03_CHAN	JUNCTION	0.88	0.89	35.83	0	14:41
						SS

```
SSDP2016-00415
003358
```

STO_1_ORIFICE	JUNCTION	0.18	0.18	113.78	0	14:36
D01_CHAN	OUTFALL	0.78	0.79	32.55	0	16:24
STORAGE_1	STORAGE	2.12	2.15	115.75	0	14:36

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * *

		Maximum	Maximum			Lateral	Total
		Lateral	Total	Time	of Max	Inflow	Inflow
		Inflow	Inflow		arrence	Volume	Volume
Node	Туре	CFS	CFS	days	hr∶min	10^6 gal	10^6 gal
A01_UNK	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A02_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A03_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A04_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A05_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
A06_CB	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
B01_MH	JUNCTION	0.00	17.70	0	14:35	0.000	11.370
B02_CUL	JUNCTION	0.00	17.70	0	14:35	0.000	11.370
B03_CUL	JUNCTION	0.00	17.70	0	14:24	0.000	11.371
B04_MH	JUNCTION	1.09	17.70	0	14:23	0.702	11.372
B05_MH	JUNCTION	0.00	16.61	0	14:23	0.000	10.671
B06_CB	JUNCTION	0.00	15.90	0	14:23	0.000	10.212
B07_CB	JUNCTION	0.00	15.90	0	14:34	0.000	10.213
B08_CB	JUNCTION	0.00	15.90	0	14:23	0.000	10.213
В09_МН	JUNCTION	1.35	15.90	0	14:34	0.871	10.214
B10_MH_a	JUNCTION	0.00	7.29	0	00:18	0.000	3.465
B10_MH_b	JUNCTION	0.00	5.39	0	00:46	0.000	3.441
B11_MH	JUNCTION	0.00	7.05	0	00:16	0.000	3.484
B12_CB	JUNCTION	5.39	5.39	0	00:00	3.484	3.484
B13_CUL	JUNCTION	1.86	9.16	0	14:26	1.204	5.911
B14_CUL	JUNCTION	0.00	7.30	0	14:35	0.000	4.708
B15_CUL	JUNCTION	0.00	7.30	0	14:33	0.000	4.708
B16_CUL	JUNCTION	0.00	7.30	0	14:34	0.000	4.709
B17_CB	JUNCTION	0.00	7.30	0	14:33	0.000	4.709
B18_CUL	JUNCTION	6.00	6.00	0	00:00	3.879	3.879
C02_CB	JUNCTION	0.00	0.71	0	00:07	0.000	0.459
C03_CB	JUNCTION	0.00	0.71	0	00:01	0.000	0.460
C04_CB	JUNCTION	0.00	0.71	0	00:19	0.000	0.460
C05_CB	JUNCTION	0.00	0.71	0	00:05	0.000	0.460
C06_CB	JUNCTION	0.71	0.71	0	00:00	0.460	0.460
D02_CHAN	JUNCTION	0.00	17.70	0	14:41	0.000	11.364
D03_CHAN	JUNCTION	0.00	17.70	0	14:34	0.000	11.368
STO_1_ORIFICE	JUNCTION	0.00	1.30	0	14:36	0.000	0.830
D01_CHAN	OUTFALL	0.00	17.70	0	16:24	0.000	11.361
STORAGE_1	STORAGE	1.30	1.30	0	00:00	0.840	0.840

Node Surcharge Summary ****

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Feet	Min. Depth Below Rim Feet	
B11_MH B12_CB	JUNCTION JUNCTION	23.69 23.67	1.047 4.760	3.053 0.000 SSDF	Exhibit 29 2016-00415

P2016-00415 003359

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate CFS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 gal	Maximum Ponded Depth Feet
B12_CB	0.01	0.35	0 00:19	0.000	5.76

Storage Unit	Average Volume 1000 ft3		E&I Pcnt Loss	Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
STORAGE_1	1.283	27	0	1.305	27	0 14:36	1.30

Outfall Loading Summary *********

	Flow Freq.	Avg. Flow	Max. Flow	Total Volume
Outfall Node	Pcnt.	CFS	CFS	10 ^ 6 gal
D01_CHAN	99.88	17.60	17.70	11.361
System	99.88	17.60	17.70	11.361

Link Flow Summary

Link	Туре	Maximum Flow CFS	Occu	of Max rrence hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
A01_UNK_B13_CUL	CONDUIT	0.00	0	00:00	0.00	0.00	0.18
A02_CB_A01_UNK	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A03_CB_A02_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A04_CB_A03_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A05_CB_A04_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
A06_CB_A05_CB	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
B01_MH_D03_CHAN	CONDUIT	17.70	0	14:34	3.52	0.04	0.22
B02_CUL_B01_MH	CONDUIT	17.70	0	14:35	14.94	0.11	0.22
B03_CUL_B02_CUL	CONDUIT	17.70	0	14:35	5.56	0.03	0.18
B04_MH_B03_CUL	CONDUIT	17.70	0	14:24	10.61	0.78	0.52
В05_МН_В04_МН	CONDUIT	16.61	0	14:23	11.76	0.67	0.75
В06_СВ_В05_МН	CONDUIT	15.90	0	14:23	16.55	0.44	0.53
B07_CB_B06_CB	CONDUIT	15.90	0	14:23	20.20	0.41	(Exhib
						SSI	DP2016-0

⁰⁰³³⁶⁰

D00 CD D07 CD	CONDUIT	15.90	0	14:34	16.52	0.56	0.54
B08_CB_B07_CB			-				
B09_MH_B08_CB	CONDUIT	15.90	0	14:23	17.68	0.46	0.51
B10_MH_b_B09_MH	CONDUIT	5.39	0	00:47	4.35	0.85	0.66
B11_MH_B10_MH_a	CONDUIT	7.29	0	00:18	3.47	0.05	1.00
B12_CB_B11_MH	CONDUIT	5.40	0	00:09	8.20	0.95	1.00
B13_CUL_B09_MH	CONDUIT	9.16	0	14:34	15.15	0.87	0.72
B14_CUL_B13_CUL	CONDUIT	7.30	0	14:26	9.05	0.06	0.29
B15_CUL_B14_CUL	CONDUIT	7.30	0	14:35	15.97	0.78	0.56
B16_CUL_B15_CUL	CONDUIT	7.30	0	14:33	7.01	0.06	0.28
B17_CB_B16_CUL	CONDUIT	7.30	0	14:34	20.72	0.93	0.60
B18_CUL_B17_CB	CONDUIT	6.50	0	00:00	11.56	1.04	0.78
C02_CB_B05_MH	CONDUIT	0.71	0	00:12	2.47	0.13	0.57
C03_CB_C02_CB	CONDUIT	0.71	0	00:07	5.57	0.10	0.23
C04_CB_C03_CB	CONDUIT	0.71	0	00:01	6.56	0.13	0.23
C05_CB_C04_CB	CONDUIT	0.71	0	00:19	4.92	0.13	0.24
C06_CB_C05_CB	CONDUIT	0.71	0	00:05	5.42	0.11	0.22
D02_CHAN_D01_CHAN	CONDUIT	17.70	0	16:24	3.79	0.04	0.21
D03_CHAN_D02_CHAN	CONDUIT	17.70	0	14:41	3.48	0.04	0.22
STO_1_ORIFICE_B17_CB	CONDUIT	1.30	0	14:33	3.58	0.07	0.47
OR1	ORIFICE	1.30	0	14:36			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.75	0	00:20			1.00
OR2_RISER	ORIFICE	4.65	0	00:46			0.70

	Adjusted		Fracti	on of	Time i	n Flow	Class		Avg.	Avg.
	/Actual		Up	Down	Sub	Sup	Up	Down	Froude	Flow
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Number	Change
A01_UNK_B13_CUL	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A02_CB_A01_UNK	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A03_CB_A02_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A04_CB_A03_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A05_CB_A04_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
A06_CB_A05_CB	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.82	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.33	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.05	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.00	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.64	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.91	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.63	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.03	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.82	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.01	0.02	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.26	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.24	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.15	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.32	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.69	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.84	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.31	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.10	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.41	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	Exhibit ₇ 29	0.0000
								SSDP	2016-00415	
									003361	

D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.79	0.0000
STO_1_ORIFICE_B17_CB	1.00	0.00	0.00	0.00	0.04	0.96	0.00	0.00	1.04	0.0000

		Hours Full		Hours Above Full	Hours Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B11_MH_B10_MH_a B12_CB_B11_MH B18_CUL_B17_CB	23.69 23.67 0.01	23.69 23.67 0.01	23.69 23.67 0.01	0.01 0.01 0.01	0.01 0.01 0.01 0.01

Analysis begun on: Mon May 09 18:08:33 2016 Analysis ended on: Mon May 09 18:08:41 2016 Total elapsed time: 00:00:08

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _ _ _ _ _ _ _ _ _____ Tamarack Basin - Proposed Condition 2-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Type Interval Data Source Name _____ INTENSITY 15 min. Design 2-year * * * * * * * * * * * * Node Summary ********** Invert Max. Ponded External Elev. Depth Area Inflow Туре Name _____
 A01_UNK
 JUNCTION
 239.24
 5.00
 5000.0
 Yes

 A02_CB
 JUNCTION
 244.01
 4.05
 5000.0

 A03_CB
 JUNCTION
 253.10
 4.15
 5000.0

 A04_CB
 JUNCTION
 253.52
 4.18
 5000.0

 A05_CB
 JUNCTION
 253.64
 7.01
 5000.0

 A06_CB
 JUNCTION
 292.11
 11.18
 5000.0

 B01_MH
 JUNCTION
 37.39
 8.44
 0.0

 B02_CUL
 JUNCTION
 42.64
 5.00
 5000.0
 SSDP2016-00415

Exhibit 29

	TINOUTON		5.00		
B03_CUL	JUNCTION	53.47		5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
в05_МН	JUNCTION	56.60		5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
B07_CB	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
в09_мн	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
B17_CB	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
С02_СВ	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
С05_СВ	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02 CHAN	JUNCTION	33.07	4.00	0.0	
D03 CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary

		*	*	*	*	*	*	*	*	*	*	*	*	
--	--	---	---	---	---	---	---	---	---	---	---	---	---	--

Name	From Node	To Node	Туре	Length	%Slope Ro	ughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	_	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	B17_CB	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	Exhibit 29	0.0450
				SSDP	2016-00415	
					002264	

003364

D03_CHAN_D02_CH	AND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_B	17_CBSTO_1_ORIFI	CE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10_MH_b	ORIFICE			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02 CB A01 UNK	CIRCULAR		0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77		1.50		35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50		38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50		28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50		
B10_MH_b_B09_MH	CIRCULAR		1.77	0.38	1.50		
B11_MH_B10_MH_a	CIRCULAR	6.00			6.00		159.01
B12_CB_B11_MH	CIRCULAR		0.79		1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00		5.57
	CIRCULAR	1.00	0.79	0.25	1.00		6.96
C04_CB_C03_CB		1.00	0.79	0.25	1.00		5.57
C05_CB_C04_CB		1.00	0.79		1.00		5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.50
D02_CHAN_D01_CHA		4.00		2.12			499.50
D03_CHAN_D02_CHA		4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.7	9 0.2	25 1	.00 1	18.55

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	17.259	5.624
External Outflow	17.063	5.560
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.178	0.058
Continuity Error (%)	0.106	

```
Highest Continuity Errors
*****
Node B10_MH_a (1.38%)
Node B11_MH (1.26%)
```

Time-Step Critical Elements ***** Link B17_CB_B16_CUL (99.99%)

Highest Flow Instability Indexes ************************************** All links are stable.

Routing Time Step Summary		
Minimum Time Step	:	0.50 sec
Average Time Step	:	0.50 sec
Maximum Time Step	:	2.45 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	2.00

* * * * * * * * * * * * * * * * * *

Node Depth Summary *****

				Maximum		
				HGL		
Node	Туре	Feet	Feet	Feet	days	hr:min
 A01_UNK	JUNCTION					
A02_CB						
403_CB	JUNCTION	0.15	0.15	253.25	0	00:21
A04_CB	JUNCTION				0	00:53
A05_CB	JUNCTION	0.67	0.67	254.31		00:20
A06_CB	JUNCTION	0.12	0.12	292.23	0	00:47
301_MH	JUNCTION	0.61	0.62	38.01	0	09:08
302_CUL	JUNCTION	0.47	0.47			08:41
303_CUL	JUNCTION	0.51	0.52	53.99	0	08:19
804_MH	JUNCTION					07:03
05_MH	JUNCTION	0.59	0.60	57.20	0	07:11
06_CB	JUNCTION	0.48	0.48	62.38	0	07:20
07_CB				76.27		07:05
08_CB						07:07
09_МН	JUNCTION	0.49	0.49	89.79	0	07:20
810_MH_a				98.45		01:17
10_MH_b		0.64		91.75		01:33
11_MH	JUNCTION	6.42	6.54	98.45	0	00:54
12_CB		0.46				00:09
13_CUL	JUNCTION	0.47	0.48	98.05	0	07:20
314_CUL	JUNCTION	0.29	0.30	101.51	0	00:00
315_CUL		0.44		102.98		07:13
316_CUL		0.28				07:14
317_CB	JUNCTION	0.46	0.47	109.59	0	00:00
318_CUL		0.47			0	00:00
						SS

C02_CB	JUNCTION	0.37	0.37	68.17	0	00:22
C03_CB	JUNCTION	0.15	0.15	89.10	0	00:09
C04_CB	JUNCTION	0.18	0.18	91.13	0	00:01
C05_CB	JUNCTION	0.17	0.17	97.09	0	00:08
C06_CB	JUNCTION	0.16	0.16	105.49	0	00:07
D02_CHAN	JUNCTION	0.63	0.64	33.71	0	09:12
D03_CHAN	JUNCTION	0.61	0.62	35.56	0	08:01
STO_1_ORIFICE	JUNCTION	0.13	0.13	113.73	0	07:14
D01_CHAN	OUTFALL	0.53	0.53	32.29	0	08:02
STORAGE_1	STORAGE	0.74	0.74	114.34	0	07:16

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * * *

		Maximum	Maximum			Lateral	Total
		Lateral	Total	Time	of Max	Inflow	Inflow
		Inflow	Inflow		irrence	Volume	Volume
Node	Туре	CFS	CFS	days	hr:min	10^6 gal	10^6 gal
A01_UNK	JUNCTION	0.91	1.40	0	00:18	0.590	0.905
A02_CB	JUNCTION	0.00	0.49	0	00:21	0.000	0.314
A03_CB	JUNCTION	0.00	0.49	0	00:23	0.000	0.314
A04_CB	JUNCTION	0.00	0.49	0	00:20	0.000	0.314
A05_CB	JUNCTION	0.00	0.49	0	00:03	0.000	0.315
A06_CB	JUNCTION	0.49	0.49	0	00:00	0.315	0.315
B01_MH	JUNCTION	0.00	8.70	0	09:08	0.000	5.565
B02_CUL	JUNCTION	0.00	8.70	0	07:29	0.000	5.565
B03_CUL	JUNCTION	0.00	8.70	0	07:01	0.000	5.566
B04_MH	JUNCTION	0.42	8.70	0	07:00	0.271	5.566
В05_МН	JUNCTION	0.00	8.28	0	07:00	0.000	5.296
B06_CB	JUNCTION	0.00	7.93	0	06:59	0.000	5.066
B07_CB	JUNCTION	0.00	7.93	0	07:20	0.000	5.066
B08_CB	JUNCTION	0.00	7.93	0	07:03	0.000	5.066
В09_МН	JUNCTION	0.61	7.93	0	07:20	0.397	5.067
B10_MH_a	JUNCTION	0.00	3.56	0	00:47	0.000	1.568
B10_MH_b	JUNCTION	0.00	2.46	0	01:17	0.000	1.546
B11_MH	JUNCTION	0.00	2.46	0	00:19	0.000	1.588
B12_CB	JUNCTION	2.46	2.46	0	00:00	1.588	1.588
B13_CUL	JUNCTION	0.01	4.85	0	07:02	0.003	3.129
B14_CUL	JUNCTION	0.00	3.45	0	07:14	0.000	2.224
B15_CUL	JUNCTION	0.00	3.45	0	07:10	0.000	2.224
B16_CUL	JUNCTION	0.00	3.45	0	07:13	0.000	2.225
B17_CB	JUNCTION	0.00	3.45	0	07:09	0.000	2.225
B18_CUL	JUNCTION	2.78	2.78	0	00:00	1.796	1.796
C02_CB	JUNCTION	0.00	0.36	0	00:09	0.000	0.231
C03_CB	JUNCTION	0.00	0.36	0	00:02	0.000	0.231
C04_CB	JUNCTION	0.00	0.36	0	00:48	0.000	0.231
C05_CB	JUNCTION	0.00	0.36	0	00:07	0.000	0.231
C06_CB	JUNCTION	0.36	0.36	0	00:00	0.231	0.231
D02_CHAN	JUNCTION	0.00	8.70	0	08:20	0.000	5.562
D03_CHAN	JUNCTION	0.00	8.70	0	07:10	0.000	5.564
STO_1_ORIFICE	JUNCTION	0.00	0.67	0	07:16	0.000	0.428
D01_CHAN	OUTFALL	0.00	8.70	0	08:02	0.000	5.560
STORAGE_1	STORAGE	0.67	0.67	0	00:00	0.432	0.432

Surcharging occurs when water rises above the top of the highest conduit. Exhibit 29
SSDP2016-00415
003367

Node		Surcharg	Abo Jed	. Height ove Crown Feet	Below R: Fee	im et	
 B11_MH				0.539			
* * * * * * * * * * * * * * * * * * * *	* * *						
Node Flooding Summ ******							
No nodes were floo	ded.						
**************************************	mary						
Storage Unit	Average	Avg	E&I	Maximum	Max	Time of Max Occurrence days hr:min	Maximun
STORAGE_1	0.433	 9	 0	0.437	9	0 07:16	0.65
Outfall Node	Pcnt.	CFS	CFS		.1		
D01_CHAN	99.83	8.62	8.70	5.56	0		
System	99.83	8.62	8.70	5.56	0		
**************************************		Maximum Flow CFS	Time of Occurre days hr:	ence Vel		ll Full	
A01_UNK_B13_CUL	CONDUIT	1.40			.54 0.0		
A02_CB_A01_UNK A03_CB_A02_CB	CONDUIT	0.49 0.49			.69 0. .87 0.		
A03_CB_A02_CB A04_CB_A03_CB	CONDUIT CONDUIT	0.49			.87 0.4		
A04_CB_A03_CB A05_CB_A04_CB	CONDUIT	0.49			.67 0.		
A06_CB_A05_CB	CONDUIT	0.49			.72 0.0		
B01_MH_D03_CHAN	CONDUIT	8.70			.90 0.0		
B02_CUL_B01_MH	CONDUIT	8.70			.13 0.0		
B03_CUL_B02_CUL	CONDUIT	8.70	0 07	4:29 4	.41 0.0	01 0.12	
B04_MH_B03_CUL	CONDUIT	8.70	0 07	/:01 9	.08 0.3	39 0.34	
B05_MH_B04_MH	CONDUIT	8.28	0 07		.70 0.3		
B06_CB_B05_MH	CONDUIT	7.93			.85 0.2		
B07_CB_B06_CB	CONDUIT	7.93			.71 0.2		.
B08_CB_B07_CB	CONDUIT	7.93	0 07	/:20 13	.77 0.2	SSDP2016-0041	5
						00336	5

B09 MH B08 CB	CONDUIT	7.93	0	07:03	14.71	0.23	0.34
B10 MH b B09 MH	CONDUIT	2.46	0	01:34	3.53	0.23	0.42
		3.56	0	00:47	2.73	0.02	1.00
B11_MH_B10_MH_a	CONDUIT		-				
B12_CB_B11_MH	CONDUIT	2.46	0	00:19	6.95	0.43	0.73
B13_CUL_B09_MH	CONDUIT	4.85	0	07:20	13.18	0.46	0.48
B14_CUL_B13_CUL	CONDUIT	3.45	0	07:02	7.56	0.03	0.19
B15_CUL_B14_CUL	CONDUIT	3.45	0	07:14	13.38	0.37	0.36
B16_CUL_B15_CUL	CONDUIT	3.45	0	07:10	5.46	0.03	0.18
B17_CB_B16_CUL	CONDUIT	3.45	0	07:13	17.93	0.44	0.37
B18_CUL_B17_CB	CONDUIT	3.08	0	00:00	9.54	0.49	0.47
C02_CB_B05_MH	CONDUIT	0.36	0	00:22	2.49	0.06	0.39
C03_CB_C02_CB	CONDUIT	0.36	0	00:09	4.55	0.05	0.16
C04_CB_C03_CB	CONDUIT	0.36	0	00:02	5.34	0.06	0.16
C05_CB_C04_CB	CONDUIT	0.36	0	00:48	4.00	0.06	0.17
C06_CB_C05_CB	CONDUIT	0.36	0	00:07	4.43	0.05	0.16
D02_CHAN_D01_CHAN	CONDUIT	8.70	0	08:02	3.13	0.02	0.15
D03_CHAN_D02_CHAN	CONDUIT	8.70	0	08:20	2.83	0.02	0.16
STO_1_ORIFICE_B17_CB	CONDUIT	0.67	0	07:09	3.43	0.04	0.30
OR1	ORIFICE	0.67	0	07:16			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.74	0	00:48			1.00
OR2_RISER	ORIFICE	1.72	0	01:17			0.36

Flow Classification Summary

	Adjusted		Fracti	on of	Time i	n Flow	Class		Avg.	Avg.
	/Actual		Up	Down	Sub	Sup	Up	Down	Froude	Flow
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Number	Change
A01_UNK_B13_CUL	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.47	0.0000
A02_CB_A01_UNK	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.15	0.0000
A03_CB_A02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.62	0.0000
A04_CB_A03_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.01	0.0000
A05_CB_A04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.90	0.0000
A06_CB_A05_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.05	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.76	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.73	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.23	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.26	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.87	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	5.04	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.84	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.22	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.90	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.01	0.86	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.82	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.17	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.55	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.27	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.33	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.29	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.25	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.21	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.05	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.35	0.0000
D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.84	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	Exhibit ₄ 29	0.0000
								SSDP	2016-00415	

003369

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B11_MH_B10_MH_a	23.23	23.23	23.23	0.01	0.01

Analysis begun on: Mon May 09 18:17:20 2016 Analysis ended on: Mon May 09 18:17:29 2016 Total elapsed time: 00:00:09

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) _____ _ _ _ _ _ _ _____ Tamarack Basin - Proposed Condition 100-year flows NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. * Analysis Options * * * * * * * * * * * * * * * * Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method DYNWAVE Starting Date MAR-16-2016 00:00:00 Ending Date MAR-17-2016 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Routing Time Step 5.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 0 Number of nodes 35 Number of links 36 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * Data Recording Data Source Type Interval Name _____ 100-year INTENSITY 15 min. Design * * * * * * * * * * * * Node Summary ********** Invert Max. Ponded External Elev. Depth Area Inflow Туре Name _____
 A01_UNK
 JUNCTION
 239.24
 5.00
 5000.0
 Yes

 A02_CB
 JUNCTION
 244.01
 4.05
 5000.0

 A03_CB
 JUNCTION
 253.10
 4.15
 5000.0

 A04_CB
 JUNCTION
 253.52
 4.18
 5000.0

 A05_CB
 JUNCTION
 253.64
 7.01
 5000.0

 A06_CB
 JUNCTION
 292.11
 11.18
 5000.0

 B01_MH
 JUNCTION
 37.39
 8.44
 0.0

 B02_CUL
 JUNCTION
 42.64
 5.00
 5000.0
 SSDP2016-00415

Exhibit 29

003371

B03 CUL	JUNCTION	53.47	5.00	5000.0	
B04_MH	JUNCTION	54.00	6.60	5000.0	Yes
B05_MH	JUNCTION	56.60	5.80	5000.0	
B06_CB	JUNCTION	61.90	5.00	5000.0	
в07_св	JUNCTION	75.81	4.20	5000.0	
B08_CB	JUNCTION	82.20	5.00	5000.0	
в09_МН	JUNCTION	89.30	8.60	5000.0	Yes
B10_MH_a	JUNCTION	91.09	9.10	5000.0	
B10_MH_b	JUNCTION	91.09	9.10	5000.0	
B11_MH	JUNCTION	91.91	10.10	5000.0	
B12_CB	JUNCTION	107.91	5.76	5000.0	Yes
B13_CUL	JUNCTION	97.57	5.00	5000.0	Yes
B14_CUL	JUNCTION	101.21	5.00	5000.0	
B15_CUL	JUNCTION	102.54	5.00	5000.0	
B16_CUL	JUNCTION	108.82	5.00	5000.0	
В17_СВ	JUNCTION	109.12	2.25	5000.0	
B18_CUL	JUNCTION	109.31	5.00	5000.0	Yes
С02_СВ	JUNCTION	67.80	4.40	5000.0	
C03_CB	JUNCTION	88.95	2.63	5000.0	
C04_CB	JUNCTION	90.95	2.90	5000.0	
C05_CB	JUNCTION	96.92	3.40	5000.0	
C06_CB	JUNCTION	105.33	1.90	5000.0	Yes
D02_CHAN	JUNCTION	33.07	4.00	0.0	
D03_CHAN	JUNCTION	34.94	4.00	0.0	
STO_1_ORIFICE	JUNCTION	113.60	9.00	5000.0	
D01_CHAN	OUTFALL	31.76	4.00	0.0	
STORAGE_1	STORAGE	113.60	7.00	0.0	Yes

* * * * * * * * * * * *

Link Summary

		*	*	*	*	*	*	*	*	*	*	*	*	
--	--	---	---	---	---	---	---	---	---	---	---	---	---	--

Name	From Node	To Node	Туре	Length	%Slope Ro	ughness
A01_UNK_B13_CUL	A01_UNK	B13_CUL	CONDUIT	1053.0	13.5773	0.1000
A02_CB_A01_UNK	A02_CB	A01_UNK	CONDUIT	34.8	14.1462	0.0130
A03_CB_A02_CB	A03_CB	A02_CB	CONDUIT	66.1	13.8744	0.0130
A04_CB_A03_CB	A04_CB	A03_CB	CONDUIT	30.7	0.7169	0.0130
A05_CB_A04_CB	A05_CB	A04_CB	CONDUIT	64.7	0.4794	0.0130
A06_CB_A05_CB	A06_CB	A05_CB	CONDUIT	137.1	29.1111	0.0130
B01_MH_D03_CHAN	B01_MH	D03_CHAN	CONDUIT	104.8	2.3375	0.0450
B02_CUL_B01_MH	B02_CUL	B01_MH	CONDUIT	35.5	5.8066	0.0130
B03_CUL_B02_CUL	B03_CUL	B02_CUL	CONDUIT	37.2	30.4221	0.1000
B04_MH_B03_CUL	B04_MH	B03_CUL	CONDUIT	53.2	0.9957	0.0130
B05_MH_B04_MH	B05_MH	B04_MH	CONDUIT	47.3	5.5100	0.0130
B06_CB_B05_MH	B06_CB	B05_MH	CONDUIT	46.1	11.5762	0.0130
B07_CB_B06_CB	B07_CB	B06_CB	CONDUIT	103.6	13.5437	0.0130
B08_CB_B07_CB	B08_CB	B07_CB	CONDUIT	86.2	7.3191	0.0130
B09_MH_B08_CB	B09_MH	B08_CB	CONDUIT	67.0	10.6616	0.0130
B10_MH_b_B09_MH	B10_MH_b	B09_MH	CONDUIT	138.6	1.2551	0.0240
B11_MH_B10_MH_a	B11_MH	B10_MH_a	CONDUIT	170.7	0.4805	0.0240
B12_CB_B11_MH	B12_CB	B11_MH	CONDUIT	163.0	8.6232	0.0240
B13_CUL_B09_MH	B13_CUL	B09_MH	CONDUIT	33.0	8.8326	0.0130
B14_CUL_B13_CUL	B14_CUL	B13_CUL	CONDUIT	47.0	7.7747	0.0300
B15_CUL_B14_CUL	B15_CUL	B14_CUL	CONDUIT	19.5	6.8351	0.0130
B16_CUL_B15_CUL	_	B15_CUL	CONDUIT	76.9	8.1960	0.0300
B17_CB_B16_CUL	B17_CB	B16_CUL	CONDUIT	6.1	4.8875	0.0130
B18_CUL_B17_CB	B18_CUL	В17_СВ	CONDUIT	6.2	3.0701	0.0130
C02_CB_B05_MH	C02_CB	B05_MH	CONDUIT	137.2	8.3368	0.0240
C03_CB_C02_CB	C03_CB	C02_CB	CONDUIT	162.5	13.0041	0.0240
C04_CB_C03_CB	C04_CB	C03_CB	CONDUIT	24.1	8.3244	0.0240
C05_CB_C04_CB	C05_CB	C04_CB	CONDUIT	69.4	8.5667	0.0240
C06_CB_C05_CB	C06_CB	C05_CB	CONDUIT	73.7	11.3550	0.0240
D02_CHAN_D01_CHA	AND02_CHAN	D01_CHAN	CONDUIT	56.2	Exhibit 29	0.0450
				SSDP	2016-00415	
					002272	

003372

D03_CHAN_D02_CH	AND03_CHAN	D02_CHAN	CONDUIT	80.2	2.3335	0.0450
STO_1_ORIFICE_E	17_CBSTO_1_ORIFI	CE B17_CB	CONDUIT	17.1	27.1186	0.0130
OR1	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR1_RISER	STORAGE_1	STO_1_ORIFICE	ORIFICE			
OR2	B10_MH_a	B10_MH_b	ORIFICE			
OR2_RISER	B10_MH_a	B10_MH_b	ORIFICE			

Cross Section Summary *****

		Full	Full	Hyd.	Max.	No. of	Full
Conduit	Shape	Depth	Area	Rad.		Barrels	Flow
A01_UNK_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	45.10
A02 CB A01 UNK	CIRCULAR	0.67	0.35	0.17	0.67	1	4.55
A03_CB_A02_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	4.50
A04_CB_A03_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	1.02
A05_CB_A04_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	0.84
A06_CB_A05_CB	CIRCULAR	0.67	0.35	0.17	0.67	1	6.52
B01_MH_D03_CHAN	TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.96
B02_CUL_B01_MH	CIRCULAR	3.00	7.07	0.75	3.00	1	160.72
B03_CUL_B02_CUL	TRAPEZOIDAL	4.00	44.00	2.11	19.00	1	592.60
B04_MH_B03_CUL	CIRCULAR	2.00	3.14	0.50	2.00	1	22.57
B05_MH_B04_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	24.66
B06_CB_B05_MH	CIRCULAR	1.50	1.77	0.38	1.50	1	35.74
B07_CB_B06_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	38.66
B08_CB_B07_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	28.42
B09_MH_B08_CB	CIRCULAR	1.50	1.77	0.38	1.50	1	34.30
B10_MH_b_B09_MH	CIRCULAR	1.50	1.77	0.38	1.50		6.37
B11_MH_B10_MH_a	CIRCULAR	6.00	28.27	1.50	6.00		159.01
B12_CB_B11_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.67
B13_CUL_B09_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	10.59
B14_CUL_B13_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	113.77
B15_CUL_B14_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	9.31
B16_CUL_B15_CUL	TRAPEZOIDAL	2.00	8.00	1.04	6.00	1	116.81
B17_CB_B16_CUL	CIRCULAR	1.00	0.79	0.25	1.00	1	7.88
B18_CUL_B17_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.24
C02_CB_B05_MH	CIRCULAR	1.00	0.79	0.25	1.00	1	5.57
C03_CB_C02_CB	CIRCULAR	1.00	0.79	0.25	1.00		6.96
C04_CB_C03_CB		1.00	0.79	0.25	1.00	1	5.57
C05_CB_C04_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	5.65
C06_CB_C05_CB	CIRCULAR	1.00	0.79	0.25	1.00	1	6.50
D02_CHAN_D01_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.50
D03_CHAN_D02_CHA	N TRAPEZOIDAL	4.00	60.00	2.12	27.00	1	499.52
STO_1_ORIFICE_B1	7_CB CIRCULAR	1.0	0.7	9 0.2	25 1	.00 1	18.

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	40.339	13.145
External Outflow	40.027	13.043
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.293	0.096
Continuity Error (%)	0.049	

Routing Time Step Summary		
Minimum Time Step	:	0.50 sec
Average Time Step	:	0.50 sec
Maximum Time Step	:	1.07 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	2.00

* * * * * * * * * * * * * * * * * *

Node Depth Summary

				Maximum	Time	of Max
			Depth		Οσαι	irrence
Node	Туре	Feet	Feet	Feet	days	hr:min
A01_UNK	JUNCTION			239.73		01:17
A02_CB	JUNCTION	0.33		244.34		00:03
A03_CB	JUNCTION	0.23	0.23	253.33		00:03
A04_CB	JUNCTION	0.60	0.60	254.12	0	00:02
A05_CB	JUNCTION	1.16	2.88	256.52	0	00:01
A06_CB	JUNCTION	0.19		292.30	0	00:02
B01_MH	JUNCTION	0.95	0.95	38.34	0	17:20
B02_CUL	JUNCTION	0.72 0.82 1.48	0.72	43.36	0	17:21
B03_CUL	JUNCTION	0.82	0.82	54.29	0	17:25
B04_MH	JUNCTION			55.49	0	17:14
B05_MH	JUNCTION	0.99	1.00	57.60	0	17:14
B06_CB	JUNCTION	0.76	0.76	62.66	0	17:14
B07_CB	JUNCTION	0.73	0.73	76.54	0	17:10
B08_CB	JUNCTION	0.88	0.88	83.08	0	17:14
В09_МН	JUNCTION		0.78	90.08	0	17:37
B10_MH_a	JUNCTION	7.83	7.89		0	00:46
B10_MH_b	JUNCTION	1.10	1.11	92.20	0	00:47
B11_MH	JUNCTION	7.01	7.07	98.98	0	00:46
B12_CB	JUNCTION	4.42	5.76	113.67	0	00:18
B13_CUL	JUNCTION	1.49	1.54	99.11	0	23:36
B14_CUL	JUNCTION	0.48	0.51	101.72	0	00:00
B15_CUL	JUNCTION	0.74	0.74	103.28	0	17:16
B16_CUL	JUNCTION	0.47	0.47	109.29	0	17:00
B17_CB	JUNCTION	0.85	0.85	109.97	0	17:01
B18_CUL	JUNCTION	0.91	0.95	110.26	0	00:00
C02_CB	JUNCTION	0.46	0.46	68.26	0	00:18
C03_CB	JUNCTION	0.23	0.23	89.18	0	00:09
 C04_CB	JUNCTION	0.27	0.28	91.23	0	00:01
 С05_СВ	JUNCTION	0.26	0.26	97.18	0	00:06
С06СВ	JUNCTION	0.24	0.24		0	00:06
D02_CHAN	JUNCTION	0.96		34.03	0	17:05
D03_CHAN	JUNCTION	0.95	0.95	35.89	0	17:02
						SS

STO_1_ORIFICE	JUNCTION	0.19	0.19	113.79	0	16:59
D01_CHAN	OUTFALL	0.84	0.85	32.61	0	17:05
STORAGE_1	STORAGE	2.64	2.69	116.29	0	16:59

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * *

		Maximum	Maximum			Lateral	Total
		Lateral	Total	Time	of Max	Inflow	Inflow
		Inflow	Inflow		arrence	Volume	Volume
Node	Туре	CFS	CFS	days	hr∶min	10 ^ 6 gal	10^6 gal
A01_UNK	JUNCTION	2.14	3.33	0	00:03	1.384	2.154
A02_CB	JUNCTION	0.00	1.19	0	00:03	0.000	0.770
A03_CB	JUNCTION	0.00	1.19	0	00:02	0.000	0.770
A04_CB	JUNCTION	0.00	1.21	0	00:02	0.000	0.770
A05_CB	JUNCTION	0.00	1.19	0	00:02	0.000	0.771
A06_CB	JUNCTION	1.19	1.19	0	00:00	0.771	0.771
B01_MH	JUNCTION	0.00	20.34	0	17:25	0.000	13.051
B02_CUL	JUNCTION	0.00	20.34	0	17:19	0.000	13.052
B03_CUL	JUNCTION	0.00	20.34	0	17:14	0.000	13.053
B04_MH	JUNCTION	1.09	20.34	0	17:10	0.703	13.054
B05_MH	JUNCTION	0.00	19.25	0	17:09	0.000	12.352
B06_CB	JUNCTION	0.00	18.42	0	17:10	0.000	11.817
B07_CB	JUNCTION	0.00	18.42	0	17:10	0.000	11.817
B08_CB	JUNCTION	0.00	18.42	0	17:03	0.000	11.818
В09_МН	JUNCTION	1.38	18.42	0	17:37	0.894	11.819
B10_MH_a	JUNCTION	0.00	9.04	0	00:18	0.000	3.557
B10_MH_b	JUNCTION	0.00	5.53	0	00:46	0.000	3.533
B11_MH	JUNCTION	0.00	7.17	0	00:16	0.000	3.576
B12_CB	JUNCTION	5.53	5.53	0	00:00	3.576	3.576
B13_CUL	JUNCTION	0.03	11.50	0	17:04	0.017	7.414
B14_CUL	JUNCTION	0.00	8.14	0	17:16	0.000	5.249
B15_CUL	JUNCTION	0.00	8.14	0	17:00	0.000	5.250
B16_CUL	JUNCTION	0.00	8.14	0	17:01	0.000	5.250
B17_CB	JUNCTION	0.00	8.14	0	16:59	0.000	5.251
B18_CUL	JUNCTION	6.67	6.67	0	00:00	4.312	4.312
C02_CB	JUNCTION	0.00	0.83	0	00:08	0.000	0.536
C03_CB	JUNCTION	0.00	0.83	0	00:01	0.000	0.536
C04_CB	JUNCTION	0.00	0.83	0	00:06	0.000	0.536
C05_CB	JUNCTION	0.00	0.83	0	00:06	0.000	0.537
C06_CB	JUNCTION	0.83	0.83	0	00:00	0.537	0.537
D02_CHAN	JUNCTION	0.00	20.34	0	17:02	0.000	13.045
D03_CHAN	JUNCTION	0.00	20.34	0	17:20	0.000	13.049
STO_1_ORIFICE	JUNCTION	0.00	1.47	0	16:59	0.000	0.939
D01_CHAN	OUTFALL	0.00	20.34	0	17:05	0.000	13.042
STORAGE_1	STORAGE	1.47	1.47	0	00:00	0.951	0.951

Node Surcharge Summary ****

Surcharging occurs when water rises above the top of the highest conduit.

		Hours	Max. Height Above Crown	Min. Depth Below Rim	
Node	Туре	Surcharged	Feet	Feet	
A05_CB B11_MH	JUNCTION JUNCTION	23.97 23.70	1.906 1.068	4.127 3.032 SSDP	Exhibit 29 2016-00415

P2016-00415 003375

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	CFS	days hr:min	10^6 gal	Feet
B12_CB	0.01	0.41	0 00:18	0.000	5.76

Storage Unit	Average	Avg	E&I	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 ft3	Full	Loss	1000 ft3	Full	days hr:min	CFS
STORAGE_1	1.620	34	0	1.653	35	0 16:59	1.47

Outfall Node	Flow Freq. Pcnt.	Avg. Flow CFS	Max. Flow CFS	Total Volume 10^6 gal
D01_CHAN	99.88	20.20	20.34	13.042
System	99.88	20.20	20.34	13.042

Link Flow Summary

* * * * * * * * * * * * * * * * * * *

Link	Туре	Maximum Flow CFS	Occu	of Max rrence hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
A01_UNK_B13_CUL	CONDUIT	3.33	0	01:17	1.92	0.07	0.51
A02_CB_A01_UNK	CONDUIT	1.19	0	00:03	10.91	0.26	0.54
A03_CB_A02_CB	CONDUIT	1.19	0	00:03	8.57	0.26	0.43
A04_CB_A03_CB	CONDUIT	1.19	0	00:02	3.83	1.17	0.83
A05_CB_A04_CB	CONDUIT	1.21	0	00:02	3.69	1.45	0.90
A06_CB_A05_CB	CONDUIT	1.19	0	00:02	12.14	0.18	0.64
B01_MH_D03_CHAN	CONDUIT	20.34	0	17:20	3.66	0.04	0.24
B02_CUL_B01_MH	CONDUIT	20.34	0	17:25	15.57	0.13	0.24
B03_CUL_B02_CUL	CONDUIT	20.34	0	17:19	5.80	0.03	0.19
B04_MH_B03_CUL	CONDUIT	20.34	0	17:14	10.83	0.90	0.58
B05_MH_B04_MH	CONDUIT	19.25	0	17:10	12.31	0.78	0.83
B06_CB_B05_MH	CONDUIT	18.42	0	17:09	17.09	0.52	Exhib
						SSI	DP2016-0

⁰⁰³³⁷⁶

B07_CB_B06_CB	CONDUIT	18.42	0	17:10	20.97	0.48	0.50
B08_CB_B07_CB	CONDUIT	18.42	0	17:10	17.09	0.65	0.59
B09_MH_B08_CB	CONDUIT	18.42	0	17:03	18.39	0.54	0.55
B10_MH_b_B09_MH	CONDUIT	5.53	0	00:47	4.38	0.87	0.67
B11_MH_B10_MH_a	CONDUIT	9.04	0	00:18	3.50	0.06	1.00
B12_CB_B11_MH	CONDUIT	5.55	0	00:09	8.21	0.98	1.00
B13_CUL_B09_MH	CONDUIT	11.50	0	17:37	15.35	1.09	1.00
B14_CUL_B13_CUL	CONDUIT	8.14	0	17:04	10.30	0.07	0.50
B15_CUL_B14_CUL	CONDUIT	8.14	0	17:16	16.33	0.87	0.61
B16_CUL_B15_CUL	CONDUIT	8.14	0	17:00	7.21	0.07	0.30
B17_CB_B16_CUL	CONDUIT	8.14	0	17:01	20.91	1.03	0.66
B18_CUL_B17_CB	CONDUIT	6.72	0	00:00	11.38	1.08	0.88
C02_CB_B05_MH	CONDUIT	0.83	0	00:12	3.19	0.15	0.63
C03_CB_C02_CB	CONDUIT	0.83	0	00:08	5.83	0.12	0.25
C04_CB_C03_CB	CONDUIT	0.83	0	00:01	6.87	0.15	0.25
C05_CB_C04_CB	CONDUIT	0.83	0	00:06	5.14	0.15	0.26
C06_CB_C05_CB	CONDUIT	0.83	0	00:06	5.68	0.13	0.24
D02_CHAN_D01_CHAN	CONDUIT	20.34	0	17:05	3.93	0.04	0.23
D03_CHAN_D02_CHAN	CONDUIT	20.34	0	17:02	3.62	0.04	0.24
STO_1_ORIFICE_B17_CB	CONDUIT	1.47	0	16:59	3.55	0.08	0.52
OR1	ORIFICE	1.47	0	16:59			1.00
OR1_RISER	ORIFICE	0.00	0	00:00			0.00
OR2	ORIFICE	0.75	0	00:19			1.00
OR2_RISER	ORIFICE	4.79	0	00:46			0.71

	Adjusted /Actual			on of Down	Time i Sub	n Flow Sup		Down	Avg. Froude	Avg. Flow
Conduit	Length	Dry	Up Dry	Down Dry	Sub Crit	Sup Crit	Up Crit	Crit	Number	Change
		DI y	DI y	DI Y						
A01_UNK_B13_CUL	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.24	0.0000
A02_CB_A01_UNK	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.04	0.0000
A03_CB_A02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.20	0.0000
A04_CB_A03_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.85	0.0000
A05_CB_A04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.73	0.0000
A06_CB_A05_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.45	0.0000
B01_MH_D03_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.81	0.0000
B02_CUL_B01_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.84	0.0000
B03_CUL_B02_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.34	0.0000
B04_MH_B03_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.96	0.0000
B05_MH_B04_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.85	0.0000
B06_CB_B05_MH	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.53	0.0000
B07_CB_B06_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.83	0.0000
B08_CB_B07_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	3.53	0.0000
B09_MH_B08_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.93	0.0000
B10_MH_b_B09_MH	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.81	0.0000
B11_MH_B10_MH_a	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.0000
B12_CB_B11_MH	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.01	0.02	0.0000
B13_CUL_B09_MH	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.11	0.0000
B14_CUL_B13_CUL	1.00	0.00	0.00	0.00	0.96	0.04	0.00	0.00	0.58	0.0000
B15_CUL_B14_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	4.03	0.0000
B16_CUL_B15_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.31	0.0000
B17_CB_B16_CUL	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	3.41	0.0000
B18_CUL_B17_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.51	0.0000
C02_CB_B05_MH	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.39	0.0000
C03_CB_C02_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.31	0.0000
C04_CB_C03_CB	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	2.27	0.0000
C05_CB_C04_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	2.11	0.0000
C06_CB_C05_CB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	Exhibit ₂ 29	0.0000
								SSDF	2016-00415	

003377

D02_CHAN_D01_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.88	0.0000
D03_CHAN_D02_CHAN	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.79	0.0000
STO_1_ORIFICE_B17_CB	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.96	0.0000

Conduit Surcharge Summary ******

Conduit	 Both Ends	Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
A04_CB_A03_CB	0.01	0.01	0.01	23.97	0.01
A05_CB_A04_CB	0.01	0.01	0.01	23.98	0.01
B11_MH_B10_MH_a	23.70	23.70	23.70	0.01	0.01
B12_CB_B11_MH	23.70	23.70	23.70	0.01	0.01
B13_CUL_B09_MH	22.71	22.71	22.71	23.80	22.71
B17_CB_B16_CUL	0.01	0.01	0.01	23.47	0.01
B18_CUL_B17_CB	0.01	0.01	0.01	24.00	0.01

Analysis begun on: Mon May 09 18:18:17 2016 Analysis ended on: Mon May 09 18:18:26 2016 Total elapsed time: 00:00:09

APPENDIX C

COOPERS BEACH – MITIGATION AS BUILT

May 5, 2011

AOA-3985

Kathy Curry City of Sammamish 801 228th Avenue SE Sammamish, WA 98075

REFERENCE: Cooper's Beach – 42x E. Lake Sammamish Shore Lane NE, Sammamish, WA (Corps # NWS-2009-476 Heen/Leseberg)

SUBJECT: Revised Mitigation As-built - Baseline Assessment Report

Dear Kathy:

This report has been prepared to document baseline conditions following installation of the wetland and shoreline mitigation area at the Cooper's Beach project site, and has been revised to address the comments presented in your March 3, 2011 e-mail to Evan Maxim (see Section 1.0 below). Also included in this report are the vegetation sample plots and photo-points that will be reviewed as part of the five year monitoring program.

1.0 PROJECT SUMMARY

Installation of the wetland mitigation area at the Cooper's Beach project site was generally completed in January 2011 according to the *Shoreline Restoration, Wetland Restoration, Clearing and Grading Permit* Plan (revised June 15, 2010), prepared by The Watershed Company. Site visits for the initial baseline assessment were conducted by AOA and occurred on January 13, and February 3, 2011. Following the initial baseline review, the mitigation area was slightly revised to ensure compliance with SMC 21A.50.351(3)(b). Under this code section, no more than 25% of the total lake frontage may be used for shoreline access.

As depicted on the current as-built plan, the mitigation area has been revised such that the existing bulkhead to remain is now 60 feet in total length (i.e., 25% of the total 240 feet of lake frontage). The remaining 180 feet of shoreline has been planted and will remain in a natural condition. In addition, the northern edge of the mitigation area has been revised slightly to ensure a minimum 45-foot buffer (Photos 1 and 2).

Kathy Curry May 5, 2011 Page 2 of 8

Photo 1: Revised maximum 60-foot long bulkhead to remain.

Photo 2: Revised log along northern edge of mitigation area (note darker bark coloration depicting revised location).

Kathy Curry May 5, 2011 Page 3 of 8

The large logs that have been placed along the 45-foot buffer boundary in lieu of fencing have been staked into the ground with re-bar to ensure that they will remain in place (Photo 3). In addition, the required critical areas sign on the 45-foot buffer boundary has also been installed (Photo 4).

Photo 3: Rebar stake through log along buffer boundary.

Photo 4: Installed critical area sign.

Kathy Curry May 5, 2011 Page 4 of 8

It is our understanding that the origin of the one remaining pipe in the northern portion of the site that discharges into the lake is likely from a rockery drain (Comment 1.e). The origin of this pipe will be confirmed during construction of the house and a plan will be designed to divert all water currently carried in this feature into the mitigation area during house construction.

The existing standpipe and drain line located along the northern edge of the mitigation area will be left in place for perpetuity or until such time as the upstream sediment problems are fixed (Comment 1.f). Since sediment from an off-site upstream ditch continues to erode and enter the on-site mitigation area, periodic maintenance may be required. It is our understanding that it is the subject property owner's intention to attempt to rectify this off-site condition. If the erosion is stabilized and the sediment source is eliminated or significantly reduced, then the standpipe and drain line could be removed.

The only plant substitution approved by The Watershed Company was that deer fern was substituted for lady fern. The revised as-built drawing for the site (**Figure 1**) depicts the actual location of the graded ponds and large woody debris placement. Grading was generally conducted per the approved plan, with some minor modifications in the southwest corner of the mitigation area to preserve two existing red alder trees. In addition, at our recommendation several of the conifers located within ponded areas were moved into drier portions of the mitigation site.

This as-built figure also includes the final total plant quantities and the location of the vegetation sample plots and photo-points. Dimensions were added to the as-built figure that reflect the approved mitigation boundaries and minor changes made in the field to ensure code compliance.

2.0 PERFORMANCE MONITORING

This report summarizes the baseline conditions encountered during our January 13, 2011 site review. The data collected during future site visits will be compared to the data collected during the baseline assessment.

Monitoring field reviews followed by preparation and submittal of annual summary reports will continue for a period of at least five years. This report, as well as future reports, will include: a) photo-documentation, b) estimates of percent vegetative cover, plant survival and undesirable species, c) wildlife usage, d) water quality, hydrology, and site stability, and e) an overall qualitative assessment of project success.

2.1 VEGETATION SAMPLE PLOTS AND PHOTO-POINT LOCATIONS

During the baseline assessment, three vegetation sample plots and three photopoint locations were established. These locations will continue to be monitored throughout the five-year performance monitoring period. Within the vegetation sample plot locations, all plant species will be recorded as well as relative percent Exhibit 29 Kathy Curry May 5, 2011 Page 5 of 8

cover of the dominant species within the vegetative strata. Photos will be taken throughout the monitoring period to document the general appearance and progress in plant community establishment. Review of the photos over time will provide a visual representation of success of the planting plan.

Attachment 1 contains photographs from the established photo-point locations.

2.2 VEGETATION DATA FROM SAMPLE PLOTS

VEGETATION SAMPLE PLOT 1 (Wetland Buffer)						
Plant Species	Baseline					
Western red cedar (Thuja plicata)	1					
Douglas fir (Pseudotsuga menziesii)	1					
Red flowering currant (<i>Ribes sanguineum</i>)	9					
Tall Oregongrape (Mahonia aquifolium)	24					
Red-osier dogwood (Cornus sericea)	3					
Deer fern (Blechnum spicant)	5					

SUMMARY OF PLOT 1 CONDITIONS

- Woody areal coverage of installed woody plants~20%
- Survival rate of installed plants: 100%
- No herbaceous vegetation coverage plot entirely mulched.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival (see Section 2.5 below).

VEGETATION SAMPLE PLOT 2 (Southwest Wetland).

Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Sitka willow (Salix sitchensis)	1
Sitka spruce (Picea sitchensis)	1
Nootka rose (Rosa nutkana)	4
Salmonberry (Rubus spectabilis)	5
Small-fruited bulrush (Scirpus microcarpus)	~20%
Watercress (Rorippa nasturtium-aquaticum)	~5%
Velvet grass (Holcus lanatus)	~5%

SUMMARY OF PLOT 2 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%
- Herbaceous coverage is ~30%.
- No significant invasive coverage (no control of velvet grass necessary).
- MAINTENANCE: Continue on-going routine maintenance.

• SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

	ollanaj
Plant Species	Baseline
Nootka rose (Rosa nutkana)	4
Red-osier dogwood (Cornus sericea)	11
Deer fern (Blechnum spicant)	4
Watercress (Rorippa nasturtium-aquaticum)	~25%
Dagger-leaf rush (Juncus ensifolius)	~25%
Mannagrass (Glyceria sp.)	~5%

VEGETATION SAMPLE PLOT 3 (Southeast Wetland)

SUMMARY OF PLOT 3 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%.
- Herbaceous coverage ~55%.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

2.3 WATER QUALITY AND HYDROLOGY

During each monitoring event, an assessment will be made of the water regime within the mitigation area to ensure that hydrological conditions within the wetland and buffer are suitable to support the desired native plant communities. General observations will also be made of the extent and depth of soil saturation or inundation.

Water quality will be assessed qualitatively; unless it is evident there is a serious problem. In such an event, water samples will be taken and analyzed in a laboratory for suspected pollutants. Results will be reported quantitatively. Qualitative assessments of water quality include:

- oil sheen or other surface films,
- abnormal color or odor,
- stressed or dead vegetation or aquatic fauna,
- turbidity.

Observations and evaluations will be made of slope and soil stability in the mitigation area. Any erosion or slumping of soils will be recorded and reported so that corrective measures may be taken.

At the time of the baseline field investigation, soils throughout the created wetland were generally saturated to the surface with shallow ponding observed within the SSDP2016-00415 003385 Kathy Curry May 5, 2011 Page 7 of 8

graded depressions. Water quality appeared good and no significant erosion or other soil stability problems were observed within the mitigation area.

2.4 WILDLIFE

Wildlife species observed in the wetland and buffer areas (either by direct or direct means) will be identified and recorded during the monitoring events. Direct observations include actual sightings, while indirect observations include tracks, scat, nests, burrows, song, or other indicative signs.

Wildlife signs or observations at the Cooper's Beach site during the baseline review included the following: black-tailed deer (browse and scat), mallard, mole (uplift mounds), and American coot.

3.0 SUCCESS CRITERIA & CURRENT STATUS

The approved performance standards for the project as developed by The Watershed Company included:

- 100 percent survival of all planting during the first year of monitoring, 100 percent survival of trees during years 2-5, and an 80 percent survival of shrubs during years 2-5 of monitoring.
- 80 percent survival of groundcover and emergent vegetation in year 2
- 75 cover standard of groundcover and emergent vegetation by year 5

It is assumed based on the approved maintenance requirements that invasive species will be controlled at levels below 15% coverage. At the time of the January 2011 baseline monitoring there was 100% survival of all planted species and invasive species coverage was well below the 15% coverage threshold. Therefore all of success criteria are currently being met.

4.0 SUMMARY & MONITORING SCHEDULE

Overall, the site is performing well and is currently meeting the defined success criteria for the project. With proper on-going maintenance, the site should continue to establish successfully.

Assuming approval by the City, the next long-term monitoring event is scheduled for the late spring of 2011. The next report will then be prepared following the fall 2011 site visit. Monitoring will continue twice yearly, with the submittal of annual reports.

Should you have any questions or would like to schedule a site review, please call Simone Oliver or me at (425) 333-4535.

Kathy Curry May 5, 2011 Page 8 of 8

Sincerely,

ALTMANN OLIVER ASSOCIATES, LLC

John Altmann Ecologist

Attachments

- 1. Photographs
- 2. Figure 1 As-built
- cc: Roger MacPherson

Solect	to	ЭТС 11-8-11 11-8							Ξ	N I	IN∀	די⁄ א	AJ SRE	ohe d M	5 H 101.	TA	t ₩∀		4 T 44, 08	B N S II HC	J8−ë JA∃ JAA AKt	(HSI 8 9 8 9	N S S S I			ちゃつは		alla.			ivel v Plon			teioo:		1086 V.M. 7	ottamo	mtIA *** 2008 814-281
			SIZE/SPACING		2 GAL.	5 GAL.		SIZE/SPACING	2 GAL.	I GAL.	2 GAL.	2 GAL.	I GAL.	2 GAL.	I GAL.	I CAL.	I GAL.	I GAL	I GAL.	I GAL.		CITE/CDACING	A" POTS	I GAL	I GAL.	4" POTS		SIZE/SPACING	IO CU. IN POTS @ IB" O.C.	10 CU. IN POTS @ 18" O.C.	10 CU. IN POTS @ 18" 0.C.			BASE INFORMATION PROVIDED BY MACPHERSON	CONSTRUCTION & DESIGN (425) 391-3333. SITE PLAN AND ORIGINAL DESIGN PREPARED BY	IHE WATERSHED COMPANY, KIKKLAND, WA, (425) 922-5242.	BASED ON APPROVED DRAWING 'SHORELINE DESTORATION METI AND DESTORATION (J. FADING	DRAWINGS 1-1 BY THE WATERSHED COMPANY.
		0.107	PROJECT OTY.	m	0 1	0 4		TOTAL PROJECT OTY.	23	88	D F	35	29	D	34 24	5 #	9 0	<u>p</u>	0	=		TOTAL	AA	2 00	60	53	-11-130	PROJECT OTY.		240	315			MATION PROVI	ND ORIGINAL 1	HED COMPANY	N WETLAND R	16 PERMIT' DA
			COMMON NAME	PAPER BIRCH	SITKA SPRUCE	DOUGLAS FIR MESTERN RED CEDAR		COMMON NAME	VINE MAPLE	RED-OSIER DOGWOOD	DEAKED HAZELNUT	TALL OREGON GRAPE	NINEBARK	BITTER CHERRY	RED FLOWERING CURRENT	NOULAA KOSE	PACIFIC WILLOW	SITKA WILLOW	RED ELDERBERRY	EVERGREEN HUCKLEBERRY	DCOVER		DEED FEDN	SALAI SALAI	LOW OREGON GRAPE	SWORD FERN		COMMON NAME	SPIKERUSH	DAGGER-LEAVED RUSH	HARD-STEM BULRUSH		NOTES	I. BASE INFOR	2. SITE PLAN A	+ 11HE WATERS	/ 3. BASED ON A	AND GRADIN DRAMINGS 1-
	PLANT LIST	TREES	SCIENTIFIC NAME	BETULA PAPYRIFERA	PICEA SITCHESIS	PSEUDOTSUGA MENSIEZII THIJ.IA PI ICATA	SHRUBS	SCIENTIFIC NAME	ACER CIRCINATUM	CORNUS SERICEA	CORYLUS CORNITA	MAHONIA AQUIFOLLIUM	PHYSOCARPUS CAPITATUS	PRUNUS EMARGINATA	RIBES SANGUINEUM	ROSA NUIKANA	SALIX LASIANDRA	SALIX SITCHENSIS	SAMBUCUS RACEMOSA	VACCINIUM OVATUM	PERENNIALS/GROUNDCOVER		BUECHIM SPICANT	GAU THERIA SHALLON	MAHONIA NERVOSA	POLYSTICHUM MUNITUM	EMERGENTS	SCIENTIFIC NAME	ELEOCHARIS PALUSTRIS	JUNCUS ENSIFOLIUS	SCIRPUS LACUSTRIS			∆l F)
e.							A LEAS						M_BE	10.6 B			C A Ba		(ill UC-dA	A Cod		They will be	a a la		Solution and a second second		H	1						US UHARAS			0 15 30 45 60	SCALE: 1:30
			Margaret State Sta	- 20 2.29	16'			July Lada			A B B B B B B B B B B B B B B B B B B B	BILLAS				- Fal		1817-10				100		EAD	K (0)	1	NAVD '88 (28:18 AT NGVD '29)	1	CREATED WETLAND	APPROX. CENTERLINE OF STREAM	BUFFER BOUNDARY	ENHANCEU SIREAM/WEILANU (0,40 / 3F) Enhanced Riffed (5,103, 3F)		STUMP	EXISTING MILLOM EXISTING RED ALDER	EXISTING BOULDER	APPROX. LOCATION OF PHOTO-POINTS	ATTROV. LOCATION OF ALCLINING SAMPLING PLOTS
	A STATE OF A	- UNITERAL		MULLERY CONTRACTOR CONTRACTOR	134.85	SORISSI				EV CTANDOIDE AND	DRAIN LINE TO REMAIN		ANCHORED LARGE	LOOS DEMARCATE 45	DOMENT IN		00	A A		the fat	11/1	11 Al	L STONE STEPS L	OUTSIDE BULKHEAD	EX. BULKHEAD 60	TOTAL LENGTH	PLAN LEGEND		CREATED CREATED			ENHANCE			t 29		APPROX.	

Photo-point 1: View looking south.

Photo-point 1: View looking southwest.

Exhibit 29 SSDP2016-00415 Cooper's B@06389

Photo-point 1: View looking west.

Photo-point 2: View looking east.

Exhibit 29 SSDP2016-00415 Cooper's B@06390

Photo-point 2: View looking northeast.

Photo-point 2: View looking north.

Photo-point 3: View looking south.

Photo-point 3: View looking southwest.

Photo-point 3: View looking north.

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:01 AM 'williamrissberger@comcast.net' RE: ELST corrections

Dear William,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: williamrissberger@comcast.net [mailto:williamrissberger@comcast.net]
Sent: Thursday, January 26, 2017 4:46 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Valderrama, Ramiro <rvalderr2001@yahoo.com>
Subject: ELST corrections

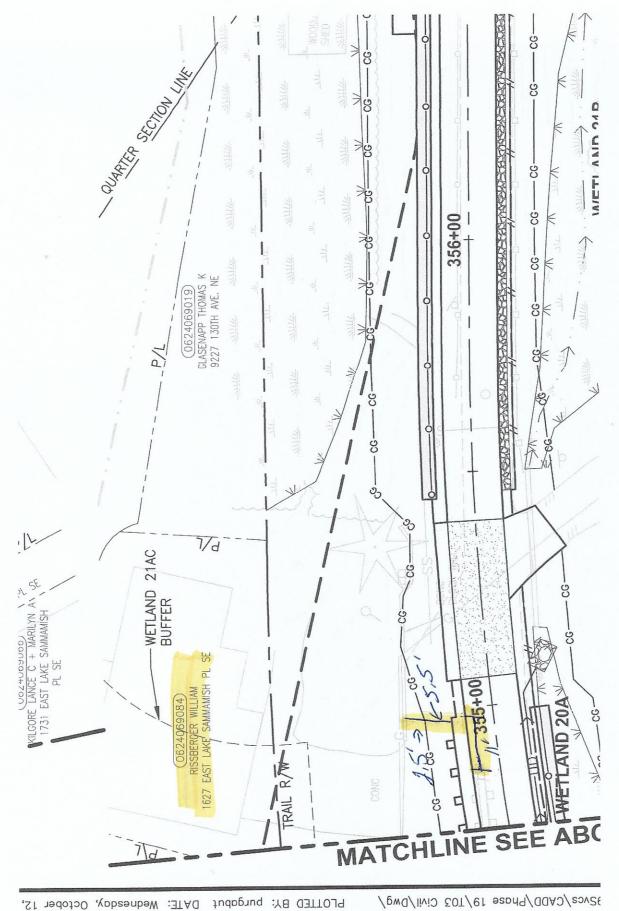
January 26, 2017 Lindsey Ozbolt

Associate Planner City of Sammamish Department of Community Development LOzbolt@sammamish.us 425.295.0527

Lindsey,

Per our meeting with Kelly Donahue, King County Department of Natural Resources, I am sending you this letter to document two unacceptable errors at location 355 in the ELST 60% build plan. They are:

- The proposed wood guardrail extending from 352 to 355 along the West side of the proposed trail is at least 3 feet too far west at point 355. It eliminates all vehicle access to my home and three neighbors during construction. It also eliminates access for basic emergency and commercial trucks to my home and my neighbors after construction is complete.
- The same proposed wood guardrail extends approximately 11 feet too far to its Northern termination at 355. It eliminates access to my home and my neighbors during construction. It also eliminates access for basic emergency and commercial trucks to my home and my neighbors after construction is complete.


These errors must be corrected since I am sure you do not intend to block access to my home. The proposed wood guardrail will have to be moved East and shortened. It needs to follow the track of the existing wood guardrail or be East of it. I have attached 2 images to illustrate where errors are located and why they are unacceptable.

Please let me know the proper steps I can take to insure these errors are corrected in the final build plan. Regards,

Bill

William Rissberger 1627 East Lake Sammamish PL SE Sammamish, WA 98075 <u>williamrissberger@comcast.net</u> cc: Ramiro Valderrama, <u>RVALDERR2001@yahoo.com</u>


William Rissberger 206-484-2759

JSvcs/CADD/Phase 19/T03 Civil/Dwg/

Exhibit 29 SSDP2016-00415

003396

Proposed Wood Barrier 003397

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:00 AM 'wuffer@comcast.net' RE: Jim Wolfe Trail Comments

Dear Jim,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: wuffer@comcast.net [mailto:wuffer@comcast.net]
Sent: Thursday, January 26, 2017 4:30 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Jim Wolfe Trail Comments

Hi Lindsey,

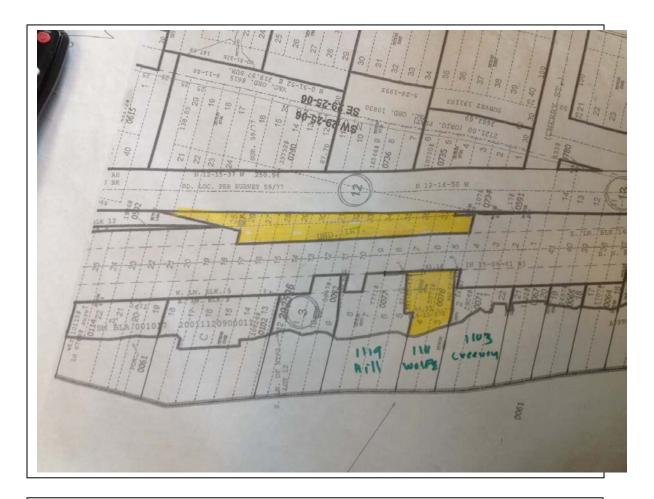
I am attaching ten pages of PDF files with my comments and some diagrams and pix. Please let me know that you got all ten. Good luck with your work overload. Thanks, Jim

> Exhibit 29 SSDP2016-00415 003398

SB-263

Page 1

Review of Sammamish Trail Plans Near Location 457


Submitted By: Jim Wolfe, 1111 E. Lk. Sammamish Pkwy NE

Submitted To: Lindsey Ozbolt, Associate Planner, City of Sammamish

Date: 1/26/2017

Item One: Ownership of Parking Lot

On the King County Tract Maps you will find parcel number **357530TRCT**. This parcel is jointly owned by myself and the two neighbors on either side of me. (Jim Creevey—1103 and Ty Hill—1119) This is our driveway and parking area. It is highlighted in yellow in this map:

Note that this parcel is 25' from the centerline of the RR right of way. The current stakes put up by the County in this area indicate a 50' right of way, which is wron Exhibit 29 SSDP2016-00415 003399

Item Two: Carport

I have had a carport and storage shed combination which I have been using for at least 25 years. It is pictured here:

This carport houses two antique cars---1950 Willys Wagon and Jeepster. The shed has equipment which has to go into and out of my recording studio which is located in my house. The carport is built on a poured concrete foundation wall with a curb. The curb, at its nearest point to the centerline of the trail is 13 feet.

Here is a picture showing a side view of the curb with the 13' marked in blue:

Note that the broken concrete upon which the poured foundation rests could be removed back to the 13' from centerline mark and that the structure would still be stable. This is also true for the parking area on the north side of Stair #82 which go from the parking lot to the trail. This would allow you to build a wall which starts at 10' from the centerline and which is up to 2' thick and still have room to leave my carport/shed. You could back fill from the broken concrete to the new wall. There is no need to remove the carport/shed Exhibit 29 Keeping them where they are would not impact the trail in any wsopp2016-00415

Item Three: Stair #82

On the 60% plans the county shows the elimination of my stairway which goes from my parking lot to the trail (Stair #82) as well as designing a 90 degree turn in the new stairs from the trail to my home (Stair #81). Neither of these design decisions are necessary and both would put my business at risk.

As stated earlier, I have a home recording studio and I bring equipment in and out of the house constantly. One recording machine which is currently stored in the shed next to the carport is a 24 track recorder which weighs around 500 pounds.

This machine has to be hauled down to my studio periodically. It would be nearly impossible to take it down without the current wide stairway from the parking lot to the trail. (Stair #82) In addition, on an almost daily basis musicians bring down heavy guitar amplifiers and drum kits. The existing wide stairway was made that way for a reason, and it is necessary for my business that it not be removed.

In addition, from time to time I need to bring in an MCI recording console pictured at the left. It weighs more than 600 pounds and is over six feet long. There is no way this console could ever be taken down the stairs with the 90 degree turn. (Stair #81) And the width of the upper stairs (Stair #82) makes negotiating the transports this console possible.P2016-00415 003402

Stairway discussion continued:

The edge of the bottom riser on Stair #82 going from the parking lot down to the trail is more than 15 feet away from the centerline. This would leave room for at least a 3 foot landing at the bottom of the stairs and that landing would still be more than 12 away from the centerline. There is no need or reason to remove these stairs—and from the discussion above you can see that removal of these stairs would have a severe financial impact on my home business.

Regarding Stair #81:

In addition, there is room for a stairway without a ninety degree turn to go from the trail down to my home (stair #81). There is plenty of linear space for a building code designed stairway to be installed there. From the previous discussion you can see that the currently designed stairway with the ninety degree turn would make it impossible for me to move large, heavy and expensive equipment in and out of my home recording business, which, again, would have a devastating effect on my main source of income.

In addition, because of the nearly constant transportation of heavy musical equipment into and out of my home recording studio, it is important for my clients and hired musicians to have access to my home and enough room for transporting their equipment *during the construction phase of this project* as well as when the trail is complete.

Anything that impedes this flow of equipment would have a severe negative impact on my business and my ability to make a living and would thus produce extreme hardship for me.

Item Four: Discussion of Parking Requirements

Here is a picture of our driveway and parking lot looking toward the south.

As you can see, there is not a lot of room to maneuver cars in there. My neighbors to the north (Hill family) currently have 4 cars and there are 6 cars owned by those living in my home. Creevey, at the end of the driveway, owns 2 cars. So that's 12 full time cars before any guests or clients come.

Any trail design that allows any less parking than currently available would have a devastating effect on our ability to come and go and also would make it impossible for my clients and musicians to have any place to park to unload equipment. The next part of this discussion will be about the wall on our parking lot side of the trail and how it impacts the parking situation. (Wall #35) Exhibit 29 SSDP2016-00415 003404

Jim Wolfe Review of Sammamish Trail Plans near 457—Page 7

Item Five: Discussion of Wall #35

Wall #35 is currently shown to be a structural earth wall. For purposes of maximizing our final parking area that wall needs to be as vertical as possible for the whole length of our driveway---that is, adjacent to my home and Hill's home.

To maximize our parking area, a Soldier Pile wall would work better since it can be vertical and not subtract useful space from our parking area.

In addition, as previously discussed, the existing broken concrete foundation could be removed as far back as the curb on our parking area (and also the curb on my carport) and this would allow a Soldier Pile wall to be constructed and then back filled to the line of the existing curb. This would allow you to have a fence at the top of the new wall and still allow our cars to park with our wheels up to the existing curb and the bodies of the cars to hang out past the curb and still not be touching your fence.

The following picture gives you a good idea what I'm talking about:

You can see the mark at 13 feet from the centerline of the trail. (Incidentally, I am an engineer and actually ran a line from two of your pink centerline stakes and measured from the straight line, so the 13 foot dimension is accurate within a couple inches.) Our cars currently hang out past the curb. If the curb was left in place and a car hung out 3 feet past the curb, the bumper of the car would still be 10 from the centerline of the trail. This would give you room for a fence on top of your Soldier Pile wall without our cars touching it.

Jim Wolfe Review of Sammamish Trail Plans near 457-Page 8

Item Six: Discussion of Stream

I have noted the location of this stream to several people with the county in the past but just today I had a discussion with one of the wetland consultants to whom the route of this stream is a mystery.

The stream which I am discussing comes under the parkway and shows up on our property in the parking area just to the north of the garage. It then goes underground in a pretty straight path towards the lake and may be heard bubbling next to the trail (on the east side) just about exactly west of where it appears in the parking lot.

Then it takes a mysterious path to its final destination on the beach in front of my house. From where it may be heard bubbling up near the Hill's home, it runs south in a buried culvert parallel to the trail under the broken concrete that supports the parking area.

It takes a turn to the west somewhere around 456 + 60 and continues underground toward the lake. It comes out on the beach in front of my house and fills a pond which continuously flows into the lake.

I have lived in my home since 1978 and this stream has never dried up.

Care will have to be taken not to disturb the flow of this stream. At one time the stream backed up on the lake side due to sand and rocks being washed into the pipe in which the stream flows and my back yard flooded. Due to the current configuration of ponds in front of my residence this backing up can no longer happen.

Item Seven: Electricity in the parking area

There is currently power in the parking area. This power comes from my house and shows up at my carport. However I have no clear idea of how the electrical wires are routed under the old rail bed. I believe this power was put in when the water lines were installed, however I'm not sure. It is something that will need to be considered when the heavy equipment moves in.

Jim Wolfe Review of Sammamish Trail Plans near 457—Page 9

Item Eight: Water and Sewer

Our water supply starts up on the parkway and is routed to a distribution box in our parking area, just to the south of the tan shed. This box is often overgrown with blackberry bushes and is not obvious. From there, the high pressure lines cross the parking area and travel under the rail bed and supply Creevey and myself. I mention that these are high pressure lines because both Creevey and I use pressure reducing valves down at our residences, but the lines in the parking lot are upstream from the PRVs.

In the past we have had problems with large construction equipment causing one of these supply lines to rupture and we incurred quite a bit of expense in fixing the problem.

It hasn't been an issue for many years, but the heavy equipment that will be used for trail construction might prove to be a problem, expecially if the exact location of the water lines is not mapped out exactly.

In addition, we are on a pumping sewer system and so waste runs back under the old rail bed and up to the main sewer lines along the parkway. I know that this happens everywhere on the east side, but I just want to be on record as having some concern that the sewer lines not be disturbed, just as I am concerned with the electrical and water.

Item Nine: Clearing and Grubbing

I understand that the CG line will have to extend around the new stairway from the trail to my residence (Stair #81), however there is no need to have the CG line come down into my yard nearly as far as it is currently shown. I have several trees within the current CG line that I would like to preserve.

In fact the current drawing shows the CG line at the bottom of Stair 81 to be 30 feet from the centerline and your property only extends 25 feet in that direction.

In addition, on the parking lot side of the trail the CG line is shown as over 20 feet from the centerline. There is no reason for this much width along our parking area.

Jim Wolfe Review of Sammamish Trail Plans near 457—Page 10

Item 10: Unnamed Stream #13

The City of Sammamish has regulations about trails crossing wetland buffers. The buffer for Unnamed Stream #13 includes all of the area next to my property where the trail runs. I would like a clarification from the City and the County as to what the requirements are for the trail passing through a stream buffer and want to see how the County addresses the City's requirements.

That concludes my Review of the Sammamish Trail Plans.

I may be reached by phone at:

425-241-7234

I may be reached by email at:

wuffer@comcast.net

I may be reached by mail at:

1111 E. Lk. Sammamish Pkwy NE Sammamish WA 98074

I hope that I have clearly discussed the many problems I have with the current 60% trail design.

I would like to be contacted by a representative of the County to discuss some of these items in person at my property where it is easy to see the adverse consequences that the current 60% design would have on my business and my life.

Thank you for your consideration,

JIM WOLFE

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 11:00 AMTo:'jalschul@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Joan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Joan Alschuler [mailto:jalschul@gmail.com] Sent: Thursday, January 26, 2017 4:28 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

As a cyclist, I am so happy to learn of trails that are paved and thus safer for cyclists like me who like to ride on the safest surfaces possible due to 2 replaced hips. I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Joan Alschuler 23836 NE 126th PL Redmond, WA 98053 608-239-5080

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 11:00 AM 'Fred Mattison' RE: King County Trail File #SSDP2016-00415..Comments

Dear Fred,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Fred Mattison [mailto:FredMattison@msn.com]
Sent: Thursday, January 26, 2017 4:16 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: King County Trail File #SSDP2016-00415..Comments

Hi Lindsey,

I reviewed the plans for the East Lake Sammamish Trail and have the following comments:

1) Tamarack and Many! other parcels in the area to the east of Louis Thompson Hill Road were created by King County prior to

the City of Sammamish being formed.

2) There was no overall drainage system or treatment system built to address the runoff from these areas that currently direct

runoff into Lake Sammamish.

3) The property owners have all been charged surface water management fees for years while no/minimal management of the

surface water from this area around Tamarack Louis Thompson Hill Road has occurred.

4) With the Tamarack Modeling/surface water management study being complete as of November, 2016 (see attached) and King

County's plan being dated September, 2016, it is clear that the drainage system that collects water near the trail, East Lake

Sammamish Parkway and limited drainage uphill near the Louis Thompson Hill Road has not been considered in the sizing of

the culvert/pipe from East Lake Sammamish Parkway to Lake Sammamish at station 436 + 30 where a 12" HDPE pipe is

scheduled to be installed. This pipe/outfall does not address the drainage challenges of the Tamarack area and future

density/parcels to be developed in the next 2- 10 years.

5) To develop the trail with a substandard drainage pipe running under it to the lake is a major step backwards.

6) Please do not settle for the current pipe sizing that does not address the current and future drainage needs of the area east of

Lake Sammamish Parkway at Louis Thompson Hill Road when the City of Sammamish has just completed several

runoff/drainage studies in the area.

7) It is time for King County to update and correct the drainage system rather than the City being responsible for the cost of this

improvement.

Thank You for all of your efforts that are in the best interest of the City of Sammamish and it's residents.

Call text or email if you need clarification.

We have been residents here for over 30 years. (prior to Sammamish)

Thank You!

Fred Mattison 21319 SE 1ST Sammamish, WA 98074 206-947-4639 phone

fredmattison@msn.com email

DATE	November 17, 2016
То	BEN RESSLER, PROJECT ENGINEER, CITY OF SAMMAMISH
CC	
FROM	Robert Parish, PE, Project Manager, Osborn Consulting, Inc. Josh Van Wie, PE, Project Engineer, Osborn Consulting, Inc.
SUBJECT	TAMARACK DRAINAGE IMPROVEMENT PROJECT – MODELING MEMORANDUM

INTRODUCTION

The Tamarack subdivision is located on the west side of the City of Sammamish near Lake Sammamish. The subdivision contains properties in the area near NE 4th Street between 208th Avenue NE and 212th Avenue NE.

A portion of the storm runoff from the Tamarack subdivision flows west, and is combined with flows from residential properties located between the Tamarack subdivision and the intersection of East Lake Sammamish Parkway and Louis Thompson Road NE. This combined area is referred to as the "Project Basin" in this report. The Project Basin is located within the larger Monohon Drainage Basin. The remaining flows from the Tamarack subdivision not included in the Project Basin flow either north to George Davis Creek in the Inglewood Basin, or flow south to contribute flow to Zackuse Creek. The areas flowing north and south were not studied as part of this report.

The Project Basin contributes flow to Lake Sammamish through a culvert at the intersection of East Lake Sammamish Parkway and Louis Thompson Road that is connected with an open channel to the lake. The basin is approximately 52 acres in size, and includes a system of storm drains, culverts, and ditches. Properties in the basin are zoned as R-4 residential, and land cover consists primarily of single family residential houses. Topography ranges in elevation from approximately 40 feet to 460 feet with slopes up to approximately 30% in the steepest areas.

The goal of this study is to use hydrologic and hydraulic modeling to assess the existing flows reaching Lake Sammamish and potential changes in peak flow due to future development in the Tamarack subdivision. Modeling was performed using the Western Washington Hydrology Model (WWHM) and the EPA Storm Water Management Model (SWMM) through the PCSWMM platform.

SUBBASIN DELINEATION

The Project Basin was divided into 8 subbasins for performing modeling calculations. Subbasin boundaries were delineated using King County and City of Sammamish GIS data including elevation contours, streams, drainage pipes, culverts, manholes, and catch basins. Subbasins were divided by choosing specific points in the stormwater conveyance system and separating out the land area that contributes flow to each point.

Site visits were performed to verify subbasin boundaries. Subbasin boundaries were confirmed by locating high points at the edge of subbasins and by visually locating pipes or culverts that redirected flow to create a basin boundary. The subbasin delineations can be seen in **Figure 1**.

Subbasin 4 is currently undeveloped, and consists of forested area. The remaining subbasins are developed, with the majority of lots built out as single family residential. A few individual undeveloped lots exist in Subbasins 2, 6, and 7.

WWHM MODEL

WWHM was used for computing runoff in each subbasin for three scenarios. The three scenarios included existing conditions, proposed conditions after drainage improvements, and future fully developed conditions. Additionally, WWHM was used to size several flow control facility options. Input data required for WWHM includes impervious and pervious cover, slopes, and soil types.

Slopes for each subbasin were calculated using GIS elevation contours. Slopes for the eight subbasins ranged from 6 to 29 percent, with an average slope of 17 percent. Soil information was taken from the Natural Resources Conservation Service Web Soil Survey, which compiles soil survey data from various sources. Soils in the Project Basin consist primarily of glacial outwash soils, which make up 86 percent of the basin. Some areas of glacial till are also present at the highest and lowest elevations in the basin. WWHM requires soils to be categorized as type A/B, type C, or saturated soils. Soil categories were assigned using the Stormwater Management Manual for Western Washington, which classifies the outwash soils in the basin as type A/B and the till soils as type C. Detailed soil information is provided in **Table 1**.

Existing Conditions

Existing impervious areas were calculated using aerial imagery databases available in ArcGIS software. The most recent imagery available was from July, 2013. Impervious areas were traced using ArcGIS, and roadway impervious areas were separated from parcel impervious areas. Impervious cover on parcels was assumed to be 70 percent building area and 30 percent driveway area based on aerial photographs. Separation of individual buildings, driveways, and other impervious is beyond the scope of this work. Pervious areas were assumed to be 100 percent lawn in developed subbasins. In Subbasin 4, which is undeveloped, pervious areas were assumed to be 100 percent forest based on aerial imagery and site visit observations.

Under existing conditions, runoff from Subbasins 7 and 8 is collected in an 8-inch drainage system located at NE 4th Street and is released to an open channel that passes through Subbasin 4. Soils in Subbasin 4 consist of glacial outwash, and are expected to have a higher infiltration capacity than till soils. Runoff from basins 7 and 8 was routed through Subbasin 4 using a lateral flow basin in WWHM to estimate the infiltration and remaining runoff that continues through Subbasin 4 to the outfall.

Proposed Conditions after Drainage Improvements

The proposed drainage improvements will collect surface runoff from Subbasins 7 and 8 and convey flows through the proposed pipes to the existing storm drains in Louis Thompson Road. In the proposed conditions model, runoff from subbasins 7 and 8 was routed directly to the outlet of Subbasin 4 rather than being routed onto the surface of Subbasin 4 through lateral basins. This eliminates the potential for infiltration that occurs under existing conditions as flows from Subbasins 7 and 8 pass through the natural open channel in Subbasin 4.

Future Fully Developed Conditions

Fully developed conditions were modeled to determine the total increase in flow that may occur in the system over time. Impervious areas were calculated assuming parcels will redevelop individually and increase impervious cover to the maximum allowable level. Developments in the Project Basin are required to use level 2 flow control standards according to the City of Sammamish flow control map. Under these standards, redevelopments with greater than 5,000 square feet new or replaced impervious surface are required to install flow control. For the WWHM model, it was assumed that any existing lots with less than 5,000 square feet impervious would redevelop and add impervious area to reach 5,000 square feet. This added a total of 2.12 acres of impervious area for an increase in impervious cover of approximately 4 percent over the entire Project Basin. In reality, future increases in impervious area may require construction of flow control facilities, particularly if the new impervious cover is in a critical drainage or erosion area. The Samm amish Municipal Code (SMC) outlines additional requirements for these areas in SMC 13.20.040. For the sake of this work, it was more conservative to assume that no flow control would be required in the future to estimate the greatest potential increase in flow through the system. A summary of existing and proposed conditions is provided in **Table 1**.

Subbasin 4 currently consists of a single large tract of land. The tract is expected to be subdivided and developed into residential lots in the future. The subdivision of the land for development will require installation of flow control meeting the level 2 standards for peak flows and flow durations. Subbasin 4 was modeled as forest, assuming that flow control will maintain predeveloped flows in the subbasin.

Table 1 Summary of WWHM Parameters							
Subbasin	Total Area (AC)	Existing Percent Impervious	Future Percent Impervious	Slope	Percent Outwash Soil	Percent Till Soil	
1	2.15	38%	38%	6%	29%	71%	
2	1.61	33%	48%	9%	62%	38%	
3	14.07	49%	51%	19%	100%	0%	
4	5.82	2%	0%	14%	100%	0%	
5	2.70	48%	58%	17%	100%	0%	
6	16.25	34%	41%	13%	100%	0%	
7	2.22	40%	47%	29%	42%	58%	
8	4.51	39%	44%	22%	85%	15%	

Flow Control Facility Options

Several flow control options were modeled to determine required detention facility sized at different locations in the Project Basin. Flow control facilities were designed so flows to the basin outfall were less than or equal to existing flows for storm events ranging from the 2-year to 100-year events. The following facility options were investigated:

- Standard flow control vault downstream of Subbasins 7 and 8.
- Infiltration vault downstream of Subbasins 7 and 8
- Standard flow control vault downstream of Subbasin 4, assuming Subbasin 4 does not develop in the future.
- Standard flow control vault downstream of Subbasins 3 through 8, assuming Subbasin 4 does not develop in the future.

• Standard flow control vault downstream of Subbasins 3 through 8, assuming Subbasin 4 develops in the future and Subbasins 7 and 8 are piped to the outlet of Subbasin 4.

SWMM MODEL

SWMM was used to model flow from WWHM through the pipes and open channels in the lower part of the Project Basin. The drainage system for the model was constructed using survey data, record drawings, and field measurements. Pipes modeled in this study include the mainline pipes that extend from the downstream ends of Subbasins 3, 4, and 6 and continue toward Lake Sammamish through several open channel sections. The open channel sections include the ditch along Louis Thompson Road, and two channel sections near the Lake Sammamish outfall. A portion of the 8-inch drainage system in Subbasin 8 was also included. The model is meant primarily to provide an estimate of peak flows and velocities in the downstream end of the system. Because of the model's intended use, the full drainage system through the Project Basin was not included in the model.

Pipe invert elevations and lengths were taken primarily from survey data and record drawings. Survey data was used for the majority of pipes and culverts along Louis Thompson Road and for the pipes along NE 4th Street in Subbasin 8. Several areas of missing data were encountered for the pipes along Louis Thompson Road where existing manholes could not be located. Based on survey notes and site visits, it appears that existing manholes may have been paved over with asphalt. In these cases, pipe data was taken from record drawings. One area with missing data includes the pipes on the south side of Louis Thompson Road near the intersection with East Lake Sammamish Parkway NE. Record drawings show the system extending to the south along East Lake Sammamish Parkway NE and not connecting into the main drainage system. However, no pipes along East Lake Sammamish Parkway NE could be verified during the site visit, and it appears possible that the existing pipes do connect to the main system. The model was built assuming the pipes are connected to provide a more conservative estimate of flows. However, it should be noted that the future development will not alter the destination of any flows in the basin. The pipes used in the SWMM model can be seen in **Figure 3**.

Open channel and ditch areas were observed in the field to determine the bottom width, approximate side slope, and estimated channel roughness. Observations were taken at the ditch on the north side of Louis Thompson Drive and at the open channel section between East Lake Sammamish Parkway NE and the East Lake Sammamish Trail to the west of the roadway. The open channel that extends from the trail to Lake Sammamish could not be observed because the channel passes through private property that could not be accessed at the time of the site visit. Parameters for this channel were assigned using engineering judgement based upon the site photographs included as part of the Cooper Beach – Mitigation As built Memorandum (see attached).

Two existing detention systems were included in the model. One is a detention pond located at the Subbasin 5 outlet that provides flow control for the residences near the intersection of 207th Avenue NE and NE 3rd Street. The second is an inline detention pipe located in the 205th Avenue NE right-of-way near the intersection with Louis Thompson Road. Parameters for both detention systems and their orifices were taken from record drawings.

Flows for the SWMM model were taken from WWHM results for 100-year peak runoff. Flow from each subbasin was applied as a constant flow at the appropriate model node. Flows from Subbasin 3 were split between two nodes because a portion of flow from the subbasin does not reach the conveyance system until near the downstream end. The total flow was divided based on contributing area, with 80 percent assigned to the main drainage line and 20 percent assigned to the farthest downstream node in the subbasin.

SHEAR STRESS CALCULATIONS

Shear stresses for the open channel at the Lake Sammamish outfall were calculated to determine the potential for erosion. The predicted shear stress for each scenario was calculated using equations developed for channel design by the Federal Highway Administration (Kilgore, 2005). The following equations were used for calculating shear stress applied by the modeled flow and permissible shear stress on the channel soil and vegetation:

 $\tau_0 = \gamma R S_0$ (Applied shear stress, FHWA Equation 2.3)

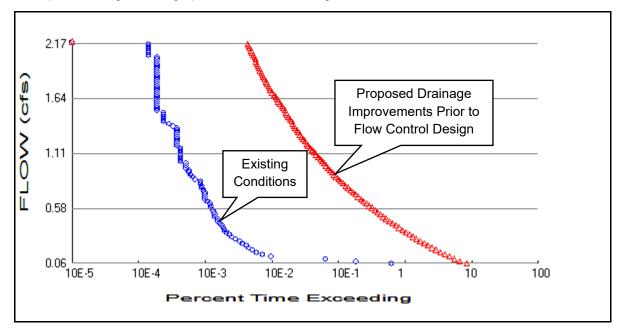
$$\tau_p = \frac{\tau_{p,soil}}{(1-C_f)} \left(\frac{n}{n_s}\right)^2$$
 (Permissible shear stress, FHWA Equation 4.7)

Values for flow rates, velocities and depths, and slopes were taken from the WWHM and SWMM models and used to calculate shear stress. Values for the grass cover factor and roughness were taken from the FHWA document or other literature sources. The bed material grain size where 75% of material is finer (i.e. D₇₅) was estimated to be 2 inches. This estimate was based on observations of the upstream channel near the trail and photos of the constructed channel provided in the Cooper Beach – Mitigation As built Memorandum.

MODELING RESULTS

The peak flow results predicted by WWHM are provided in **Table 2**. Peak flows for the proposed drainage improvements increased only downstream of Subbasin 4. This is because flows from Subbasins 7 and 8 will no longer partially infiltrate into the channel in Subbasin 4, but will bypass the subbasin through the proposed drainage system. Peak flows for future fully developed conditions were greater than existing conditions due to increased impervious cover. Subbasins 2, 5, and 6 had flow increases of greater than 10 percent at the 100-year event. Subbasin 4 is predicted to have no significant change in flow due to expected installation of flow control during future development. This will ultimately depend on the design of the future development.

Table 2 WWHM Modeled Peak Flows**							
	Flows by Subbasin (CFS)						
Scenario	1	2	3	4,7,8*	5	6	
Existing 2-year	0.42	0.27	2.38	0.12	0.50	2.35	
Existing 100-year	1.09	0.71	6.81	3.47	1.00	5.88	
Proposed 2-year	0.42	0.27	2.38	2.05	0.50	2.35	
Proposed 100-year	1.09	0.71	6.81	5.13	1.00	5.88	
Future 2-year	0.42	0.36	2.52	2.15	0.57	2.73	
Future 100-year	1.09	0.83	6.88	5.25	1.11	6.55	


*For existing conditions, Subbasins 7 and 8 were modeled as lateral basins with total flow measured at the outlet of subbasin 4. For proposed conditions, Subbasins 7 and 8 were routed to the outlet of Subbasin 4 to simulate the proposed drainage system that will bypass Subbasin 4.

** These flows assumed no proposed detention

A comparison of flow durations for existing conditions and proposed drainage improvements is shown in **Figure 5**. Flows durations are expected to exceed the existing conditions . This exceedance is a result

of the flows from Subbasins 7 and 8 being piped directly to the outlet of Subbasin 4, rather than being allowed to partially infiltrate in Subbasin 4. The exceedance in flow durations create an erosion concern for the small wetland and downstream channel sections near the Lake Sammamish outfall. Flow control to match existing durations will be needed as part of the proposed drainage improvements in order to protect the downstream channel.

Figure 5: Flow durations for existing conditions and proposed drainage improvements. Flow control will be required during the design phase to match existing durations.

The peak flows and velocities predicted by SWMM for the ditch and open channel sections are listed in **Table 3**. Flows at the Lake Sammamish outfall are estimated to increase from 17.7 CFS under existing conditions to 22.1 CFS under future conditions during the 100-yr event. This constitutes a 25 percent increase in flow at the outfall. The primary reason for the increase is that runoff from Subbasins 7 and 8 will not be infiltrated as it flows over Subbasin 4. A smaller portion of the increase is caused by a higher percentage of impervious cover in all subbasins.

Velocities along Louis Thompson Road are near 10 feet per second for both existing and future conditions at the 100-year event. The high velocities are caused by steep slopes in the roadside ditch and a grass lined channel without rock material to provide increased roughness. Existing velocities in the open channel sections near Lake Sammamish are predicted to be 3.8 feet per second at the 100-year event, and are predicted to increase slightly with the higher volume of flow in the future.

Table 3 SWMM Modeled Peak Flows and Velocities				
Location	Existing 100 year Peak Flow	Existing 100 year Velocity	Future 100 year Peak Flow	Future 100 year Velocity
Ditch along Louis Thompson Road NE	7.3 cfs	9.0 ft/s	8.1 cfs	10.3 ft/s
Open Channel between East Lake Sammamish Parkway NE and pedestrian trail	17.7 cfs	6.0 ft/s	22.1 cfs	5.8 ft/s
Open Channel between pedestrian trail and Lake Sammamish outfall	17.7 cfs	3.8 ft/s	22.1 cfs	4.0 ft/s

The permissible shear stress at the outfall channel was calculated to be 1.27 lb/sf. Calculated shear stresses for each storm event under existing and proposed conditions are shown in **Table 4**. The shear stresses are not expected to increase dramatically, and all predicted shear stresses are below the permissible shear stress. Because the permissible shear stress is based on site photos rather than field observations, there is room for refining the permissible stress calculation. Additional study is recommended during the design phase to investigate any potential erosive channel concerns and verify the level of shear stress that is appropriate for the channel. However, because of the relatively minor change in shear stress due to increased flows, the future conditions are expected to be similar to the existing conditions. If the existing channel is functioning without erosion concerns, then the future conditions will not likely create additional concern.

Table 4 Modeled Shear Stress at Outfall Channel				
Scenario	Flow	Velocity	Shear Stress	
Existing 2-year	6.7 cfs	2.9 ft/s	0.57 lb/sf	
Existing 100-year	17.7 cfs	3.8 ft/s	0.88 lb/sf	
Future 2-year	9.4 cfs	3.2 ft/s	0.67 lb/sf	
Future 100-year	22.1 cfs	4.0 ft/s	0.98 lb/sf	

FLOW CONTROL OPTIONS

An approach to match the existing peak flows is to provide a detention or infiltration system. The flow control options are summarized below in **Table 5**. Length and width options for each vault were standardized to 20 feet wide and 7 feet deep to provide an easier comparison between options.

Detention Option #1 & #2: For future developed conditions, flows from Subbasins 7 and 8 before entering Subbasin 4 can be reduced to a minimal level by installing a very large detention vault on the order of 850 feet long (for a standard vault: Detention Option #1) to 500 feet long (for an infiltration vault: Detention Option #2). However, even with one of these large-sized vaults, the peak flows at the Lake Sammamish outfall are predicted to increase at the 2-year and 100-year events. This is due to the modeled overall future increase in impervious cover through the other basins. In addition to not meeting the goal of matching existing flows at the Lake Sammamish outfall, these options are not likely be feasible due to the high cost and impractical size of the facilities. This option would not be further consid**etament 29**

SSDP2016-00415

003419

Detention Option #3: A similar reduction in flow could be obtained by installing a 50-foot long vault at the outlet of Subbasin 4. This option assumes that flows from Subbasins 7 and 8 are not piped across Subbasin 4 but are allowed to flow in an open channel that allows infiltration. As with Option #1 and #2, peak flows at the Lake Sammamish outfall are predicted to increase at the 2-year and 100-year events. This is due to the modeled overall future increase in impervious cover through the other basins. This option is feasible, but would not meet the goal of matching existing flows at the Lake Sammamish outfall. This option would not be further considered.

Detention Option #4 & #5: Two options for installing a vault downstream of Subbasins 3 through 8 are able to provide a reduction in peak flows to the Lake Sammamish outfall. These options would collect flow from over 90 percent of the total basin area. Detention Option #4 could be as small as 50-feet long if flows from Subbasins 7 and 8 are not piped across Subbasin 4 but are allowed to flow in an open channel that allows infiltration.

Detention Option #5 assumes that Subbasins 7 and 8 are piped down the hill through Subbasin 4, requiring a 200-foot long vault to provide an adequate reduction in peak flows to the Lake Sammamish outfall.

Table 5 Flow Control Facility Summary						
Flow Control Location Detention Option #1 Downstream of	Vault Type Standard	Size 850ft L x 20ft W x 7ft H	Future 2 year Peak Flow at Lake Sammamish Outfall 10.1 cfs*	Future 100 year Peak Flow at Lake Sammamish Outfall 23.4 cfs*		
Subbasins 7 & 8 Detention Option #2 Downstream of Subbasins 7 & 8	Infiltration Vault	500ft L x 20ft W x 7ft H	10.1 cfs*	23.4 cfs*		
Detention Option #3 Downstream of Subbasin 4, assuming Subbasins 7 & 8 are not piped through Subbasin 4	Standard	50ft L x 20ft W x 7ft H	10.7 cfs*	23.9 cfs*		
Detention Option #4 Downstream of Subbasins 3,4,5,6,7,8, assuming Subbasins 7 & 8 are not piped through Subbasin 4	Standard	50ft L x 20ft W x 7ft H	5.79 cfs	17.2 cfs		
Detention Option #5 Downstream of Subbasins 3,4,5,6,7,8, assuming Subbasins 7 & 8 are piped through Subbasin 4	Standard	200ft L x 20ft W x 7ft H	5.88 cfs	17.1 cfs		

* These flows exceed the existing flow at the Lake Sammamish outfall

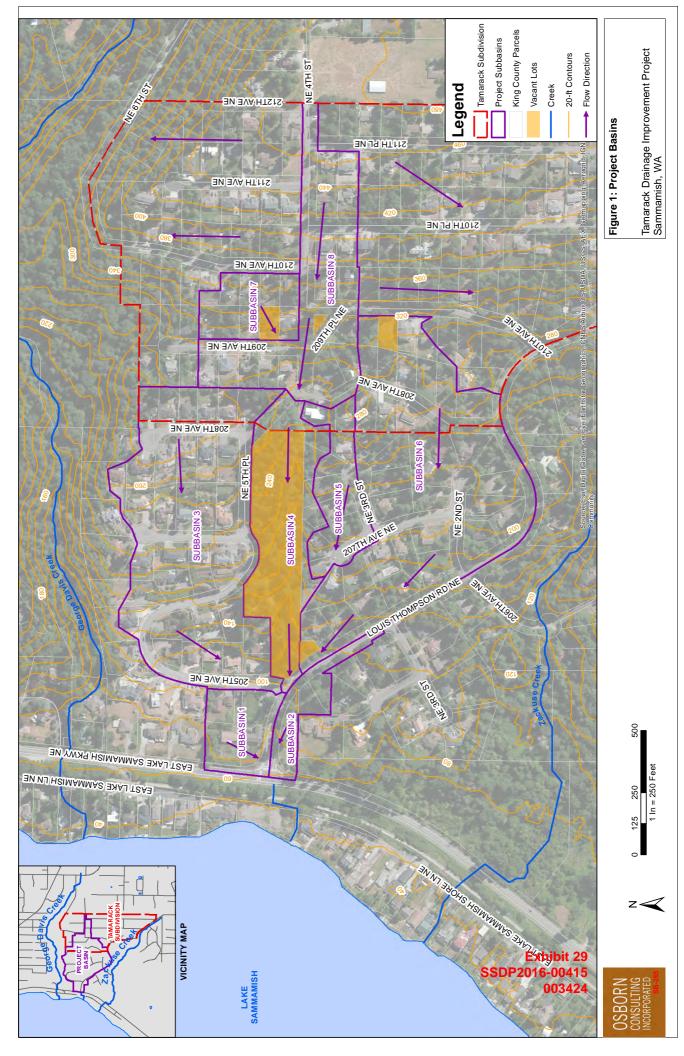
CONCLUSION

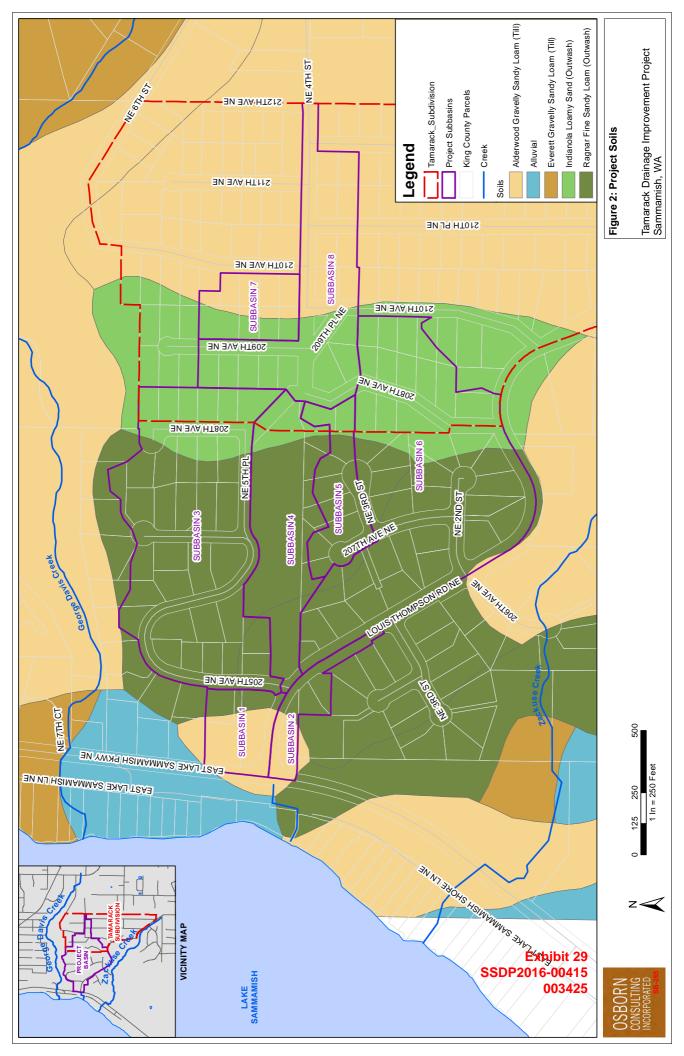
This modeling study developed runoff estimates for 8 subbasins in the Project Basin for existing conditions, proposed drainage improvements, and future fully developed conditions. The proposed drainage improvements are not expected to trigger flow control requirements because new or replaced impervious surface will not be added. However, peak flows and flow durations are expected to increase at the Lake Sammamish outfall due to the change in conveyance for Subbasins 7 and 8 to be conveyed through storm drains rather than an open channel on Subbasins 4 that provides some infiltration. An additional increase in peak flows will occur at the outfall due to an expected increased impervious cover throughout the Project Basin as individual properties redevelop. Peak flows are expected to increase by as much as 25 percent at the outfall for future fully developed conditions.

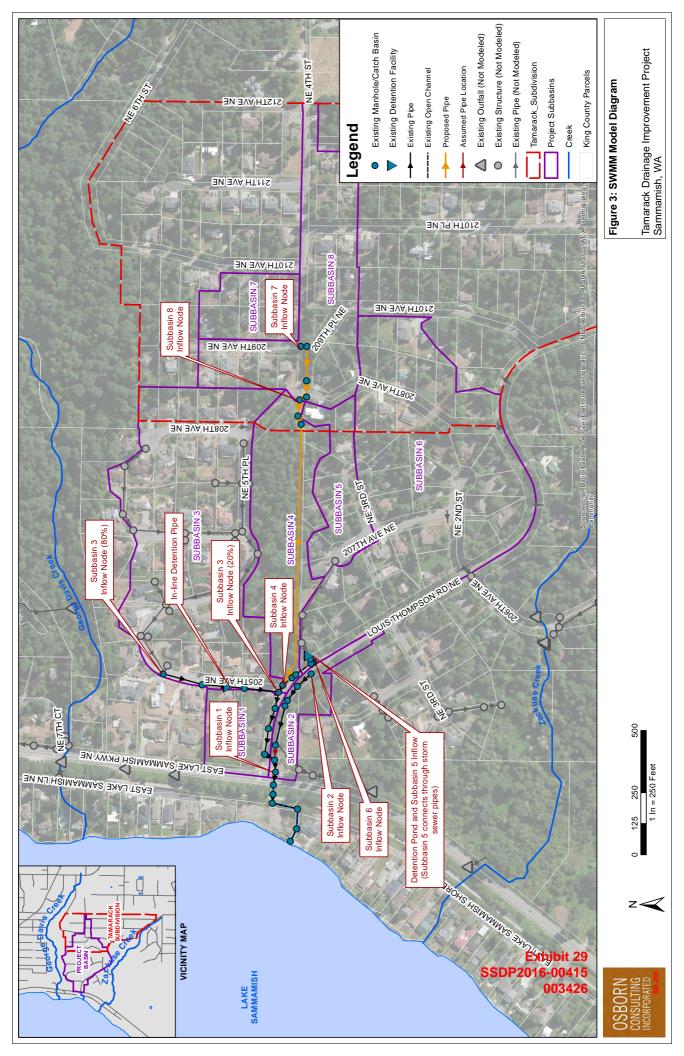
Several flow control options were investigated to match or decrease peak flows to the outfall under future fully developed conditions with Subbasins 7 and 8 piped to Louis Thompson Road. Assuming that runoff will not be piped across Subbasins 4, then the most feasible option is a 50-foot long by 20-foot wide by 7-foot deep detention vault that would collect runoff from Subbasins 3 through 8, or roughly 90 percent of the Project Basin's total area. This vault would provide a reduction in peak flows to the outfall. The vault would need to be installed in the right-of-way somewhere near the intersection of Louis Thompson Road NE and 205th Avenue NE.

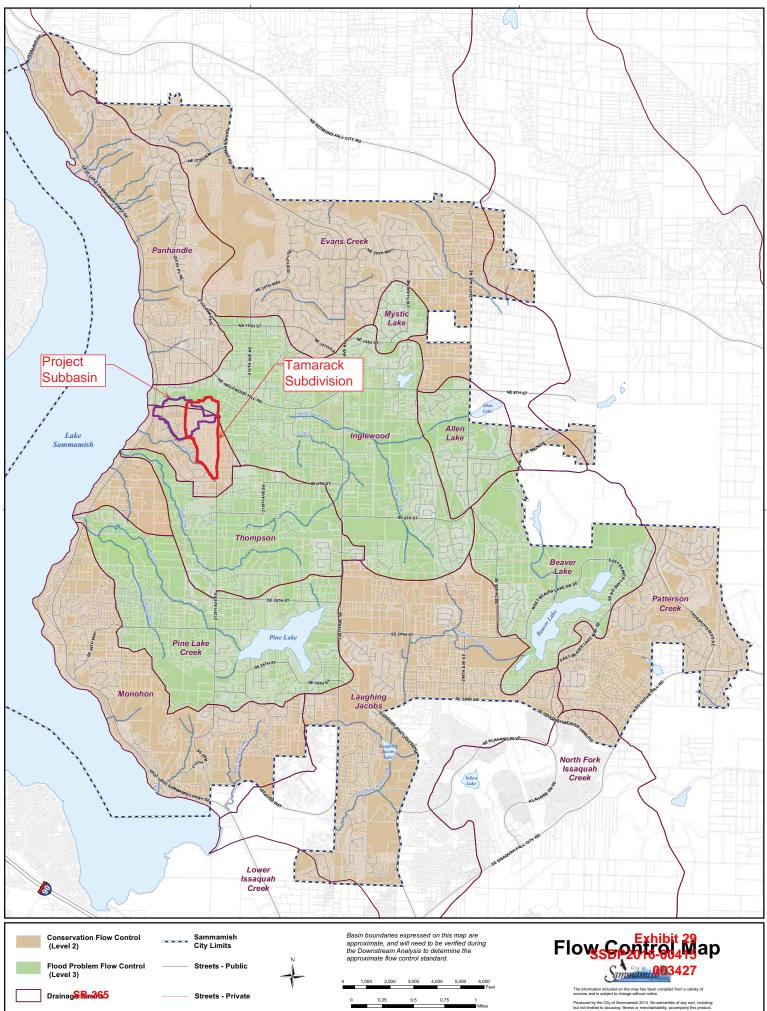
Flow control facilities have been sized to match or provide a reduction from existing peak flows at the Lake Sammamish outfall. If design progresses, flow durations should also be considered so that erosive flows at lower flow rates do not create a concern.

Detention will be required for any developments or redevelopments that trigger flow control requirements. To ensure that increases in impervious cover are mitigated in the future, the City should investigate whether updates to the existing drainage code would be beneficial.


The existing wetland area near the Lake Sammamish outfall must be protected according to drainage code requirements. This will include controlling the wetland's hydroperiod to maintain habitat for wetland plant and animal communities. A hydrologic assessment will be required during the design phase to ensure the proposed drainage improvements will match the existing volume and pattern of water stored in the wetland. This assessment would require a review of the exiting condition to approximate how much water the wetland currently receives.


Additionally, it is recommended that the condition of the existing open channel be investigated prior to design and construction in Subbasin 4 to review wetland condition and erosion concerns and to document existing conditions.


References


Kilgore, R.T. and Cotton, G.K., 2005, "Design of Roadside Channels with Flexible Linings," U.S. Department of Transportation, Federal Highway Administration, FHWA-NHI-05-114, Hydraulic Engineering Circular No. 15, Third Edition.

APPENDIX A FIGURES

APPENDIX B

MODELING DOCUMENTATION

WWHM2012

PROJECT REPORT

Tamarack Project Basin Proposed Drainage Improvements

General Model Information

Project Name:	Tamarack - Durations Existing
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/23/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

High Flow Threshold for POC6:	50 Year
Low Flow Threshold for POC5: High Flow Threshold for POC5:	50 Percent of the 2 Year 50 Year 50 Percent of the 2 Year
Low Flow Threshold for POC4:	50 Percent of the 2 Year
High Flow Threshold for POC4:	50 Year
Low Flow Threshold for POC3:	50 Percent of the 2 Year
High Flow Threshold for POC3:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year
Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25

Element Flows To: Surface Interflow Groundwater Subbasin 3 Detention Subbasin 3 Detention

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7

Element Flows To: Surface Interflow Groundwater Subbasin 5 Detention

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod Element Flows To:	acre 5.73	
Surface	Interflow	Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	3.96
Element Flows To:	
Outlet 1 O	utlet 2
Basin 4 - Perv Lateral Fl	ow

Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.33 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .86 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep 2.25 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .59 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Subbasin 3B Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.44
Pervious Total	1.44
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.65 0.28
Impervious Total	1.38
Basin Total	2.82
Flomont Flows To:	

Element Flows To: Surface

Interflow

Groundwater

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15
Element Flows To:	

Element Flows TO.		
Surface	Interflow	Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25
Element Flows To: Surface Inter Tank 1 Tan	rflow k 1

Groundwater

Subbasin 4 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.73
Pervious Total	5.73
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.06 0.02 0.01
Impervious Total	0.09
Basin Total	5.82
Element Flows To	

Element Flows To: Surface

Interflow

Groundwater

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEF	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1

Groundwater

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Subbasin 7 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.59 0.86
Pervious Total	1.45
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.62 0.26
Impervious Total	0.88
Basin Total	2.33
Element Flows To:	

Element Flows To: Surface Interflow

Groundwater

Subbasin 8 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 2.33 2.25
Pervious Total	4.58
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.78 0.85 0.36
Impervious Total	2.99
Basin Total	7.57
Element Flows To: Surface	Interflow

Groundwater

Basin 3B Bypass:	Yes
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.44
Pervious Total	1.44
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.65 0.28
Impervious Total	1.38
Basin Total	2.82

Element Flows To: Surface Inter

Interflow

Groundwater

Routing Elements Predeveloped Routing

Subbasin 5 Detention

	24.00 ft 24.00 ft	
	• • • •	acro-foot
	0.292 T	
	0.292 T	o 1
	0.292 T	o 1
	7 ft.	
		Elevation:0 ft.
	1 in.	Elevation:6.5 ft.
Outle	et 2	
	Outle	24.00 ft 8 ft. 0.1096 0.292 T 0.292 T 0.292 T 0.292 T 7 ft. 24 in. 5.75 in.

Pond Hydraulic Table

Stage(feet) 0.0000	Area(ac.) 0.013	Volume(ac-ft. 0.000) Discharge	e(cfs) Infilt(cfs) 0.000	
0.0889	0.013	0.001	0.267	0.000	
0.1778	0.013	0.002	0.378	0.000	
0.2667	0.013	0.003	0.463	0.000	
0.3556	0.013	0.004	0.535	0.000	
0.4444	0.013	0.005	0.598	0.000	
0.5333	0.013	0.007	0.655	0.000	
0.6222	0.013	0.008	0.707	0.000	
0.7111	0.013	0.009	0.756	0.000	
0.8000	0.013	0.010	0.802	0.000	
0.8889	0.013	0.012	0.845	0.000	
0.9778	0.013	0.013	0.887	0.000	
1.0667	0.013	0.014	0.926	0.000	
1.1556	0.014	0.015	0.964	0.000	
1.2444	0.014	0.017	1.000	0.000	
1.3333	0.014	0.018	1.036	0.000	
1.4222	0.014	0.019	1.070	0.000	
1.5111	0.014	0.020	1.102	0.000	
1.6000	0.014	0.022	1.134	0.000	
1.6889	0.014	0.023	1.166	0.000	
1.7778	0.014	0.024	1.196	0.000	
1.8667	0.014	0.025	1.225	0.000	
1.9556	0.014	0.027	1.254	0.000	
2.0444	0.014	0.028	1.282	0.000	
2.1333	0.014	0.029	1.310	0.000	
2.2222	0.014	0.031	1.337	0.000	
2.3111	0.014	0.032	1.364	0.000	
2.4000	0.014	0.033	1.390	0.000	
2.4889	0.014	0.034	1.415	0.000	
2.5778	0.014	0.036	1.440	0.000	
2.6667	0.015	0.037	1.465	0.000	
2.7556	0.015	0.038	1.489	0.000	S

2.8444 0.0° 2.9333 0.0° 3.0222 0.0° 3.1111 0.0° 3.2000 0.0° 3.2889 0.0° 3.4667 0.0° 3.5556 0.0° 3.6444 0.0° 3.7333 0.0° 3.6444 0.0° 3.7333 0.0° 3.8222 0.0° 3.9111 0.0° 4.0000 0.0° 4.0000 0.0° 4.2667 0.0° 4.2667 0.0° 4.5333 0.0° 4.6222 0.0° 4.7111 0.0° 4.8000 0.0° 4.8889 0.0° 5.1556 0.0° 5.1556 0.0° 5.4222 0.0° 5.111 0.0° 5.6667 0.0° 5.7778 0.0° 5.8667 0.0° 5.9556 0.0° 6.6667 0.0° 6.7556 0.0° 6.7556 0.0° 6.7578 0.0° 7.8289 0.0° 7.3778 0.0° 7.4657 0.0° 7.8444 0.0° 7.7333 0.0° 7.7333 0.0° 7.7333 0.0° 7.8222 0.0° 7.9111 0.0°	15 0.041 15 0.043 15 0.045 15 0.047 15 0.048 15 0.049 15 0.051 15 0.052 15 0.054 15 0.056 15 0.056 15 0.058 16 0.061 16 0.063 16 0.066 16 0.068 16 0.071 16 0.071 16 0.071 16 0.071 16 0.071 16 0.073 17 0.083 17 0.081 17 0.083 17 0.095 17 0.096 17 0.093 17 0.096 17 0.101 17 0.102 17 0.103 17 0.104 18 0.112 18 0.112 18 0.121 18 0.121 18 0.121	$\begin{array}{c} 1.513\\ 1.536\\ 1.559\\ 1.582\\ 1.605\\ 1.627\\ 1.649\\ 1.670\\ 1.691\\ 1.712\\ 1.733\\ 1.754\\ 1.774\\ 1.794\\ 1.814\\ 1.833\\ 1.853\\ 1.872\\ 1.891\\ 1.910\\ 1.928\\ 1.947\\ 1.965\\ 1.983\\ 2.001\\ 2.019\\ 2.037\\ 2.054\\ 2.072\\ 2.089\\ 2.106\\ 2.123\\ 2.019\\ 2.072\\ 2.089\\ 2.106\\ 2.123\\ 2.054\\ 2.072\\ 2.089\\ 2.265\\ 2.222\\ 2.238\\ 2.254\\ 2.269\\ 2.285\\ 2.308\\ 2.327\\ 2.345\\ 2.363\\ 2.380\\ 2.467\\ 3.198\\ 4.316\\ 5.685\\ 7.207\\ 8.785\\ 10.32\\ 11.71\\ 12.90\\ 3.83\\ 14.51\\ \end{array}$	$egin{aligned} 0.000\\$	
--	---	---	---	--

8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Subbasin 3 Detention

Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

0000000000001111111111111122222	itage(feet) .0000 .0667 .1333 .2000 .2667 .3333 .4000 .4667 .5333 .6000 .6667 .7333 .8000 .8667 .9333 .0000 .6667 .3333 .4000 .8667 .9333 .0000 .6667 .7333 .8000 .8667 .9333 .0000 .6667 .7333 .8000 .6667 .7333 .6000 .6667 .7333 .8000 .6667 .9333 .0000 .0667 .1333 .2000 .2667 .3333	Area(ac.) 0.000 0.004 0.006 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.014 0.015 0.016 0.016 0.016 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.023	Volume(ac-ft.) 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.011 0.012 0.013 0.014 0.015 0.017 0.018 0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028 0.029 0.030 0.032 0.035 0.036 0.038 0.039	Discharge(cfs) 0.000 0.070 0.099 0.122 0.140 0.157 0.172 0.186 0.199 0.211 0.222 0.233 0.243 0.253 0.263 0.272 0.281 0.290 0.298 0.306 0.314 0.322 0.330 0.337 0.344 0.352 0.359 0.365 0.372 0.379 0.385 0.392 0.398 0.404 0.410 0.410 0.416	Infilt(cfs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	
2 2 2 2 2	.2667	0.022	0.038	0.410	0.000	SSDP

2.6667 2.7333 2.8000 2.8667 2.9333 3.0000 3.0667 3.1333 3.2000 3.2667 3.3333 3.4000 3.4667 3.5333 3.6000 3.6667 3.7333 3.8000 3.8667 3.9333 4.0000 4.0667 4.1333 4.2000 4.2667 4.3333 4.4000 4.2667 4.5333 4.4000 4.6667 4.5333 4.6000 4.6667 4.7333 4.8000 5.0667 5.1333 5.2000 5.2667 5.3333 5.4000 5.4667 5.5333 5.6000 5.6667 5.7333 5.6000 5.6667 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.7333 5.6000 5.6667 5.7333 5.73	0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.020 0.020 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.010 0.015 0.014 0.013 0.012 0.011 0.010 0.012	0.047 0.049 0.050 0.052 0.053 0.055 0.057 0.058 0.060 0.061 0.063 0.064 0.068 0.069 0.071 0.072 0.074 0.075 0.077 0.078 0.075 0.077 0.078 0.083 0.081 0.083 0.084 0.085 0.087 0.083 0.084 0.085 0.087 0.088 0.090 0.091 0.092 0.093 0.095 0.096 0.097 0.098 0.095 0.096 0.097 0.098 0.100 0.101 0.102 0.103 0.104 0.107 0.109 0.109 0.109 0.109 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.109 0.109 0.109 0.109 0.109 0.109 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.109 0	0.445 0.450 0.456 0.461 0.467 0.472 0.472 0.477 0.482 0.492 0.497 0.502 0.507 0.512 0.517 0.522 0.526 0.531 0.536 0.540 0.545 0.549 0.558 0.563 0.563 0.567 0.572 0.576 0.580 0.584 0.589 0.584 0.589 0.584 0.589 0.584 0.589 0.584 0.589 0.584 0.589 0.597 0.601 0.605 0.609 0.978 1.648 2.508 3.508 4.609 5.768 6.945 8.097 9.185 10.17 11.03	0.000 0.000
5.6000	0.011	0.107	9.185	0.000
5.6667	0.010	0.108	10.17	0.000
5.7333	0.009	0.109	11.03	0.000
5.8000	0.008	0.109	11.74	0.000
5.8667	0.006	0.110	12.31	0.000
5.9333	0.004	0.110	12.76	0.000
6.0000	0.000	0.111	13.13	0.000
6.0667	0.000	0.000	13.68	0.000

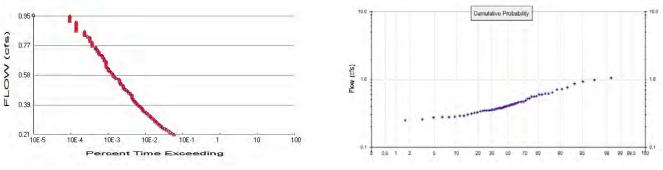
Mitigated Routing

Tank 1	
Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

Stage(feet) 0.0000 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 0.6000 0.6667 0.7333 0.8000 0.8667 0.9333 1.0000 1.0667 1.1333 1.2000 1.2667 1.3333 1.4000 1.2667 1.5333 1.4000 1.4667 1.5333 1.6000 1.6667 1.7333 1.8000 1.8667 1.9333 2.0000 2.0667 2.1333 2.2000	Area(ac.) 0.000 0.004 0.006 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.016 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	Volume(ac-ft.) 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.007 0.008 0.009 0.011 0.012 0.013 0.014 0.015 0.017 0.018 0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028 0.029 0.030 0.032 0.035 0.036	0.000 0.070 0.099 0.122 0.140 0.157 0.172 0.186 0.199 0.211 0.222 0.233 0.243 0.253 0.263 0.272 0.281 0.290 0.298 0.306 0.314 0.322 0.330 0.337 0.344 0.352 0.359 0.365 0.372 0.379 0.385 0.392 0.398 0.404	Infilt(cfs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	
2.1333	0.022	0.035	0.398	0.000	SSD

2.5333 2.6000 2.6667 2.7333 2.8000 2.8667 2.9333 3.0000 3.0667 3.1333 3.2000 3.2667 3.3333 3.4000 3.4667 3.5333 3.6000 3.6667 3.7333 3.8000 3.8667 3.9333 4.0000 4.0667 4.1333 4.2000 4.2667 4.3333 4.4000	0.023 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021	0.044 0.046 0.047 0.049 0.050 0.052 0.053 0.055 0.057 0.058 0.060 0.061 0.063 0.064 0.066 0.068 0.069 0.071 0.072 0.074 0.072 0.074 0.075 0.077 0.078 0.080 0.081 0.083 0.084 0.085 0.087	0.434 0.439 0.445 0.450 0.456 0.461 0.467 0.472 0.472 0.472 0.482 0.487 0.492 0.497 0.502 0.507 0.512 0.517 0.522 0.526 0.531 0.536 0.540 0.545 0.549 0.554 0.558 0.563 0.567 0.572	0.000 0
4.5333	0.020	0.090	0.580	0.000
4.6000	0.019	0.091	0.584	0.000
4.6667	0.019	0.092	0.589	0.000
4.7333	0.019	0.093	0.593	0.000
4.8000	0.018	0.095	0.597	0.000
4.8667	0.018	0.096	0.601	0.000
4.9333	0.018	0.097	0.605	0.000
5.0000	0.017	0.098	0.609	0.000
5.0667	0.017	0.100	0.978	0.000
5.1333	0.016	0.101	1.648	0.000
5.2000	0.016	0.102	2.508	0.000
5.2667	0.015	0.103	3.508	0.000
5.3333	0.014	0.104	4.609	0.000
5.4000	0.014	0.105	5.768	0.000
5.4667	0.013	0.106	6.945	0.000
5.5333	0.012	0.107	8.097	0.000
5.6000	0.011	0.107	9.185	0.000
5.6667	0.010	0.108	10.17	0.000
5.7333	0.009	0.109	11.03	0.000
5.8000	0.008	0.109	11.74	0.000
5.8667	0.006	0.110	12.31	0.000
5.9333	0.004	0.110	12.76	0.000
6.0000	0.000	0.111	13.13	
6.0667	0.000	0.000	13.68	0.000


Trapezoidal Pond 1

Bottom Length: Bottom Width:		24.00 ft. 24.00 ft.	
Depth:		8 ft.	are feet
Volume at riser head:		0.1096_a	
Side slope 1:		0.292 To	o 1
Side slope 2:		0.292 To	o 1
Side slope 3:		0.292 To	o 1
Side slope 4:		0.292 To	o 1
Discharge Structure			
Riser Height:		7 ft.	
Riser Diameter:		24 in.	
Orifice 1 Diameter:		5.75 in.	Elevation:0 ft.
Orifice 2 Diameter:		1 in.	Elevation:6.5 ft.
Element Flows To:			
Outlet 1	Outle	et 2	
000001	Calle		

Pond Hydraulic Table

Stage(feet) 0.0000 0.0889 0.1778 0.2667 0.3556 0.4444 0.5333 0.6222 0.7111 0.8000 0.8889 0.9778 1.0667 1.1556 1.2444 1.3333 1.4222 1.5111 1.6000 1.6889 1.7778 1.8667 1.9556 2.0444 2.1333 2.2222 2.3111 2.4000 2.4889 2.5778 2.6667	Area(ac.) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014	Volume(ac-ft.) 0.000 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.012 0.013 0.012 0.013 0.014 0.015 0.017 0.018 0.019 0.020 0.022 0.023 0.022 0.023 0.024 0.025 0.027 0.028 0.029 0.031 0.032 0.033 0.034 0.036 0.027	0.000 0.267 0.378 0.463 0.535 0.598 0.655 0.707 0.756 0.802 0.845 0.887 0.926 0.964 1.000 1.036 1.070 1.102 1.134 1.166 1.196 1.225 1.254 1.282 1.310 1.337 1.364 1.390 1.415 1.440	0.000 0	
2.4000 2.4889	0.014 0.014	0.033 0.034	1.390 1.415	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	SSDP

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.34 Total Impervious Area: 0.81

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.4167965 year0.56731610 year0.67789525 year0.83055250 year0.954007

1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs) `
2 year	0.416796
5 year	0.567316
10 year	0.677895
25 year	0.830552
50 year	0.954007
100 year	1.086099

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Predeveloped	wiitigate
1949	0.612	0.612
1950	0.594	0.594
1951	0.375	0.375
1952	0.249	0.249
1953	0.279	0.279
1954	0.341	0.341
1955	0.379	0.379
1956	0.346	0.346
1957	0.439	0.439
1958	0.321	0.321

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated11.04581.0458

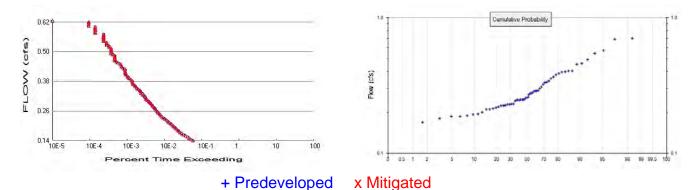
1	1.0458	1.0458
2	0.9867	0.9867
3	0.9201	0.9201

4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 16 7 8 9 10 11 23 4 5 6 7 8 9 21 22 32 4 25 6 7 8 9 30 132 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 132 33 4 5 6 7 8 9 30 14 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 30 122 33 4 5 6 7 8 9 0 11 22 32 34 5 6 7 8 9 0 122 33 4 5 6 5 7 8 9 0 122 33 4 5 6 5 7 8 9 0 122 3 3 4 5 6 5 7 8 9 0 122 3 3 4 5 6 5 7 8 9 0 122 3 3 4 5 6 5 7 8 9 0 1 2 3 3 4 5 6 5 7 8 9 0 1 2 3 3 4 5 6 5 7 8 9 0 1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8561 0.7635 0.7165 0.7165 0.7114 0.6369 0.6132 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4855 0.4595 0.4595 0.4595 0.4251 0.4234 0.4324 0.4358 0.4304 0.4358 0.4304 0.4358 0.4304 0.4358 0.3933 0.3861 0.3787 0.3759 0.3748 0.3662 0.3559 0.3525 0.3487 0.3748 0.3662 0.3559 0.3525 0.3487 0.3748 0.3461 0.3461 0.3461 0.3461 0.3406 0.3277 0.3242 0.3207 0.3207 0.3093 0.302 0.2886 0.2824 0.2767 0.2740 0.2770	0.8561 0.7635 0.7165 0.7174 0.6369 0.6132 0.5962 0.5937 0.5615 0.5589 0.5537 0.5252 0.5181 0.4874 0.4696 0.4685 0.4595 0.4595 0.4590 0.4494 0.4394 0.4394 0.4394 0.4304 0.4251 0.4234 0.4141 0.4077 0.3933 0.3861 0.3787 0.3767 0.3759 0.3748 0.3662 0.3559 0.3525 0.3487 0.3461 0.3406 0.3377 0.3242 0.3207 0.3242 0.32767 0.3242 0.32767 0.3242 0.32767 0.3242 0.32767

Duration Flows

The Facility PASSED

Flow(cfs)PredevMitPercentagePass/Fail0.208412431243100Pass0.215911261126100Pass0.2235985985100Pass0.2310885885100Pass0.2385786786100Pass0.2461697697100Pass0.2536625625100Pass0.2611571571100Pass0.2686515515100Pass0.2762474474100Pass0.2837443443100Pass0.2912403403100Pass0.3063352352100Pass0.3214297297100Pass0.3289274274100Pass0.3440229229100Pass0.3515210210100Pass0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.3138321321100Pass0.3214297297100Pass0.3289274274100Pass0.3364250250100Pass0.3440229229100Pass0.3515210210100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3289274274100Pass0.3364250250100Pass0.3440229229100Pass0.3515210210100Pass0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3364250250100Pass0.3440229229100Pass0.3515210210100Pass0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3440229229100Pass0.3515210210100Pass0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3515210210100Pass0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3590190190100Pass0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3666182182100Pass0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3741172172100Pass0.3816162162100Pass0.3892148148100Pass
0.3816162162100Pass0.3892148148100Pass
0.3892 148 148 100 Pass
0.3967 137 137 100 Pass
0.4042 124 124 100 Pass
0.4117 116 116 100 Pass
0.4193 110 110 100 Pass
0.4268 103 103 100 Pass
0.4343 100 100 100 Pass
0.4419 94 94 100 Pass
0.4494 93 93 100 Pass
0.45699292100Pass0.46458787100Pass
0.4645 87 87 100 Pass 0.4720 79 79 100 Pass
0.4795 73 73 100 Pass
0.4871 67 67 100 Pass
0.4946 60 60 100 Pass
0.5021 56 56 100 Pass
0.5097 55 55 100 Pass
0.5172 54 54 100 Pass
0.5247 48 48 100 Pass
0.5322 46 46 100 Pass
0.5398 44 44 100 Pass
0.54734343100Pass0.55484242100Pass
0.5548 42 42 100 Pass 0.5624 35 35 100 Pass
0.5699 33 33 100 Pass
0.5774 30 30 100 Pass
0.5850 29 29 100 Pass
0.5925 28 28 100 Pass
0.6000 26 26 100 Pass


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

Return Period	FIOW(CIS)
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2

Return Fenou	FIUW(CIS)
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

rear	Predeveloped	wiitigat
1949	0.378	0.378
1950	0.399	0.399
1951	0.247	0.247
1952	0.164	0.164
1953	0.189	0.189
1954	0.231	0.231
1955	0.249	0.249
1956	0.246	0.246
1957	0.270	0.270
1958	0.210	0.210
1959	0.210	0.210

Ranked Annual Peaks

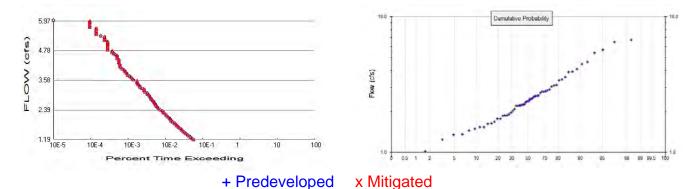
Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 **Rank** Predeveloped Mitigated 1 0 7030 0 7030

1	0.7030	0.7030
2	0.6916	0.6916
3	0.5737	0.5737
4	0.5428	0.5428

Duration Flows

The Facility PASSED

Flow(cfs) 0.1361 0.1411 0.1460	Predev 1238 1100 992	Mit 1238 1100 992	Percentage 100 100 100	Pass/Fail Pass Pass Pass
0.1509	887	887	100	Pass
0.1558 0.1607	786 701	786 701	100 100	Pass Pass
0.1656	622	622	100	Pass
0.1705	557	557	100	Pass
0.1755 0.1804	512 471	512 471	100 100	Pass Pass
0.1853	471 442	442	100	Pass
0.1902	409	409	100	Pass
0.1951	377	377	100	Pass
0.2000 0.2050	347 319	347 319	100 100	Pass Pass
0.2099	293	293	100	Pass
0.2148	266	266	100	Pass
0.2197	246	246	100	Pass
0.2246 0.2295	221 202	221 202	100 100	Pass Pass
0.2295	185	185	100	Pass
0.2394	174	174	100	Pass
0.2443	161	161	100	Pass
0.2492 0.2541	146 140	146 140	100 100	Pass Pass
0.2590	131	131	100	Pass
0.2639	125	125	100	Pass
0.2689	117	117	100	Pass
0.2738 0.2787	111 103	111 103	100 100	Pass Pass
0.2836	99	99	100	Pass
0.2885	91	91	100	Pass
0.2934	85	85 80	100	Pass
0.2983 0.3033	80 73	80 73	100 100	Pass Pass
0.3082	69	69	100	Pass
0.3131	65	65	100	Pass
0.3180 0.3229	63 58	63 58	100 100	Pass Pass
0.3278	56	56	100	Pass
0.3328	51	51	100	Pass
0.3377	49	49	100	Pass
0.3426 0.3475	46 42	46 42	100 100	Pass Pass
0.3524	39	39	100	Pass
0.3573	36	36	100	Pass
0.3622	34	34	100	Pass
0.3672 0.3721	31 30	31 30	100 100	Pass Pass
0.3770	30	30	100	Pass
0.3819	29	29	100	Pass
0.3868	27	27	100	Pass
0.3917	24	24	100	Pass


0.3966 0.4016 0.4065 0.4114 0.4163 0.4212 0.4261 0.4261 0.4311 0.4360 0.4409 0.4458 0.4556 0.4605 0.4655 0.4655 0.4655 0.4704 0.4753 0.4802 0.4851 0.4900 0.4999 0.5048 0.5097 0.5146 0.5195 0.5244 0.5294 0.5343 0.5392 0.5441 0.5392 0.5441 0.5392 0.5441 0.5393 0.5687 0.5785 0.5785 0.5834 0.5933 0.5982 0.6031 0.6080 0.6129 0.6178	23 22 29 99 99 19 19 10 10 10 10 10 9 8 8 8 8 8 7 7 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23 22 20 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{array}{c} 100 \\$	Pass Pass Pass Pass Pass Pass Pass Pass
0.6129	2	2	100	Pass
0.6178	2	2	100	Pass
0.6227	2	2	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)		Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	2.378656
5 year	3.418804
10 year	4.165974
25 year	5.17525
50 year	5.974148
100 year	6.813226

Flow Frequency Return Periods for Mitigated. POC #3Return PeriodFlow(cfs)2 year2.3786565 year3.41880410 year4.16597425 year5.1752550 year5.974148

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

6.813226

i cai	i redeveloped	miliyat
1949	3.131	3.131
1950	3.894	3.894
1951	2.572	2.572
1952	1.864	1.864
1953	2.249	2.249
1954	1.528	1.528
1955	2.461	2.461
1956	2.259	2.259
1957	2.802	2.802
1958	1.530	1.530
1959	1.671	1.671

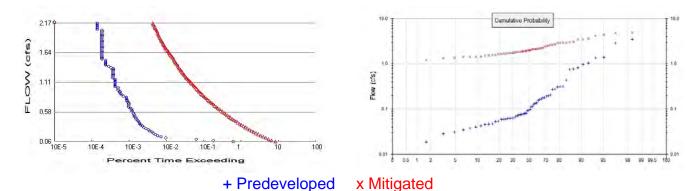
Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 **Rank Predeveloped Mitigated 6**7202

1	6.7202	6.7202
2	6.4813	6.4813
3	5.6972	5.6972
4	5.4074	5.4074

Duration Flows

The Facility PASSED


Flow(cfs) 1.1893 1.2377 1.2860	Predev 1220 1117 1029	Mit 1220 1117 1029	Percentage 100 100 100	Pass/Fail Pass Pass Pass
1.3343	923	923	100	Pass Pass
1.3827	838	838	100	Pass
1.4310 1.4793	763 709	763 709	100 100	Pass Pass
1.5276	635	635	100	Pass
1.5760	590	590	100	Pass
1.6243 1.6726	553 502	553 502	100 100	Pass Pass
1.7210	470	470	100	Pass
1.7693	437	437	100	Pass
1.8176 1.8660	405 375	405 375	100 100	Pass Pass
1.9143	333	333	100	Pass
1.9626	306	306	100	Pass
2.0110 2.0593	287 274	287 274	100 100	Pass Pass
2.1076	254	254	100	Pass
2.1560	238	238	100	Pass
2.2043 2.2526	222 198	222 198	100 100	Pass Pass
2.3010	189	189	100	Pass
2.3493	177	177	100	Pass
2.3976 2.4459	157 140	157 140	100 100	Pass
2.4943	131	131	100	Pass Pass
2.5426	123	123	100	Pass
2.5909	117	117	100	Pass
2.6393 2.6876	113 106	113 106	100 100	Pass Pass
2.7359	102	102	100	Pass
2.7843	96	96	100	Pass
2.8326 2.8809	90 87	90 87	100 100	Pass Pass
2.9293	81	81	100	Pass
2.9776	79 70	79 70	100	Pass
3.0259 3.0743	72 70	72 70	100 100	Pass Pass
3.1226	61	61	100	Pass
3.1709	57	57	100	Pass
3.2193 3.2676	57 51	57 51	100 100	Pass Pass
3.3159	45	45	100	Pass
3.3642	43	43	100	Pass
3.4126 3.4609	40 38	40 38	100 100	Pass Pass
3.5092	37	37	100	Pass
3.5576	37	37	100	Pass
3.6059 3.6542	30 28	30 28	100 100	Pass Pass
3.7026	26	26	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #3 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Tank 1 POC		809.70				0.00			
Total Volume Infiltrated		809.70	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Predeveloped Landuse Totals for POC #4Total Pervious Area:11.76Total Impervious Area:3.96

Mitigated Landuse Totals for POC #4 Total Pervious Area: 11.76 Total Impervious Area: 3.96

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4 Return Period Flow(cfs)

2 year	0.1159
5 year	0.338036
10 year	0.63464
25 year	1.312858
50 year	2.165686
100 year	3.469708

Flow Frequency Return Periods for Mitigated. POC #4Return PeriodFlow(cfs)2 year2.0522855 year2.7560910 year3.267799

10 your	0.201100
25 year	3.968342
50 year	4.530714
100 year	5.128923

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

rear	Fredeveloped	wiitiyat
1949	0.312	2.935
1950	1.365	2.848
1951	0.308	1.827
1952	0.070	1.231
1953	0.053	1.427
1954	0.166	1.701
1955	0.094	1.842
1956	0.276	1.836
1957	0.076	2.068
1958	0.063	1.564
1959	0.091	1.524

$1960 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 1969 \\ 1970 \\ 1971 \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1976 \\ 1977 \\ 1978 \\ 1979 \\ 1980 \\ 1981 \\ 1982 \\ 1983 \\ 1984 \\ 1985 \\ 1986 \\ 1987 \\ 1988 \\ 1989 \\ 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ 1996 \\ 1997 \\ 1998 \\ 1999 \\ 2000 \\ 2001 \\ 2002 \\ 2003 \\ 2004 \\ 2005 \\ 2006 \\ 2007 \\ 2008 \\ 2000 \\ 2000 \\ 200 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2$	0.193 0.155 0.031 0.109 0.176 0.073 0.068 0.958 0.194 0.077 0.047 0.080 1.027 0.063 0.080 0.126 0.130 0.019 0.058 0.038 0.098 0.062 0.137 0.079 0.046 0.034 0.112 0.046 0.034 0.112 0.046 0.034 0.046 0.034 0.112 0.046 0.034 0.046 0.034 0.046 0.034 0.040 2.872 0.750 0.063 0.046 0.028 0.179 0.816 0.312 0.060 1.400 0.054 0.018 0.134 0.075 0.427 0.059 0.204 3.489 0.764 0.270	$\begin{array}{c} 1.902\\ 1.700\\ 1.351\\ 1.853\\ 1.671\\ 2.159\\ 1.429\\ 2.966\\ 3.031\\ 1.979\\ 1.910\\ 2.280\\ 2.681\\ 1.230\\ 2.140\\ 2.115\\ 1.751\\ 1.664\\ 2.123\\ 2.633\\ 3.501\\ 1.974\\ 2.950\\ 2.171\\ 1.450\\ 2.950\\ 2.171\\ 1.450\\ 1.882\\ 1.783\\ 2.395\\ 1.405\\ 2.236\\ 4.849\\ 3.620\\ 1.552\\ 1.583\\ 1.318\\ 1.710\\ 2.901\\ 2.018\\ 1.894\\ 4.367\\ 1.995\\ 2.100\\ 2.540\\ 2.646\\ 4.161\\ 1.664\\ 1.669\\ 4.725\\ 3.438\\ 1.710\\ 2.911\\ 2.018\\ 1.894\\ 4.367\\ 1.995\\ 2.100\\ 2.540\\ 2.646\\ 4.161\\ 1.664\\ 1.669\\ 4.725\\ 3.438\\ 1.710\\ 2.911\\ 2.018\\ 1.894\\ 1.995\\ 2.100\\ 2.540\\ 2.540\\ 2.646\\ 4.161\\ 1.664\\ 1.669\\ 4.725\\ 3.438\\ 1.710\\ 2.911\\ 2.018\\ 1.894\\ 1.995\\ 2.100\\ 2.540\\ 2.550\\ 2.540\\ 2.540\\ 2.540\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.550\\ 2.$
2009	0.270	2.471

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #4 **Rank** Predeveloped Mitigated 1 3.4888 4.8489

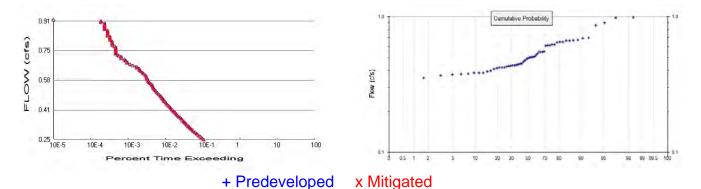
1	3.4888	4.8489
2	2.8717	4.7247
3	1.3996	4.3672
4	1.3649	4.1611

Duration Flows

Flow(cfs) 0.0580 0.0792 0.1005 0.1218 0.1431 0.1644 0.1857 0.2070 0.2283 0.2496 0.2709 0.2921 0.3134 0.3560 0.3773 0.3986 0.4199 0.4412 0.4625 0.4838 0.5050 0.5263 0.5476 0.5689 0.5902 0.6115 0.6328 0.6541 0.6754 0.6967 0.7179 0.7392 0.7605 0.7818 0.8031 0.8244 0.8457 0.8670 0.9947 1.0160 1.0373 1.0586	Predev 13242 3908 1346 204 154 124 109 96 88 77 71 60 53 49 44 41 40 38 35 33 30 29 28 26 25 23 21 21 21 21 21 21 21 21 21 21	Mit 179473 141957 117638 99137 83823 72209 62327 54178 46927 41152 36104 31570 27934 24768 21859 19453 17293 15483 13755 12329 11120 10004 9050 8237 7484 6757 6158 5576 5080 4639 4209 3850 3529 3228 2988 2723 2494 2304 2128 1962 1828 1962 1828 1962 1578 1487 1384 1296 1223 1147	Percentage 1355 3632 8739 48596 54430 58233 57180 56435 53326 53444 50850 52616 52705 50546 49679 47446 43232 40744 39300 37360 33696 33346 30166 28403 26728 25988 23684 22304 22086 22090 20042 18333 16804 16139 15726 14331 13855 12800 14186 14014 14061 14100 13150 13518 12581 11781 13588 12744	$\begin{array}{l} \textbf{Pass/Fail} \\ \textbf{Fail} \\ Fa$
0.9734	11	1487	13518	Fail
0.9947	11	1384	12581	Fail
1.0160	11	1296	11781	Fail
1.0373	9	1223	13588	Fail

1.20768 1.2289 8 1.2715 8 1.2928 8 1.3141 8 1.3354 8 1.3567 8 1.3779 7 1.3992 6 1.4205 5 1.4418 5 1.5057 5 1.5270 4 1.5696 4 1.5908 4 1.6547 4 1.6547 4 1.6760 4 1.6773 4 1.7186 4 1.7399 4 1.7825 4 1.8038 4 1.8250 4 1.8889 4 1.9102 4 1.9528 4 1.9741 4 1.9954 4 2.0592 3 2.0805 3 2.1018 3 2.1657 3	$\begin{array}{c} 710\\ 669\\ 629\\ 593\\ 564\\ 533\\ 505\\ 473\\ 457\\ 442\\ 421\\ 398\\ 378\\ 361\\ 350\\ 336\\ 315\\ 301\\ 286\\ 265\\ 256\\ 245\\ 231\\ 215\\ 203\\ 198\\ 191\\ 181\\ 173\\ 166\\ 159\\ 155\\ 150\\ 141\\ 136\\ 155\\ 150\\ 141\\ 136\\ 132\\ 127\\ 122\\ 121\\ 117\\ 112\\ 108\\ 105\\ 99\\ 96\\ 92 \end{array}$		Fail Fail Fail Fail Fail Fail Fail Fail
---	---	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.


The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #4 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #5 Return Period Flow(cfs)

Netuin Fendu	
2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817

Flow Frequency Return Periods for Mitigated. POC #5 Return Period Flow(cfs)

2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigate
1949	0.624	0.624
1950	0.648	0.648
1951	0.437	0.437
1952	0.351	0.351
1953	0.383	0.383
1954	0.417	0.417
1955	0.462	0.462
1956	0.472	0.472
1957	0.495	0.495
1958	0.397	0.397
1959	0.422	0.422

Ranked Annual Peaks

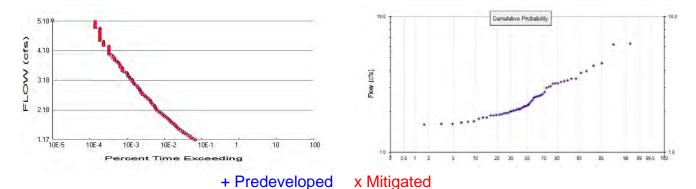
Ranked AnnualPeaks for Predeveloped and Mitigated.POC #5RankPredevelopedMitigated10.98940.989420.98120.981230.89950.8995

5	0.0995	0.0335
4	0.8626	0.8626

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.2493	2267	2267	100	Pass
0.2560	2066	2066	100	Pass
0.2627	1900	1900	100	Pass
0.2694 0.2761	1727 1579	1727 1579	100 100	Pass Pass
0.2827	1458	1458	100	Pass
0.2894	1340	1340	100	Pass
0.2961	1205	1205	100	Pass
0.3028	1110	1110	100	Pass
0.3095	1029	1029	100	Pass
0.3161	958	958	100	Pass
0.3228 0.3295	893 824	893 824	100 100	Pass
0.3362	761	761	100	Pass Pass
0.3429	711	711	100	Pass
0.3495	664	664	100	Pass
0.3562	609	609	100	Pass
0.3629	577	577	100	Pass
0.3696	541	541	100	Pass
0.3763	498	498	100	Pass
0.3829 0.3896	458 428	458 428	100 100	Pass Pass
0.3963	398	398	100	Pass
0.4030	375	375	100	Pass
0.4097	351	351	100	Pass
0.4163	325	325	100	Pass
0.4230	299	299	100	Pass
0.4297 0.4364	283 262	283 262	100 100	Pass Pass
0.4431	246	246	100	Pass
0.4498	227	227	100	Pass
0.4564	213	213	100	Pass
0.4631	196	196	100	Pass
0.4698	191	191	100	Pass
0.4765 0.4832	182 170	182	100 100	Pass
0.4898	160	170 160	100	Pass Pass
0.4965	151	151	100	Pass
0.5032	139	139	100	Pass
0.5099	132	132	100	Pass
0.5166	123	123	100	Pass
0.5232	113	113	100	Pass
0.5299 0.5366	107 100	107 100	100 100	Pass Pass
0.5433	99	99	100	Pass
0.5500	94	94	100	Pass
0.5566	90	90	100	Pass
0.5633	82	82	100	Pass
0.5700	77	77	100	Pass
0.5767 0.5834	74 70	74 70	100 100	Pass Pass
0.5901	68	68	100	Pass
0.5967	66	66	100	Pass


0.6034 0.6101 0.6168 0.6235 0.6301 0.6368 0.6435 0.6502 0.6502 0.6569 0.6702 0.6702 0.6769 0.7036 0.7103 0.7103 0.7170 0.7237 0.7303 0.7370 0.7437 0.7571 0.7574 0.7574 0.7571 0.7638 0.7704 0.7771 0.7638 0.7704 0.7771 0.7838 0.7905 0.7972 0.8038 0.8105 0.8172 0.8306 0.8372 0.8439 0.8506 0.8573 0.8400 0.8773 0.8840 0.8907 0.8974 0.9040	65 61 55 27 44 27 69 40 20 87 44 20 87 77 77 66 66 66 55 55 55 54	65 61 55 52 47 44 23 36 29 20 20 87 77 77 66 66 66 55 55 55 5 5 5 5 5 5 5	$ \begin{array}{r} 100\\ 100\\ 100$	Pass Pass Pass Pass Pass Pass Pass Pass
0.9107	4	4	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #5 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		193.34				0.00			
Total Volume Infiltrated		193.34	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Predeveloped Landuse Totals for POC #6 Total Pervious Area: 10.41 Total Impervious Area: 5.47

Mitigated Landuse Totals for POC #6 Total Pervious Area: 10.41 Total Impervious Area: 5.47

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #6 **Return Period** Flow(cfs)

2 year	2.349287
5 year	3.13595
10 year	3.71691
25 year	4.52232
50 year	5.176234
100 year	5.878212

Flow Frequency Return Periods for Mitigated. POC #6Return PeriodFlow(cfs)2 year2.3492875 year3.13595

10 year	3.71691
25 year	4.52232
50 year	5.176234
100 year	5.878212

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

i cai	i i cucvelopeu	wiitiyat
1949	2.974	2.974
1950	3.487	3.487
1951	2.180	2.180
1952	1.508	1.508
1953	1.768	1.768
1954	2.007	2.007
1955	2.138	2.138
1956	2.064	2.064
1957	2.224	2.224
1958	1.863	1.863
1959	1.989	1.989

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #6RankPredeveloped Mitigated16.317126.2081

1	0.3171	0.3171
2	6.2081	6.2081
3	4.5290	4.5290
4	4.3308	4.3308

Duration Flows

The Facility PASSED

Flow(cfs) 1.1746 1.2151 1.2555 1.2959 1.3363 1.3767 1.4172 1.4576 1.4980 1.5384 1.5788 1.6193 1.6597 1.7001 1.7405 1.7809 1.8214 1.8618 1.9022 1.9426 1.9830 2.0235 2.0639 2.1043 2.1447 2.1851 2.2256 2.2660 2.3064 2.3064 2.3468 2.3872 2.4277 2.4681 2.5085 2.5489 2.5893	Predev 1423 1277 1128 1021 913 811 721 654 585 524 491 459 434 394 363 326 304 282 263 238 216 197 179 163 152 136 197 179 163 152 136 129 125 117 113 104 95 92 89 83 75	Mit 1423 1277 1128 1021 913 811 721 654 585 524 491 459 434 394 363 326 304 282 263 238 216 197 179 163 152 136 197 179 163 152 136 129 125 117 113 104 95 92 89 83 75	Percentage 100 100 100 100 100 100 100 100 100 10	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
2.1043 2.1447 2.1851 2.2256 2.2660 2.3064 2.3468 2.3872 2.4277 2.4681 2.5085	163 152 136 129 125 117 113 104 95 92 89	163 152 136 129 125 117 113 104 95 92 89	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass
2.7510 2.7914 2.8319 2.8723 2.9127 2.9531 2.9935 3.0340 3.0744 3.1148 3.1552 3.1956 3.2361 3.2765	55 51 49 46 45 42 40 35 33 32 30 30 26 25	55 51 49 46 45 42 40 35 33 32 30 30 26 25	100 100 100 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass

3.3169 3.3573 3.3977 3.4382 3.4786 3.5190 3.5594 3.5998 3.6403 3.6807 3.7211 3.7615 3.8020 3.8424 3.8828 3.9232 3.9636 4.0041 4.0445 4.0849 4.1253 4.1657 4.2062 4.2466 4.2870 4.3274 4.3678 4.4083 4.4487 4.4891 4.5295 4.5699 4.6104 4.5295 4.5699 4.6104 4.5295 4.5699 4.6104 4.5295 4.5699 4.6104 4.6508 4.9337 4.9337 4.9337 4.9337 4.9741 5.0550 5.0954 5.1358	24 22 21 86 66 64 44 44 44 44 44 44 44 44 44 44 44	24 23 22 18 16 16 14 14 13 12 11 00 9 8 7 7 7 7 7 7 7 7 5 5 5 5 5 4 4 4 4 4 4 4	$ \begin{array}{r} 100\\ 100\\ 100$	Pass Pass Pass Pass Pass Pass Pass Pass
5.1762	3	3	100	Pass

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #6 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC #7 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #8 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

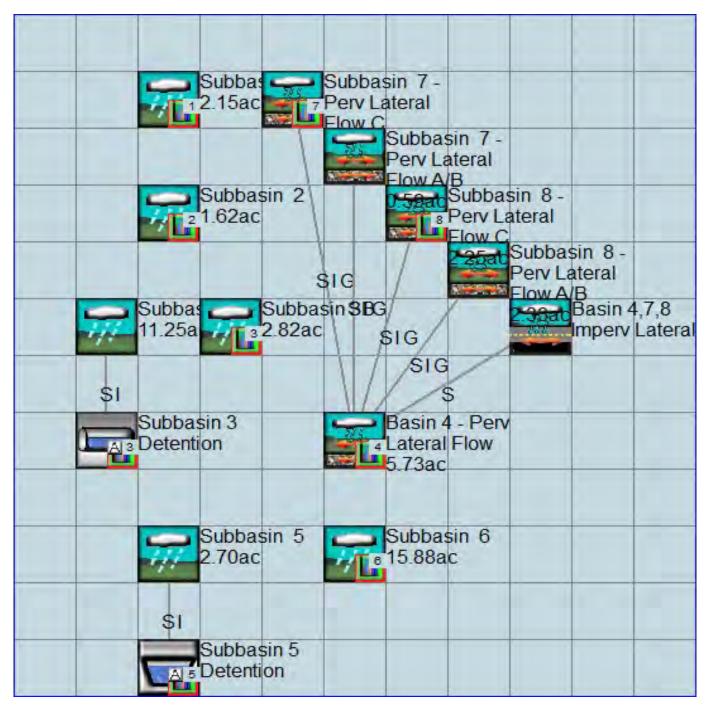
POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC 11

POC #11 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.


PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation START 1948 10 01 END 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL	
<pre>FILES <file> <un#> <file name<="" td=""><td></td></file></un#></file></pre>	
OPN SEQUENCE INGRP INDELT 00:15 PERLND 8 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 PERLND 9 IMPLND 7 IMPLND 7 IMPLND 7 IMPLND 16 PERLND 40 PERLND 41 PERLND 42 PERLND 43 RCHRES 2 PERLND 39 COPY 502 COPY 502 COPY 503 COPY 505 COPY 505 DISPLY 1 DISPLY 2 DISPLY 8 DISPLY 3 DISPLY 4 END OPN SEQUENCE DISPLY DISPLY 1	
- # <title>***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRN1Subbasin 12Subbasin 26Subbasin 6MAX1003</td><td>9
629
415</td></tr></tbody></table></title>	

PWAT-PARM1 <pls> PWATER van # - # CSNO RTOP 0 8 0 17 0 0 9 0 0 40 0 0 41 0 0 42 0 0 43 0 0 39 0 0 END PWAT-PARM1 0 0</pls>	riable monthly para JZFG VCS VUZ VNN 0 0 0 0 0 0 0 0	VIFW VIRC VLE INFG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>0 0 0 0 0 0 0 0 0 0 0 0 0</th>	0 0 0 0 0 0 0 0 0 0 0 0 0
PWAT-PARM2 <pls> PWATEH # - # ***FOREST 8 0 17 0 9 0 40 0 41 0 42 0 43 0 39 0 END PWAT-PARM2</pls>	R input info: Part LZSN INFILT 5 0.6 4.5 0.03 5 0.8 4.5 0.03 4.5 0.03 5 0.8 5 0.8	$\begin{array}{c ccccc} LSUR & SLSUH \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ 400 & 0.1 \\ \end{array}$	0.3 0.996 0.5 0.996 0.3 0.996 0.3 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.5 0.996 0.3 0.996
PWAT-PARM3 <pls> PWATEF # - # ***PETMAX 8 0 17 0 9 0 40 0 40 0 41 0 42 0 43 0 39 0 END PWAT-PARM3</pls>	R input info: Part PETMIN INFEXE 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	INFILD DEEPFH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PWAT-PARM4 <pls> PWATER # - # CEPSC 8 0.1 17 0.1 9 0.1 40 0.1 41 0.1 42 0.1 43 0.1 39 0.2 END PWAT-PARM4</pls>	input info: Part 4 UZSN NSUF 0.5 0.25 0.25 0.25 0.5 0.25 0.5 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.5 0.25 0.5 0.25 0.5 0.35	INTFW IRC 0 0.1 6 0.5 0 0.1 0 0.1 6 0.1 6 0.1 6 0.1 6 0.1 6 0.1	7 0.25 5 0.25 7 0.25 8 0.25 9 0.25 9 0.25 9 0.25 9 0.25 9 0.25 9 0.25 9 0.25 9 0.25
	L conditions at sta n 1990 to end of 19 SURS UZS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 (pat 1-11-95) RU IFWS LZS 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5 0 2.5	AGWS GWVS 3 1 0 5 1 0 3 1 0 3 1 0 3 1 0 5 1 0 5 1 0
END PERLND			Exhibit 29

IMPLND GEN-INFO

SSDP2016-00415 003519

<pls><name- # - # 2 ROADS/MOD 4 ROOF TOPS/FL 6 DRIVEWAYS/MO 3 ROADS/STEEP 7 DRIVEWAYS/ST 16 ROADS/MOD LAT END GEN-INFO *** Section IWATER***</name- </pls>	User 1 AT 1 D 1 1	t-series in out 1 1 1 1 1 1 1 1 1 1	Engl Metr 27 0 27 0 27 0 27 0 27 0	
ACTIVITY <pls> ***********************************</pls>		IQAL *** 0 0 0 0 0		****
PRINT-INFO <ils> ******** Pri: # - # ATMP SNOW IW 2 0 0 4 0 0 6 0 0 3 0 0 7 0 0 16 0 0 END PRINT-INFO</ils>		IQAL ** 0 1 0 1 0 1 0 1 0 1 0 1	* * * * * * * * 9 9 9 9	
IWAT-PARM1 <pls> IWATER varia # - # CSNO RTOP V 2 0 0 4 0 0 6 0 0 3 0 0 7 0 0 16 0 0 END IWAT-PARM1</pls>	able monthly RS VNN RTLI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * *	value flag	JS ***
IWAT-PARM2 <pls> IWATER # - # *** LSUR 2 400 4 400 6 400 3 400 7 400 16 400 END IWAT-PARM2</pls>	input info: SLSUR 0.05 0.01 0.05 0.1 0.1 0.05	NSUR I 0.1 0.1 0.1 0.1 0.1 0.1	*** RETSC 0.08 0.1 0.08 0.05 0.05 0.05 0.08	
IWAT-PARM3 <pls> IWATER # - # ***PETMAX 2 0 4 0 6 0 3 0 7 0 16 0 END IWAT-PARM3</pls>	input info: PETMIN 0 0 0 0 0 0 0 0	Part 3	***	
IWAT-STATE1 <pls> *** Initial # - # *** RETS</pls>	conditions a SURS	t start of	simulatior	¹ SS

2		0	0
4		0	0
6		0	0
3		0	0
7		0	0
16		0	0
END	IWAT-STATE1		

END IMPLND

SCHEMATIC	7			NDT IZ	* * *
	Area>	<-Targ		MBLK	* * *
	actor->	<name></name>	#	Tbl#	^ ^ ^
Basin 4,7,8 Imperv Lateral ***	0 6011		2.0	F 0	
IMPLND 16	0.6911	PERLND	39	50	
Subbasin 8 - Perv Lateral Flow		5551 MB	2.0	2.0	
PERLND 40	0.4066	PERLND		30	
PERLND 40	0.4066	PERLND		34	
PERLND 40 Subbasin 3A***	0.4066	PERLND	39	38	
	F 75	DAUDHA	0	2	
PERLND 9 PERLND 9	5.75	RCHRES		2 3	
	5.75	RCHRES		5	
	1.79	RCHRES			
	2.6	RCHRES		5 5	
IMPLND 7 Subbasin 5***	1.11	RCHRES	Z	5	
	1.39		1	2	
		RCHRES		∠ 3	
	1.39 0.52	RCHRES		5	
	0.52	RCHRES RCHRES		5	
IMPLND 4 IMPLND 7	0.24	RCHRES		5	
Subbasin 7 - Perv Lateral Flow		RCHRES	T	5	
PERLND 43	0.103	PERLND	39	30	
PERLND 43	0.103	PERLND		30	
PERLND 43	0.103	PERLND		38	
Subbasin 7 - Perv Lateral Flow		PERLIND	59	50	
PERLND 41	0.1501	PERLND	39	30	
PERLND 41	0.1501	PERLND		34	
PERLND 41	0.1501	PERLND		38	
Subbasin 8 - Perv Lateral Flow		I BREND	57	50	
PERLND 42	0.3927	PERLND	39	30	
PERLND 42	0.3927	PERLND		34	
PERLND 42	0.3927	PERLND		38	
Subbasin 1***					
PERLND 8	0.39	COPY	501	12	
PERLND 8	0.39	COPY	501	13	
PERLND 17	0.95	COPY	501	12	
PERLND 17	0.95	COPY	501	13	
IMPLND 2	0.35	COPY	501	15	
IMPLND 4	0.32	COPY	501	15	
IMPLND 6	0.14	COPY	501	15	
Subbasin 2***					
PERLND 8	0.67	COPY	502	12	
PERLND 8	0.67	COPY	502	13	
PERLND 17	0.41	COPY	502	12	
PERLND 17	0.41	COPY	502	13	
IMPLND 2	0.42	COPY	502	15	
IMPLND 4	0.08	COPY	502	15	
IMPLND 6	0.04	COPY	502	15	
Subbasin 6***					
PERLND 8	10.37	COPY	506	12	
PERLND 8	10.37	COPY	506	13	
PERLND 17	0.04	COPY	506	12	
PERLND 17	0.04	COPY	506	13	
IMPLND 2	1.77	COPY	506	15	
IMPLND 4	2.59	COPY	506	15	
IMPLND 6	1.11	COPY	506	15	Each that con
Basin 4 - Perv Lateral Flow***	E 70	CODV	E 0 4	1 0	Exhibit 29
PERLND 39 PERLND 39	5.73 5.73	COPY COPY	504 504	12 13	SSDP2016-00415
	د،	COLT	501	10	003521

Subbasin 7 - Perv Lateral Flow C*** 0.86 COPY 0.86 COPY 507 12 PERLND 41 PERLND 41 0.86 507 13 COPY Subbasin 8 - Perv Lateral Flow C*** COPY PERLND 42 2.25 508 12 PERLND 42 2.25 COPY 508 13 Subbasin 3B*** 12 13 15 15 perlnd 9 COPY 503 1.44 9 3 4 PERLND 1.44 COPY 503 IMPLND 0.45 COPY 503 IMPLND 0.65 COPY 503 503 IMPLND 7 0.28 15 COPY *****Routing***** RCHRES 1 1 COPY 505 16 1 COPY 503 16 RCHRES 2 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-<Name> # <Name> # Analysis <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * * * * in out Subbasin 5 Deten-049111280Subbasin 3 Deten-052111280 1 1 2 1 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO

 # # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR

 1
 4
 0
 0
 0
 0
 0
 1
 9

 2
 4
 0
 0
 0
 0
 0
 0
 1
 9

 * * * * * * * * * END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit * * * * * * * * * * * * * * * * * * * _~_×**
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</t * * * 0 1 0 0 0 1 0 0 2 2 2 2 2 2 1 2 2 2 2 2 2 END HYDR-PARM1 Exhibit 29 SSDP2016-00415 HYDR-PARM2 003522

# - #	FTABNO	LEN	DELTH	STCOR	KS	DB50	* * * * * *
1 2	1		0.0	0.0	0.5	0.0	
END HYDR- HYDR-INIT	PARM2	0.03	0.0	0.0	0.5	0.0	
	Initial c	onditions Initia	for each H l value	IYDR section	on Initial	value	*** of OUTDGT
*	** ac-ft	for eac	h possible	e exit	for each *** <><-	possible	e exit
1 2	0		0.0 0.0		0.0	0.0 0.0	0.0 0.0
END HYDR- END RCHRES	INIT						
SPEC-ACTION END SPEC-AC FTABLES FTABLE 91 4	TIONS 1						
Depth	Area (acres) 0.013223 0.013280 0.013395 0.013453 0.013453 0.013511 0.013569 0.013627 0.013627 0.013685 0.013743 0.013801 0.013801 0.013801 0.013918 0.013977 0.014036 0.01495 0.014095 0.014154 0.014213 0.014273 0.014273 0.014322 0.014452 0.014572 0.014572 0.014572 0.014572 0.014813 0.014934 0.015956 0.015548 0.015548 0.015548				Travel Time (Minutes)		
3.644444 3.733333	0.015672 0.015735	0.052591 0.053987	1.712814 1.733576				
3.822222 3.911111	0.015797 0.015860	0.055388	1.754092 1.774371				
4.000000 4.088889 4.177778	0.015923 0.015985 0.016048	0.058208 0.059626 0.061050	1.794421 1.814250 1.833864			SS	Exhibit 29 DP2016-00415 003523

4.266667 4.355556 4.444444 4.533333 4.622222 4.711111 4.800000 4.88889 4.977778 5.066667 5.155556 5.244444 5.333333 5.422222 5.511111 5.600000 5.688889 5.777778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 8.666667 6.755556 6.844444 6.93333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 6.844444 6.93333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 7.644444 7.733333 7.822222 7.911111 8.000000 END FTABLE	0.016111 0.016175 0.016238 0.016301 0.016365 0.016429 0.016492 0.016692 0.016685 0.016749 0.016813 0.016943 0.016943 0.016943 0.017077 0.017077 0.017072 0.017137 0.017203 0.017268 0.017333 0.017268 0.017333 0.017268 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017595 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.017928 0.018465 0.018330 0.018397 0.018465 0.018532 0.018600 0.018872 E 1 2	0.062479 0.063914 0.065354 0.066801 0.068253 0.069710 0.071173 0.072597 0.075597 0.075597 0.075597 0.078574 0.080072 0.081575 0.081575 0.083084 0.084598 0.086119 0.087645 0.089177 0.090715 0.092259 0.093808 0.095363 0.096925 0.098492 0.100655 0.101643 0.109626 0.11241 0.116120 0.11241 0.116120 0.1124371 0.126040 0.127714	1.853270 1.872476 1.891486 1.910307 1.928945 1.947404 1.965690 1.983807 2.019555 2.037193 2.054680 2.072019 2.089215 2.106270 2.123188 2.139972 2.156626 2.173152 2.189553 2.205833 2.221993 2.253966 2.269783 2.269783 2.269783 2.269783 2.285491 2.308660 2.327666 2.345699 2.363199 2.380379 2.363199 2.363199 2.363199 2.363199 2.363199 2.363199 2.363599 2.38544 4.316850 5.685745 7.207863 8.785919 10.32063 11.71823 12.90286 13.83219 14.51567 15.03487		
91 4 Depth (ft) 0.000000 0.066667 0.133333 0.200000 0.266667 0.333333 0.400000 0.466667 0.533333 0.600000 0.666667 0.733333 0.800000 0.866667 0.933333 1.000000 1.066667 1.133333 1.200000 1.266667 1.33333 1.400000	Area (acres) 0.000000 0.004938 0.006944 0.008456 0.009708 0.010790 0.011751 0.012616 0.013406 0.014132 0.014804 0.015430 0.016560 0.017073 0.017556 0.018010 0.018439 0.018843 0.019224 0.019924	Volume (acre-ft) 0.00000 0.000220 0.000620 0.001135 0.001742 0.002426 0.003178 0.003991 0.004858 0.005777 0.006741 0.007749 0.008798 0.009884 0.011005 0.012160 0.013345 0.014560 0.015803 0.017072 0.018366 0.019683	Outflowl (cfs) 0.000000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.199148 0.211229 0.222655 0.233522 0.243906 0.253865 0.263448 0.272695 0.281638 0.298722 0.306908 0.314881 0.322657	Velocity (ft/sec)	Travel Time*** (Minutes)***

END FTABLES

	r> SsysSgap <mult>Tr # tem strg<-factor->st ENGL 1 ENGL 1 ENGL 0.76 ENGL 0.76</mult>	rg <name> # # PERLND 1 999 IMPLND 1 999 PERLND 1 999</name>	‡ <1 9 EXTNL PI 9 EXTNL PI 9 EXTNL PI	-Member-> *** Name> # # *** REC REC ETINP ETINP
END EXT SOURCES				
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 501 OUTPUT COPY 506 OUTPUT COPY 506 OUTPUT COPY 507 OUTPUT COPY 508 OUTPUT COPY 508 OUTPUT RCHRES 1 HYDR COPY 505 OUTPUT COPY 503 OUTPUT RCHRES 2 HYDR RCHRES 2 HYDR END EXT TARGETS</name>	MEAN 1 1 48.4 RO 1 1 1 STAGE 1 1 1 MEAN 1 1 48.4		ame> ter DW ENGI DW ENGI	n strg strg*** L REPL L REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<-Member-> <mult> <name> # #<-factor-> 2 SURO 0.083333 2</name></mult>	<target> <name> RCHRES</name></target>		-Member->*** Name> # #*** VOL
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 0.083333 3	RCHRES	INFLOW IN	VOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 0.083333 5	RCHRES	INFLOW IN	VOL
MASS-LINK PERLND PWATER END MASS-LINK		СОРУ	INPUT MI	EAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 0.083333 13	СОРУ	INPUT MI	EAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 0.083333 15	СОРҮ	INPUT MI	EAN
MASS-LINK RCHRES ROFLOW END MASS-LINK		СОРУ	INPUT MI	EAN
MASS-LINK PERLND PWATER END MASS-LINK	30 SURO 30	PERLND	EXTNL SU	JRLI
MASS-LINK PERLND PWATER END MASS-LINK	34 IFWO 34	PERLND	EXTNL II	FWLI Exhibit 29
MASS-LINK PERLND PWATER		PERLND	EXTNL AC	SSDP2016-00415 GWLI 003526

Tamaseck65Durations Existing

5/23/2016 1:08:23 PM

END MASS-LINK 38

MASS-LINK 50 IMPLND IWATER SURO END MASS-LINK 50

PERLND

EXTNL SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation START 1948 10 01 END 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL	
<pre>FILES <file> <un#> <file name<="" namefile="" td=""><td>>*** ***</td></file></un#></file></pre>	>*** ***
OPN SEQUENCE INGRP INDELT 00:15 PERLND 8 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 4 IMPLND 6 PERLND 9 IMPLND 7 PERLND 1 PERLND 1 PERLND 1 PERLND 18 RCHRES 1 RCHRES 2 COPY 501 COPY 502 COPY 504 COPY 503 COPY 503 COPY 503 COPY 603 COPY 505 COPY 505 DISPLY 1 DISPLY 2 DISPLY 4 DISPLY 3 DISPLY 5 END INGRP END OPN SEQUENCE DISPLY	
- # <title>***TRAN PIVL DIG1 FIL1PYR1Subbasin 1MAX2Subbasin 2MAX4Subbasin 4MAX6Subbasin 6MAX3Tank 1MAX5Trapezoidal Pond 1MAXEND DISPLY-INFO1END DISPLY</td><td>DIG2 FIL2 YRND
2 30 9
2 31 9
2 33 9
2 35 9
2 32 9
2 32 9
Exhibit 29
SSDP2016-00415
003528</td></tr></tbody></table></title>	

8 17 9 2 18 END PWAT-1	0 0 0 0 PARM2	5 4.5 5 5 4.5	0.8 0.03 0.8 2 0.03	400 400 400 400 400	0.1 0.15 0.1 0.15	0.5 0 0.3 0 0.3 0	.996 .996 .996 .996 .996
8 17 9 2 18 END PWAT-1	PWATER i ***PETMAX 0 0 0 0 0 PARM3	nput info: PETMIN 0 0 0 0 0 0	Part 3 INFEXP 2 2 2 2 2 2 2	*** INFILD 2 2 2 2 2 2 2	DEEPFR 0 0 0 0 0 0	BASETP AG 0 0 0 0 0 0 0	WETP 0 0 0 0 0
PWAT-PARM4 <pls> # - # 8 17 9 2 18 END PWAT-1</pls>	PWATER in CEPSC 0.1 0.1 0.1 0.2 0.1	put info: UZSN 0.5 0.25 0.5 0.5 0.15	Part 4 NSUR 0.25 0.25 0.25 0.35 0.25	INTFW 0 6 0 0 6	IRC 0.7 0.5 0.7 0.7 0.3	*** LZETP *** 0.25 0.25 0.25 0.7 0.25	
	*** Initial c ran from 1 *** CEPS 0 0 0 0 0 0 0			of simulati (pat 1-11-9 IFWS 0 0 0 0 0 0 0			GWVS 0 0 0 0 0
# - # 2 H 4 H 6 H 3 H 7 H 1 H END GEN-IN	Name ROADS/MOD ROOF TOPS/FLA DRIVEWAYS/MOD ROADS/STEEP DRIVEWAYS/STE ROADS/FLAT NFO DN IWATER***	Use T EP	nit-syste r t-seri 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.es Engl Met			
	*************** ATMP SNOW IWA 0 0 0 0 0 0 0 0 0 0 0 0 1TY	T SLD IW 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Actions ** G IQAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***	*****	****	
	D ******* Prin ATMP SNOW IWA 0 0 0 0 0 0	T SLD IW 4 0 4 0	***** PI G IQAL 0 0 0 0 0 0	TVL PYR ********** 1 9 1 9 1 9		SSDP2016	nibit 29 5-00415 003530

3 0 0 7 0 0 1 0 0 END PRINT-INFO	4 0 4 0 4 0	0 0 0 0 0 0	1 9 1 9 1 9		
IWAT-PARM1 <pls> IWATER van # - # CSNO RTOP 2 0 0 4 0 0 6 0 0 3 0 0 7 0 0 1 0 0 END IWAT-PARM1</pls>	VRS VNN RTL 0 0 0 0 0 0 0 0 0 0	y parame I ** 0 0 0 0 0		ags ***	
IWAT-PARM2 <pls> IWATEF # - # *** LSUR 2 400 4 400 6 400 3 400 7 400 1 400 END IWAT-PARM2</pls>	R input info: SLSUR 0.05 0.01 0.05 0.1 0.1 0.01	Part 2 NSUR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	*** RETSC 0.08 0.1 0.08 0.05 0.05 0.1		
IWAT-PARM3 <pls> IWATEF # - # ***PETMAX 2 0 4 0 6 0 3 0 7 0 1 0 END IWAT-PARM3</pls>	R input info: PETMIN 0 0 0 0 0 0 0 0 0	Part 3	***		
IWAT-STATE1 <pls> *** Initial # - # *** RETS 2 0 4 0 6 0 3 0 7 0 1 0 END IWAT-STATE1</pls>	L conditions SURS 0 0 0 0 0 0 0 0	at start	of simulati	on	
END IMPLND					
SCHEMATIC <-Source-> <name> # Subbasin 3A*** PERLND 9 PERLND 9</name>	<are <-fact</are 		<-Target-> <name> # RCHRES 1 RCHRES 1</name>	ырпи	* * *
IMPLND 3 IMPLND 4 IMPLND 7		1.79 2.6 1.11	RCHRES 1 RCHRES 1 RCHRES 1	5 5 5	
Subbasin 5*** PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7 Subbasin 1***		1.39 1.39 0.52 0.55 0.24	RCHRES 2 RCHRES 2 RCHRES 2 RCHRES 2 RCHRES 2	2 3 5 5 5	
PERLND 8 PERLND 8 PERLND 17		0.39 0.39 0.95	COPY 501 COPY 501 COPY 501	12 13 12	Exhibit 29 SSDP2016-00415 003531

PERLND 17	0.95	COPY	501	13
IMPLND 2	0.35	COPY	501	15
IMPLND 4	0.32	COPY	501	15
IMPLND 6	0.14	COPY	501	15
Subbasin 2***				
PERLND 8	0.67	COPY	502	12
PERLND 8	0.67	COPY	502	13
PERLND 17	0.41	COPY	502	12
PERLND 17	0.41	COPY	502 502	13
IMPLND 2 IMPLND 4	0.42 0.08	COPY COPY	502 502	15 15
IMPLND 4 IMPLND 6	0.08	COPI	502	15
Subbasin 4***	0.01	COFI	502	10
PERLND 2	5.73	COPY	504	12
PERLND 2	5.73	COPY	504	13
IMPLND 1	0.06	COPY	504	15
IMPLND 4	0.02	COPY	504	15
IMPLND 6	0.01	COPY	504	15
Subbasin 6***				
PERLND 8	10.37	COPY	506	12
PERLND 8	10.37	COPY	506	13
PERLND 17	0.04	COPY	506	12
PERLND 17	0.04	COPY	506	13
IMPLND 2	1.77	COPY	506	15
IMPLND 4 IMPLND 6	2.59	COPY	506 506	15 15
IMPLND 6 Subbasin 7***	1.11	COPY	506	15
PERLND 9	0.59	COPY	504	12
PERLND 9	0.59	COPY	504	13
PERLND 18	0.86	COPY	504	12
PERLND 18	0.86	COPY	504	13
IMPLND 4	0.62	COPY	504	15
IMPLND 7	0.26	COPY	504	15
Subbasin 8***				
PERLND 9	2.33	COPY	504	12
PERLND 9	2.33	COPY	504	13
PERLND 18	2.25	COPY	504	12
PERLND 18	2.25	COPY	504	13
IMPLND 3	1.78	COPY	504	15
IMPLND 4	0.85	COPY	504	15
IMPLND 7 Basin 3B***	0.36	COPY	504	15
PERLND 9	1.44	COPY	503	12
PERLND 9	1.44	COPY	603	12
PERLND 9	1.44	COPY	503	13
PERLND 9	1.44	COPY	603	13
IMPLND 3	0.45	COPY	503	15
IMPLND 3	0.45	COPY	603	15
IMPLND 4	0.65	COPY	503	15
IMPLND 4	0.65	COPY	603	15
IMPLND 7	0.28	COPY	503	15
IMPLND 7	0.28	COPY	603	15
*****Routing*****	F 95	CODY	2	1.0
PERLND 9	5.75	COPY	3	12
IMPLND 3 IMPLND 4	1.79	COPY	3	15 15
IMPLND 4 IMPLND 7	2.6 1.11	COPY COPY	3 3	15 15
PERLND 9	5.75	COPI	3	13
PERLND 9	1.39	COPY	5	12
IMPLND 3	0.52	COPY	5	15
IMPLND 4	0.55	COPY	5	15
IMPLND 7	0.24	COPY	5	15
PERLND 9	1.39	COPY	5	13
RCHRES 1	1	COPY	503	16
RCHRES 2	1	COPY	505	16
END SCHEMATIC				

Exhibit 29NETWORKSSDP2016-00415<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member->003532

<Name>#<Name>##<Name>##<Name>#COPY501OUTPUTMEAN1148.4DISPLY1INPUTTIMSER1COPY502OUTPUTMEAN1148.4DISPLY2INPUTTIMSER1COPY504OUTPUTMEAN1148.4DISPLY2INPUTTIMSER1COPY506OUTPUTMEAN1148.4DISPLY6INPUTTIMSER1COPY503OUTPUTMEAN1148.4DISPLY3INPUTTIMSER1COPY505OUTPUTMEAN1148.4DISPLY5INPUTTIMSER1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out * * *
 1
 Tank 1
 1
 1
 1
 28
 0
 1

 2
 Trapezoidal Pond-056
 1
 1
 1
 28
 0
 1
 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***

 1
 1
 0
 0
 0
 0
 0
 0
 0

 2
 1
 0
 0
 0
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR * * * * * * * * * END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section # - #VC A1 A2 A3ODFVFG for each ***ODGTFG for eachFUNCT for eachFGFGFGpossibleexit***possibleexit10104000000222220104000000022222 END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 <----><----><----><----> * * *
 1
 1
 0.03
 0.0
 0.0
 0.5
 0.0

 2
 2
 0.01
 0.0
 0.0
 0.5
 0.0
 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section *** # - # *** VOL Initial value of COLIND Initial value of OUTDGT *** ac-ft for each possible exit for each possible exit

 Ior each possible exit
 Ior each possible exit

 <---><--->

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 4.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 <----> 1 0 2 0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 91 4 Exhibit 29 DepthAreaVolumeOutflow1VelocityTravel Time***SSDP2016-00415(ft)(acres)(acre-ft)(cfs)(ft/sec)(Minutes)***003533 Depth 003533

0.000000 0.066667 0.133333 0.200000 0.266667 0.333333 0.400000 0.466667 0.533333 0.600000 0.666667 0.933333 1.000000 1.066667 1.133333 1.200000 1.266667 1.33333 1.400000 1.466667 1.533333 1.400000 1.466667 1.533333 1.600000 1.666667 1.733333 1.800000 1.666667 2.33333 2.000000 2.266667 2.33333 2.200000 2.266667 2.33333 2.400000 2.66667 2.533333 2.400000 2.66667 3.33333 3.200000 2.66667 3.33333 3.200000 3.666667 3.33333 3.400000 3.66667 3.733333 3.400000 3.66667 3.733333 3.400000 3.66667 3.733333 3.400000 3.66667 3.733333 3.00000	0.000000 0.004938 0.006944 0.008456 0.009708 0.010790 0.011751 0.012616 0.013406 0.014132 0.014804 0.015430 0.01656 0.017073 0.01656 0.018010 0.017556 0.018010 0.018439 0.018843 0.019224 0.019584 0.019584 0.019924 0.020245 0.020547 0.020547 0.020832 0.021100 0.021351 0.021587 0.022075 0.022075 0.022075 0.022075 0.022340 0.023501 0.023548 0.023554 0.023548 0.023554 0.0223554 0.0223554 0.0223554 0.022355 0.	0.000000 0.000220 0.000620 0.001135 0.001742 0.002426 0.003178 0.003991 0.004858 0.005777 0.006741 0.007749 0.008798 0.011005 0.012160 0.013345 0.014560 0.015803 0.017072 0.018366 0.019683 0.021022 0.023761 0.025159 0.026574 0.028006 0.029452 0.023761 0.025159 0.026574 0.038374 0.035372 0.036880 0.038398 0.039925 0.041460 0.043002 0.046104 0.047662 0.045258 0.057900 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.057067 0.058637 0.060204 0.067993 0.069535 0.071069 0.072596 0.071269 0.072596 0.071269 0.072596 0.071269 0.072596 0.071269 0.072596 0.071269 0.072596 0.071269 0.072596 0.071269 0.080812 0.0829420	0.00000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.29148 0.211229 0.222655 0.233522 0.243906 0.253865 0.263448 0.272695 0.281638 0.290306 0.298722 0.306908 0.314881 0.322657 0.330250 0.337672 0.337672 0.344935 0.352048 0.359020 0.352048 0.359020 0.365859 0.372572 0.379167 0.385649 0.392024 0.398297 0.404472 0.410555 0.416549 0.422457 0.428285 0.434034 0.45309 0.456306 0.467044 0.45704 0.45704 0.457741 0.456306 0.467044 0.477541 0.456306 0.467044 0.477541 0.52825 0.507731 0.522171 0.526897 0.531581 0.5362236 0.545390 0.54936 0.54936 0.54936 0.554859 0.554859 0.554859 0.554859 0.558859
3.933333	0.022385	0.077121	0.540826
4.000000	0.022207	0.078607	0.545390
4.066667	0.022015	0.080081	0.549916
4.133333	0.021808	0.081542	0.554405

4.666667 4.733333 4.800000 4.866667 4.933333 5.000000 5.066667 5.133333 5.200000 5.266667 5.33333 5.400000 5.466667 5.533333 5.600000 5.666667 5.733333 5.800000 5.866667 5.933333 6.000000 END FTABLE FTABLE	$\begin{array}{c} 0.019584\\ 0.019224\\ 0.018843\\ 0.018439\\ 0.018010\\ 0.017556\\ 0.017073\\ 0.016560\\ 0.016013\\ 0.015430\\ 0.014132\\ 0.014132\\ 0.013406\\ 0.012616\\ 0.012616\\ 0.011751\\ 0.010790\\ 0.009708\\ 0.009708\\ 0.008456\\ 0.006944\\ 0.004938\\ 0.000000\\ E \\ 1\\ 2\end{array}$	0.092628 0.093922 0.095191 0.096434 0.097649 0.098835 0.099989 0.101111 0.102196 0.103245 0.104253 0.105218 0.106136 0.107004 0.107816 0.108568 0.109252 0.109859 0.110374 0.110774 0.110994	0.589089 0.593281 0.597445 0.601580 0.605686 0.609765 0.978910 1.648713 2.508517 3.508899 4.608973 5.768278 6.945177 8.097647 9.185308 10.17228 11.03063 11.74437 12.31382 12.76044 13.13191		
91 4 Depth (ft) 0.000000 0.088889 0.177778 0.266667 0.355556 0.444444 0.533333 0.622222 0.711111 0.800000 0.888889 0.977778 1.066667 1.155556 1.244444 1.333333 1.422222 1.511111 1.600000 1.688889 1.777778 1.866667 1.955556 2.044444 2.133333 2.222222 2.311111 2.400000 2.48889 2.577778 2.666667 2.755556 2.044444 2.133333 3.022222 3.11111 3.200000 3.28889 3.377778 3.466667 3.55555 3.644444 3.733333 3.822222	Area (acres) 0.013223 0.013280 0.013280 0.013395 0.013453 0.013511 0.013509 0.013627 0.013627 0.013685 0.013743 0.013801 0.013801 0.013918 0.013918 0.013977 0.014036 0.014095 0.014095 0.014213 0.014213 0.014213 0.014232 0.014572 0.015756 0.015178 0.015240 0.015424 0.015486 0.015548 0.015735 0.015735	Volume (acre-ft) 0.00000 0.001178 0.002361 0.003549 0.004742 0.005941 0.007144 0.008353 0.009567 0.010786 0.012010 0.013239 0.014474 0.015714 0.016959 0.018209 0.018209 0.019465 0.020725 0.021991 0.023263 0.024539 0.024539 0.025821 0.025821 0.027109 0.028401 0.029699 0.031002 0.032311 0.028401 0.029699 0.032311 0.033625 0.034944 0.036269 0.037599 0.038935 0.040276 0.044332 0.042974 0.044332 0.045694 0.047063 0.048437 0.048437 0.049816 0.051201 0.052591 0.053987 0.055388	Outflowl (cfs) 0.000000 0.267497 0.378297 0.463318 0.598140 0.655230 0.707729 0.756594 0.802490 0.845898 0.887186 0.926635 0.964472 1.000880 1.02916 1.134892 1.165990 1.196281 1.225823 1.25467 1.196281 1.225823 1.25467 1.389953 1.415459 1.465139 1.489358 1.513189 1.536651 1.559759 1.582531 1.664979 1.627118 1.648959 1.691797 1.712814 1.733576 1.754092	Velocity (ft/sec)	Travel Time*** (Minutes)***

3.911111 0.015860 0.056795 1.774371 4.00000 0.015923 0.058208 1.794421 4.088889 0.015985 0.059626 1.814250 4.17778 0.016048 0.061050 1.833864 4.266667 0.016111 0.062479 1.853270 4.355556 0.016175 0.063914 1.872476 4.44444 0.016238 0.065354 1.891486 4.53333 0.016301 0.066801 1.910307 4.622222 0.016365 0.068253 1.928945 4.711111 0.016429 0.069710 1.947404 4.800000 0.016492 0.071173 1.965690 4.888889 0.016556 0.072642 1.983807 4.977778 0.016620 0.074117 2.001761 5.066667 0.016685 0.075597 2.019555 5.155556 0.016749 0.077083 2.037193 5.244444 0.016813 0.078574 2.054680 5.33333 0.016878 0.080572 2.072019 5.422222 0.016943 0.081575 2.089215 5.51111 0.017007 0.083084 2.106270 5.600000 0.017072 0.084598 2.123188 5.688889 0.07137 0.086119 2.139972 5.777778 0.017203 0.087645 2.156626 5.866667 0.017268 0.089177 2.173152 5.95556 0.01733 0.090715 2.189553 6.04444 0.017399 0.092259 2.205833 6.13333 0.017465 0.093808 2.221993 6.222222 0.017630 0.095363 2.238037 6.31111 0.017705 0.106432 2.33766 6.44444 0.017399 0.092259 2.205833 6.13333 0.017465 0.093808 2.221993 6.222222 0.017630 0.095363 2.238037 6.31111 0.017795 0.101643 2.308660 6.66667 0.017728 0.109228 2.259783 6.48889 0.017729 0.100655 2.285491 6.577778 0.017795 0.101643 2.308660 6.66667 0.017861 0.103228 2.327666 6.755556 0.017928 0.104819 2.345699 6.844444 0.017995 0.106415 2.363199 6.844444 0.017995 0.106415 2.363199 6.844444 0.01795 0.101642 2.308660 6.66667 0.017861 0.103228 2.327666 6.755556 0.017928 0.104819 2.345699 6.844444 0.01795 0.101642 2.302663 7.642889 0.018377 0.116120 7.207863 7.466667 0.018465 0.117758 8.785919 7.32222 0.018128 0.109626 2.467500 7.11111 0.018897 0.116427 1.308244 7.200000 0.018262 0.112861 4.316850 7.28889 0.018370 0.11487 5.685745 7.377778 0.018397 0.116120 7.207863 7.644444 0.018060 0.121053 11.71823 7.3333 0.018668 0.122709 12.90286 7.822222 0.018736 0.124371 13.83219 7.31333 0.018668 0.122709 12.90286 7.822222 0.018736 0.124371 13.83219 7.31111 0.018804 0.126040 14.51567 8.000000 0.018872 0.127714 15.03487	
WDM2 PRECENGL1IMWDM1 EVAPENGL0.76PE	
END EXT SOURCES	
COPY 501 OUTPUT MEAN 1 1 48.4 WE COPY 601 OUTPUT MEAN 1 1 48.4 WE COPY 2 OUTPUT MEAN 1 1 48.4 WE COPY 2 OUTPUT MEAN 1 1 48.4 WE COPY 502 OUTPUT MEAN 1 1 48.4 WE COPY 602 OUTPUT MEAN 1 1 48.4 WE	

COPY504OUTPUTCOPY604OUTPUTCOPY506OUTPUTCOPY606OUTPUTCOPY503OUTPUTCOPY603OUTPUTCOPY603OUTPUTRCHRES1HYDRRCHRES2HYDRRCHRES2HYDRRCHRES2HYDRRCHRES2HYDRCOPY505OUTPUTCOPY505OUTPUTCOPY505OUTPUTCOPY605OUTPUTENDEXTTARGETS	MEAN 1 1 RO 1 1 STAGE 1 1 RO 1 1 STAGE 1 1	$ \begin{array}{r} 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 1\\ 1\\ 1\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ 48.4\\ \end{array} $	WDM 804 FLOI WDM 904 FLOI WDM 706 FLOI WDM 806 FLOI WDM 906 FLOI WDM 906 FLOI WDM 903 FLOI WDM 903 FLOI WDM 903 FLOI WDM 1004 FLOI WDM 1005 STAG WDM 1007 STAG WDM 1007 STAG WDM 1007 STAG WDM 905 FLOI WDM 905 FLOI	N EN S EN S EN N EN N EN N EN N EN N EN	IGL REPL IGL REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<name> # # 2 SURO</name>	<-factor->		<-Grp>	<-Member->*** <name> # #*** IVOL</name>
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	СОРУ	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		COPY	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

PROJECT REPORT

Tamarack Project Basin Future Fully Developed Conditions

General Model Information

Project Name:	Tamarack - Durations
Site Name:	Tamarack Basin - Lateral Flow Basin
Site Address:	
City:	
Report Date:	5/18/2016
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.00
Version Date:	2016/02/25
Version:	4.2.12

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year
Low Flow Threshold for POC3:	50 Percent of the 2 Year
High Flow Threshold for POC3:	50 Year
Low Flow Threshold for POC4:	50 Percent of the 2 Year
High Flow Threshold for POC4:	50 Year
Low Flow Threshold for POC5:	50 Percent of the 2 Year
High Flow Threshold for POC5:	50 Year
Low Flow Threshold for POC6:	50 Percent of the 2 Year
High Flow Threshold for POC6:	50 Year
Low Flow Threshold for POC7:	50 Percent of the 2 Year
High Flow Threshold for POC7:	50 Year
Low Flow Threshold for POC8:	50 Percent of the 2 Year
High Flow Threshold for POC8:	50 Year

Landuse Basin Data Predeveloped Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.39 0.95
Pervious Total	1.34
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.32 0.14
Impervious Total	0.81
Basin Total	2.15

Element Flows To:	
Surface	Interflow

Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.67 0.41
Pervious Total	1.08
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.08 0.04
Impervious Total	0.54
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.75
Pervious Total	5.75
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.6 1.11
Impervious Total	5.5
Basin Total	11.25

Element Flows To: Surface Interflow Groundwater Subbasin 3 Detention Subbasin 3 Detention

Subbasin 5 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.52 0.55 0.24
Impervious Total	1.31
Basin Total	2.7

Element Flows To: Surface Interflow Groundwater Subbasin 5 Detention

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 10.37 0.04
Pervious Total	10.41
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 2.59 1.11
Impervious Total	5.47
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Basin 4 - Perv Late Bypass:	eral Flow No	
GroundWater:	No	
Pervious Land Use A B, Forest, Mod Element Flows To:	acre 5.73	
Surface	Interflow	Groundwater

Basin 4,7,8 Imperv Lateral

Bypass:	No
Impervious Land Use	acre
RÓADS MOD LAT	3.96
Element Flows To:	
Outlet 1 O	utlet 2
Basin 4 - Perv Lateral Fl	ow

Subbasin 8 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep 2.33 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep .86 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 8 - Perv Lateral Flow C

Bypass: No

GroundWater: No Pervious Land Use acre C, Lawn, Steep 2.25 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow Subbasin 7 - Perv Lateral Flow A/B

Bypass: No

GroundWater: No Pervious Land Use acre A B, Lawn, Steep .59 Element Flows To: Surface Interflow Groundwater Basin 4 - Perv Lateral **Basi**n 4 - Perv Lateral Flow

Subbasin 3B Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Steep	acre 1.44
Pervious Total	1.44
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.65 0.28
Impervious Total	1.38
Basin Total	2.82
Floment Flows Ter	

Element Flows To: Surface

Interflow

Groundwater

Mitigated Land Use

Subbasin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.38 0.94
Pervious Total	1.32
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.35 0.33 0.14
Impervious Total	0.82
Basin Total	2.14
Element Flows To:	

Element Flows TO:		
Surface	Interflow	Groundwater

Subbasin 2 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 0.52 0.32
Pervious Total	0.84
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 0.42 0.25 0.11
Impervious Total	0.78
Basin Total	1.62
Element Flows To: Surface	Interflow

Groundwater

Subbasin 3A Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 5.54
Pervious Total	5.54
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.79 2.74 1.18
Impervious Total	5.71
Basin Total	11.25
Flement Flows To:	

Element Flows To:	
Surface	Interflow
Tank 1	Tank 1

Groundwater

Subbasin 4 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Forest, Mod	acre 5.82
Pervious Total	5.82
Impervious Land Use	acre
Impervious Total	0
Basin Total	5.82

Element Flows To: Surface Interflow

Groundwater

Subbasin 5 Bypass:	No	
GroundWater:	No	
Pervious Land Use A B, Lawn, Steep	acre 1.15	
Pervious Total	1.15	
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEF	acre 0.52 0.73 0.31	
Impervious Total	1.56	
Basin Total	2.71	
Element Flows To: Surface Trapezoidal Pond 1	Interflow Trapezoidal Pond 1	C

Groundwater

Subbasin 6 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Mod C, Lawn, Mod	acre 9.37 0.03
Pervious Total	9.4
Impervious Land Use ROADS MOD ROOF TOPS FLAT DRIVEWAYS MOD	acre 1.77 3.3 1.41
Impervious Total	6.48
Basin Total	15.88
Element Flows To: Surface	Interflow

Groundwater

Subbasin 7 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 0.52 0.77
Pervious Total	1.29
Impervious Land Use ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.72 0.31
Impervious Total	1.03
Basin Total	2.32
Element Flows To:	

Element Flows To: Surface Interflow

Groundwater

Subbasin 8 Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Steep C, Lawn, Steep	acre 2.2 2.13
Pervious Total	4.33
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 1.78 1.02 0.44
Impervious Total	3.24
Basin Total	7.57
Element Flows To: Surface	Interflow

Groundwater

Basin 3B Bypass:	Yes
GroundWater:	No
Pervious Land Use A B, Lawn, Steep	acre 1.39
Pervious Total	1.39
Impervious Land Use ROADS STEEP ROOF TOPS FLAT DRIVEWAYS STEEP	acre 0.45 0.69 0.29
Impervious Total	1.43
Basin Total	2.82
Flowert Flower Tex	

Element Flows To: Surface Inter

Interflow

Groundwater

Routing Elements Predeveloped Routing

Subbasin 5 Detention

Bottom Length: Bottom Width:		24.00 ft. 24.00 ft.	
Depth:		8 ft.	
Volume at riser head:		0.1096 a	acre-feet.
Side slope 1:		0.292 To	o 1
Side slope 2:		0.292 To	o 1
Side slope 3:		0.292 To	o 1
Side slope 4:		0.292 To	o 1
Discharge Structure			
Riser Height:		7 ft.	
Riser Diameter:		24 in.	
Orifice 1 Diameter:		5.75 in.	Elevation:0 ft.
Orifice 2 Diameter:		1 in.	Elevation:6.5 ft.
Element Flows To:			
Outlet 1	Outle	et 2	

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge	e(cfs) Infilt(cfs)	
0.0000	0.013 (0.000 `	0.000	` 0.00Ò ´	
0.0889	0.013	0.001	0.267	0.000	
0.1778	0.013	0.002	0.378	0.000	
0.2667	0.013	0.003	0.463	0.000	
0.3556	0.013	0.004	0.535	0.000	
0.4444	0.013	0.005	0.598	0.000	
0.5333	0.013	0.007	0.655	0.000	
0.6222	0.013	0.008	0.707	0.000	
0.7111	0.013	0.009	0.756	0.000	
0.8000	0.013	0.010	0.802	0.000	
0.8889	0.013	0.012	0.845	0.000	
0.9778	0.013	0.013	0.887	0.000	
1.0667	0.013	0.014	0.926	0.000	
1.1556	0.014	0.015	0.964	0.000	
1.2444	0.014	0.017	1.000	0.000	
1.3333	0.014	0.018	1.036	0.000	
1.4222	0.014	0.019	1.070	0.000	
1.5111	0.014	0.020	1.102	0.000	
1.6000	0.014	0.022	1.134	0.000	
1.6889	0.014	0.023	1.166	0.000	
1.7778	0.014	0.024	1.196	0.000	
1.8667	0.014	0.025	1.225	0.000	
1.9556	0.014	0.027	1.254	0.000	
2.0444	0.014	0.028	1.282	0.000	
2.1333	0.014	0.029	1.310	0.000	
2.2222	0.014	0.031	1.337	0.000	
2.3111	0.014	0.032	1.364	0.000	
2.4000	0.014	0.033	1.390	0.000	
2.4889	0.014	0.034	1.415	0.000	
2.5778	0.014	0.036	1.440	0.000	
2.6667	0.015	0.037	1.465	0.000	
2.7556	0.015	0.038	1.489	0.000	SS

3.3778 0.015 0.048 3.4667 0.015 0.051 3.6444 0.015 0.052 3.733 0.015 0.054 3.8222 0.015 0.056 4.0000 0.015 0.058 4.0889 0.016 0.059 4.1778 0.016 0.061 4.2667 0.016 0.062 4.3556 0.016 0.063 4.4444 0.016 0.066 4.6222 0.016 0.068 4.7111 0.016 0.066 4.6222 0.016 0.071 4.889 0.016 0.072 4.9778 0.016 0.074 5.0667 0.016 0.077 5.2444 0.016 0.077 5.2444 0.016 0.077 5.2444 0.016 0.080 5.4222 0.016 0.081 5.5111 0.017 0.083 5.6000 0.017 0.083 5.6000 0.017 0.083 5.6000 0.017 0.092 6.1333 0.017 0.093 6.2222 0.017 0.092 6.1333 0.017 0.093 6.2222 0.017 0.093 6.2222 0.017 0.093 6.2222 0.017 0.093 6.4489 0.017 0.100 6.778 0.017 0.103 6.7556 0.017 0.104 6.4667 0.018 0.112 7	1.733 1.754 1.774 1.794 1.814 1.833 1.853 1.853 1.872 1.891 1.910 1.928 1.947 1.965 1.983 2.001 2.019 2.037 2.054 2.072 2.089 2.106 2.123 2.140 2.156 2.173 2.189 2.205 2.222 2.285 2.308 2.254 2.269 2.254 2.269 2.254 2.269 2.254 2.269 2.225 2.308 2.327 2.345 2.363 2.380 2.467 3.198 4.316 5.685 7.207 8.785 10.32 11.71 12.90 13.83 14.51	0.000 0	SS
---	--	--	----

8.0000	0.018	0.127	15.03	0.000
8.0889	0.018	0.129	15.73	0.000

Subbasin 3 Detention

Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

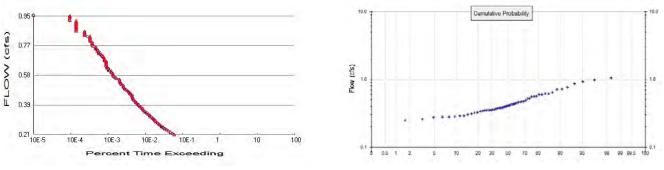
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000	0.000	0.000	0.000
0.0667	0.004	0.000	0.070	0.000
0.1333	0.006	0.000	0.099	0.000
0.2000	0.008	0.001	0.122	0.000
0.2667	0.009	0.001	0.140	0.000
0.3333	0.010	0.002	0.157	0.000
0.4000	0.011	0.003	0.172	0.000
0.4667 0.5333 0.6000 0.6667	0.012 0.013 0.014 0.014	0.004 0.004 0.005 0.006	0.186 0.199 0.211 0.222	0.000 0.000 0.000 0.000 0.000
0.7333 0.8000 0.8667 0.9333	0.015 0.016 0.016 0.017	0.007 0.008 0.009 0.011	0.233 0.243 0.253 0.263	0.000 0.000 0.000 0.000 0.000
1.0000	0.017	0.012	0.272	0.000
1.0667	0.018	0.013	0.281	0.000
1.1333	0.018	0.014	0.290	0.000
1.2000	0.018	0.015	0.298	0.000
1.2667	0.019	0.017	0.306	0.000
1.3333	0.019	0.018	0.314	0.000
1.4000	0.019	0.019	0.322	0.000
1.4667	0.020	0.021	0.330	0.000
1.5333	0.020	0.022	0.337	0.000
1.6000	0.020	0.023	0.344	0.000
1.6667	0.021	0.025	0.352	0.000
1.7333	0.021	0.026	0.359	0.000
1.8000	0.021	0.028	0.365	0.000
1.8667	0.021	0.029	0.372	0.000
1.9333	0.022	0.030	0.379	0.000
2.0000	0.022	0.032	0.385	0.000
2.0667	0.022	0.033	0.392	0.000
2.1333	0.022	0.035	0.398	0.000
2.2000	0.022	0.036	0.404	0.000
2.2667	0.022	0.038	0.410	0.000
2.3333 2.4000 2.4667 2.5333	0.023 0.023 0.023 0.023	0.039 0.041 0.043 0.044	0.416 0.422 0.428 0.434	0.000 0.000 0.000 0.000 0.000 SSDF
2.6000	0.023	0.046	0.439	0.000 SSDF

Mitigated Routing

Tank 1	
Dimensions	
Depth:	6 ft.
Tank Type:	Circular
Diameter:	6 ft.
Length:	171 ft.
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	24 in.
Orifice 1 Diameter:	3.17 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Tank Hydraulic Table

Stage(feet) 0.0000 0.0667 0.1333 0.2000 0.2667 0.3333 0.4000 0.4667 0.5333 0.6000 0.6667 0.7333 0.8000 0.8667 0.9333 1.0000 1.0667 1.1333 1.2000 1.2667 1.3333 1.4000 1.2667 1.5333 1.4000 1.4667 1.5333 1.6000 1.6667 1.7333 1.8000	Area(ac.) 0.000 0.004 0.006 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.014 0.015 0.016 0.016 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.020 0.020 0.021 0.021 0.021 0.021	Volume(ac-ft.) 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.009 0.011 0.012 0.013 0.014 0.015 0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028	0.000 0.070 0.099 0.122 0.140 0.157 0.172 0.186 0.199 0.211 0.222 0.233 0.243 0.243 0.253 0.263 0.263 0.272 0.281 0.290 0.298 0.306 0.314 0.322 0.330 0.337 0.344 0.352 0.359 0.365	0.000 0	
1.7333	0.021	0.026	0.359	0.000	SSDF


2.5333 2.6000 2.6667 2.7333 2.8000 2.8667 2.9333 3.0000 3.0667 3.1333 3.2000 3.2667 3.3333 3.4000 3.4667 3.5333 3.6000 3.6667 3.7333 3.8000 3.8667 3.9333 4.0000 4.0667 4.1333 4.2000 4.2667 4.3333 4.4000 4.2667 4.3333 4.4000 4.6667 4.5333 4.6000 4.6667 4.7333 4.6000 4.6667 4.7333 4.6000 4.6667 4.7333 5.0000 5.0667 5.1333 5.0000	0.023 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.020 0.019 0.018 0.017 0.016 0.016	0.044 0.046 0.047 0.049 0.050 0.052 0.053 0.055 0.057 0.058 0.060 0.061 0.063 0.064 0.066 0.068 0.069 0.071 0.072 0.074 0.075 0.077 0.078 0.077 0.078 0.080 0.081 0.081 0.083 0.084 0.085 0.087 0.088 0.087 0.088 0.087 0.088 0.090 0.091 0.092 0.093 0.095 0.096 0.097 0.098 0.100 0.101 0.101	0.434 0.439 0.445 0.450 0.456 0.461 0.467 0.472 0.472 0.472 0.482 0.492 0.497 0.502 0.507 0.512 0.517 0.522 0.526 0.531 0.536 0.549 0.549 0.545 0.549 0.558 0.563 0.563 0.563 0.567 0.572 0.572 0.576 0.580 0.584 0.589 0.593 0.597 0.601 0.605 0.609 0.978 1.648 2.508	0.000 0.000 0.000
5.0667	0.017	0.100	0.978	0.000
5.4667	0.013	0.106	6.945	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$
5.5333	0.012	0.107	8.097	
5.6000	0.011	0.107	9.185	
5.6667	0.010	0.108	10.17	
5.7333	0.009	0.109	11.03	
5.8000	0.008	0.109	11.74	
5.8667	0.006	0.110	12.31	
5.9333	0.004	0.110	12.76	
6.0000	0.000	0.111	13.13	0.000
6.0667	0.000	0.000	13.68	0.000

Trapezoidal Pond 1

Bottom Length: Bottom Width: Depth:		24.00 ft. 24.00 ft. 8 ft.	
Volume at riser head:		• • • •	cre-feet.
Side slope 1:		0.292 To	o 1
Side slope 2:		0.292 To	o 1
Side slope 3:		0.292 To	o 1
Side slope 4:		0.292 To	o 1
Discharge Structure			
Riser Height:		7 ft.	
Riser Diameter:		24 in.	
Orifice 1 Diameter:		5.75 in.	Elevation:0 ft.
Orifice 2 Diameter:		1 in.	Elevation:6.5 ft.
Element Flows To:			
Outlet 1	Outle	et 2	

Pond Hydraulic Table

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	1.34
Total Impervious Area:	0.81

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.32 Total Impervious Area: 0.82

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.4167965 year0.56731610 year0.67789525 year0.83055250 year0.954007

1.086099

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs) `
2 year	0.419476
5 year	0.570091
10 year	0.680611
25 year	0.83304
50 year	0.956208
100 year	1.087905

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Fredeveloped	wiiliyale
1949	0.612	0.615
1950	0.594	0.595
1951	0.375	0.376
1952	0.249	0.251
1953	0.279	0.281
1954	0.341	0.343
1955	0.379	0.382
1956	0.346	0.347
1957	0.439	0.442
1958	0.321	0.323

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** 1 0458 1 0461

1	1.0458	1.0461
2	0.9867	0.9861
3	0.9201	0.9251

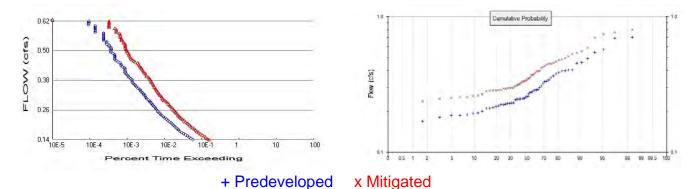
Duration Flows

The Development Failed :duration increase for more than 50% of the flows.

Flow(cfs) 0.2084	Predev 1243	Mit 1278	Percentage 102	Pass/Fail Fail
0.2159 0.2235	1126 985	1152 1019	102 103	Fail Fail
0.2310	885	907	102	Fail
0.2385	786	804	102	Fail
0.2461 0.2536	697 625	724 650	103 104	Fail Fail
0.2611	571	588	102	Fail
0.2686	515	536	104	Fail
0.2762 0.2837	474 443	484 453	102 102	Fail Fail
0.2912	403	411	101	Fail
0.2988 0.3063	379 352	384 360	101 102	Fail Fail
0.3138	321	337	102	Fail
0.3214	297	304	102	Fail
0.3289 0.3364	274 250	280 257	102 102	Fail Fail
0.3440	229	237	102	Fail
0.3515	210	214	101	Fail
0.3590 0.3666	190 182	197 186	103 102	Fail Fail
0.3741	172	173	100	Pass
0.3816	162	165	101	Fail
0.3892 0.3967	148 137	150 141	101 102	Fail Fail
0.4042	124	130	104	Fail
0.4117 0.4193	116 110	120 113	103 102	Fail Pass
0.4268	103	107	102	Pass
0.4343	100	101	101	Pass
0.4419 0.4494	94 93	97 94	103 101	Pass Pass
0.4569	92	92	100	Pass
0.4645	87	88	101	Pass
0.4720 0.4795	79 73	82 75	103 102	Pass Pass
0.4871	67	70	104	Pass
0.4946 0.5021	60 56	62 59	103 105	Pass Pass
0.5097	55	59	101	Pass
0.5172	54	55	101	Pass
0.5247 0.5322	48 46	49 47	102 102	Pass Pass
0.5398	44	45	102	Pass
0.5473	43	43	100	Pass
0.5548 0.5624	42 35	43 36	102 102	Pass Pass
0.5699	33	33	100	Pass
0.5774 0.5850	30 29	30 29	100 100	Pass
0.5850	29 28	29 29	103	Pass Pass
0.6000	26	26	100	Pass

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

Predeveloped Landuse Totals for POC #2 Total Pervious Area: 1.08 Total Impervious Area: 0.54

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.84 Total Impervious Area: 0.78

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2 Return Period Flow(cfs)

Return Period	FIOW(CIS)
2 year	0.272287
5 year	0.368456
10 year	0.440235
25 year	0.540614
50 year	0.622745
100 year	0.71146

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

	11011(013)
2 year	0.357064
5 year	0.468532
10 year	0.548138
25 year	0.655564
50 year	0.740714
100 year	0.830382

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

real	Fredeveloped	wiitiyate
1949	0.378	0.484
1950	0.399	0.466
1951	0.247	0.308
1952	0.164	0.218
1953	0.189	0.263
1954	0.231	0.293
1955	0.249	0.333
1956	0.246	0.297
1957	0.270	0.356
1958	0.210	0.285
1959	0.210	0.293

$\begin{array}{c} 1960\\ 1961\\ 1962\\ 1963\\ 1964\\ 1965\\ 1966\\ 1967\\ 1968\\ 1969\\ 1970\\ 1971\\ 1972\\ 1973\\ 1974\\ 1975\\ 1976\\ 1977\\ 1978\\ 1979\\ 1980\\ 1981\\ 1982\\ 1983\\ 1984\\ 1985\\ 1986\\ 1987\\ 1988\\ 1989\\ 1990\\ 1991\\ 1992\\ 1993\\ 1994\\ 1995\\ 1996\\ 1997\\ 1998\\ 1999\\ 2000\\ 2001\\ 2002\\ 2003\\ 2004\\ 2005\\ 2006\\ 2007\\ 2008\\ \end{array}$	0.247 0.224 0.181 0.243 0.224 0.285 0.186 0.405 0.403 0.254 0.247 0.300 0.366 0.169 0.290 0.275 0.229 0.220 0.287 0.355 0.452 0.256 0.387 0.287 0.193 0.287 0.193 0.287 0.193 0.248 0.230 0.322 0.195 0.308 0.703 0.489 0.201 0.213 0.248 0.201 0.213 0.248 0.201 0.213 0.248 0.201 0.229 0.395 0.278 0.229 0.395 0.278 0.246 0.574 0.258 0.279 0.333 0.340 0.543 0.216 0.226 0.692 0.460	0.317 0.297 0.250 0.316 0.287 0.370 0.247 0.478 0.531 0.334 0.328 0.398 0.444 0.237 0.371 0.298 0.288 0.392 0.491 0.556 0.347 0.512 0.396 0.254 0.397 0.254 0.396 0.254 0.337 0.299 0.449 0.268 0.419 0.796 0.590 0.260 0.255 0.311 0.449 0.268 0.419 0.260 0.255 0.311 0.449 0.268 0.419 0.260 0.255 0.311 0.449 0.263 0.419 0.260 0.255 0.311 0.449 0.263 0.255 0.311 0.449 0.352 0.325 0.741 0.342 0.383 0.434 0.426 0.704 0.286 0.283 0.763
2007	0.692	0.763
2008	0.460	0.541
2009	0.331	0.456

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

I COULIE	1 10001010000	mingato
1	0.7030	0.7957
2	0.6916	0.7627
3	0.5737	0.7415
4	0.5428	0.7039

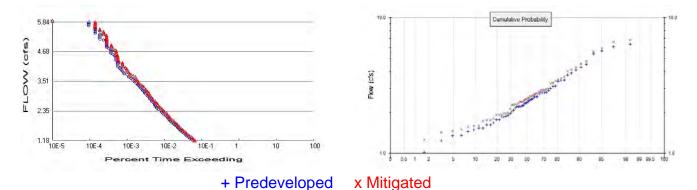
Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.1361	1238	3345		Fail
0.1411	1100	2971	270	Fail
0.1460	992	2716	273	Fail
0.1509	887	2447	275	Fail
0.1558	786	2192	278	Fail
0.1607	701	1956	279	Fail
0.1656	622	1767	284	Fail
0.1705	557	1599	287	Fail
0.1755	512	1468	286	Fail
0.1804	471	1340	284	Fail
0.1853	442	1221	276	Fail
0.1902	409	1115	272	Fail
0.1951	377	1020	270	Fail
0.2000	347	936	269	Fail
0.2050	319	871	273	Fail
0.2099	293	777	265	Fail
0.2148	266	713	268	Fail
0.2197	246	649	263	Fail
0.2246	221	591	267	Fail
0.2295 0.2344	202 185	548 514	207 271 277	Fail Fail
0.2394	174	485	278	Fail
0.2443	161	459	285	Fail
0.2492	146	428	293	Fail
0.2541	140	404	288	Fail
0.2590	131	372	283	Fail
0.2639	125	352	281	Fail
0.2689	117	336	287	Fail
0.2738	111	310	279	Fail
0.2787	103	292	283	Fail
0.2836	99	273	275	Fail
0.2885	91	250	274	Fail
0.2934	85	234	275	Fail
0.2983	80	209	261	Fail
0.3033	73	196	268	Fail
0.3082	69	184	266	Fail
0.3131 0.3180	65 63	180 165	200 276 261	Fail Fail
0.3229	58	157	270	Fail
0.3278	56	149	266	Fail
0.3328	51	141	276	Fail
0.3377	49	132	269	Fail
0.3426	46	128	278	Fail
0.3475	42	121	288	Fail
0.3524	39	114	292	Fail
0.3573	36	111	308	Fail
0.3622	34	107	314	Fail
0.3672	31	102	329	Fail
0.3721	30	98	326	Fail
0.3770	30	93	310	Fail
0.3819	29	90	310	Fail
0.3868	27	84	311	Fail
0.3017	24	70	220	Fail
0.3917	24	79	329	Fail
0.3966	23	72	313	Fail

0.4016 0.4065 0.4114 0.4163 0.4212 0.4261 0.4311 0.4360 0.4409 0.4458 0.4556 0.4655 0.4655 0.4655 0.4704 0.4753 0.4851 0.4900 0.4950 0.4950 0.5048 0.5097 0.5146 0.5195 0.5244 0.5343 0.5343 0.5392 0.5441 0.5294 0.5343 0.5388 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5933 0.5933 0.5933 0.5933 0.5933 0.5933 0.5932 0.6031 0.6080 0.6129 0.6227	220999199186554211000009888888776666555555555533333322222	$\begin{array}{c} 70 \\ 67 \\ 62 \\ 59 \\ 57 \\ 53 \\ 51 \\ 48 \\ 44 \\ 41 \\ 35 \\ 29 \\ 27 \\ 26 \\ 24 \\ 22 \\ 21 \\ 20 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 17 \\ 15 \\ 15 \\ 14 \\ 14 \\ 13 \\ 11 \\ 11 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	$\begin{array}{c} 318\\ 335\\ 326\\ 310\\ 300\\ 278\\ 283\\ 300\\ 306\\ 293\\ 292\\ 291\\ 290\\ 270\\ 260\\ 250\\ 240\\ 266\\ 275\\ 262\\ 262\\ 250\\ 237\\ 271\\ 271\\ 316\\ 283\\ 283\\ 300\\ 300\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 280\\ 2$	Fail Fail Fail Fail Fail Fail Fail Fail
--	---	--	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 3

Predeveloped Landuse Totals for POC #3 Total Pervious Area: 7.19 Total Impervious Area: 6.88

Mitigated Landuse Totals for POC #3 Total Pervious Area: 6.93 Total Impervious Area: 7.14

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #3 Return Period Flow(cfs)

2 year	2.364141
5 year	3.37629
10 year	4.099862
25 year	5.073688
50 year	5.842112
100 year	6.647232

Flow Frequency Return Periods for Mitigated. POC #3Return PeriodFlow(cfs)2 year2.5240295 year3.5671124 206055

TU year	4.306955
25 year	5.296724
50 year	6.073725
100 year	6.884618

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #3 Year Predeveloped Mitigated

rear	Fredeveloped	wiiiiyai
1949	3.128	3.399
1950	3.894	4.085
1951	2.506	2.642
1952	1.863	1.912
1953	2.249	2.297
1954	1.525	1.587
1955	2.462	2.566
1956	2.260	2.396
1957	2.801	2.904
1958	1.530	1.750
1959	1.672	1.729

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #3 Rank Predeveloped Mitigated

Rallk	Fredeveloped	wiiliyale
1	6.3638	6.8444
2	6.0782	6.5788
3	5.6967	5.9367
4	5.4067	5.5961

5 6 7 8 9 10 11 23 45 6 7 8 9 10 11 23 45 6 7 8 9 10 11 23 45 6 7 8 9 01 12 34 56 7 8 9 01 12 34 56 7 8 9 01 12 23 24 25 27 8 9 03 12 33 45 6 7 8 9 01 12 23 45 6 7 8 9 03 12 33 45 6 7 8 9 0 11 22 22 22 22 22 22 22 22 22 22 22 22	4.5113 4.2998 4.0850 3.8942 3.7672 3.4624 3.4399 3.3893 3.1279 3.1145 2.9975 2.8871 2.8012 2.7983 2.7782 2.6258 2.6055 2.5944 2.5611 2.5057 2.4854 2.4618 2.4490 2.3853 2.3622 2.3447 2.3180 2.2599 2.2489 2.2114 2.2042 2.3447 2.3180 2.2599 2.2489 2.2138 2.2114 2.2042 2.1965 2.1495 2.0762 2.0171 1.9555 1.9008 1.8631 1.8559 1.8458 1.7650 1.7559 1.6720 1.6193 1.6129 1.5303 1.5245 1.4839 1.4395	4.7636 4.5556 4.2694 4.0846 4.0174 3.6510 3.5661 3.4832 3.3993 3.2854 3.2685 2.9965 2.9748 2.9748 2.9771 2.9071 2.7515 2.7384 2.6703 2.6527 2.6419 2.6196 2.5656 2.5455 2.4959 2.4959 2.4953 2.3891 2.3865 2.3891 2.3865 2.3891 2.3965 2.3891 2.2973 2.2554 2.1256 1.9931 1.9613 1.9278 1.9294 1.58672 1.9278 1.9278 1.9294 1.9
53	1.5303	1.7291
54	1.5245	1.5994
55	1.4839	1.5867

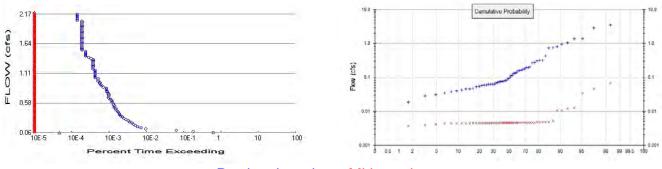
Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
1.1821	1236	1413		Fail
1.2291	1131	1312	116	Fail
1.2762	1047	1202	114	Fail
1.3233	938	1104	117	Fail
1.3704	855	1005	117	Fail
1.4174	782	923	118	Fail
1.4645	728	844	115	Fail
1.5116	652	784	120	Fail
1.5586	602	712	118	Fail
1.6057	562	644	114	Fail
1.6528	520	603	115	Fail
1.6999	479	559	116	Fail
1.7469	453	525	115	Fail
1.7940	414	483	116	Fail
1.8411	386	445	115	Fail
1.8881	345	418	121	Fail
1.9352	316	385	121	Fail
1.9823	293	350	119	Fail
2.0294	279	319	114	Fail
2.0764	262	301	114	Fail
2.1235	248	282	113	Fail
2.1706	231	267	115	Fail
2.2176	208	253	121	Fail
2.2647	191	238	124	Fail
2.3118	181	220	121	Fail
2.3588	167	203	121	Fail
2.4059	151	188	124	Fail
2.4530	137	174	127	Fail
2.5001	129	158	122	Fail
2.5471	122	149	122	Fail
2.5942	117	143	122	Fail
2.6413	113	133	117	Fail
2.6883	106	125	117	Fail
2.7354	98	120	122	Fail
2.7825	94	108	114	Fail
2.8296	87	104	119	Fail
2.8766	85	96	112	Fail
2.9237	79	91	115	Fail
2.9708	74	88	118	Fail
3.0178	67	81	120	Fail
3.0649	64	81	126	Fail
3.1120	61	74	121	Fail
3.1591	56	70	125	Fail
3.2061	54	68	125	Fail
3.2532	50	60	120	Fail
3.3003	46	58	126	Fail
3.3473	44	54	122	Fail
3.3944	41	49	119	Fail
3.4415	38	44	115	Fail
3.4886	34	43	126	Fail
3.5356	34	40	117	Fail
3.5827	30	39	130	Fail
3.6298	28	37	132	Fail
3.6768	24	36	150	Fail

5.418535166Fail5.465535166Fail5.512634133Fail5.559734133Fail5.606833100Pass5.653833100Pass5.700923150Fail5.748023150Fail5.795023150Fail5.842123150Fail	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8065 7 9 128	Fail
--	--	----------------	------

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #3 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)		Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Tank 1 POC		840.12				0.00			
Total Volume Infiltrated		840.12	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 4

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #4Total Pervious Area:11.76Total Impervious Area:3.96

Mitigated Landuse Totals for POC #4 Total Pervious Area: 5.82 Total Impervious Area: 0

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #4 Return Period Flow(cfs)

2 year	0.1159
5 year	0.338036
10 year	0.63464
25 year	1.312858
50 year	2.165686
100 year	3.469708

Flow Frequency Return Periods for Mitigated. POC #4Return PeriodFlow(cfs)2 year0.0050485 year0.00833110 year0.011249

0.015971
0.020372
0.025655

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #4 Year Predeveloped Mitigated

i cai	i ieuevelopeu	wiitiyat
1949	0.312	0.004
1950	1.365	0.012
1951	0.308	0.012
1952	0.070	0.005
1953	0.053	0.005
1954	0.166	0.005
1955	0.094	0.005
1956	0.276	0.005
1957	0.076	0.005
1958	0.063	0.005
1959	0.091	0.005

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	0.193 0.155 0.031 0.109 0.176 0.073 0.068 0.958 0.194 0.077 0.047 0.047 0.080 1.027 0.063 0.080 0.126 0.130 0.019 0.058 0.038 0.098 0.062 0.137 0.079 0.046 0.034 0.112 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.046 0.034 0.112 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.063 0.046 0.028 0.179 0.059 0.204 3.489 0.764	0.005 0.004 0.004 0.005 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2009	0.270	0.005

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #4 Rank Predeveloped Mitigated

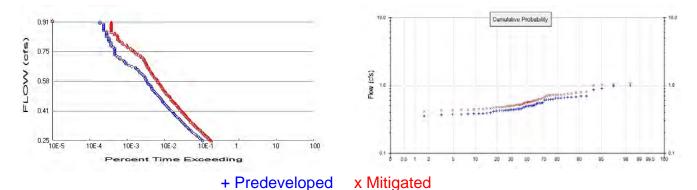
Г	Kank	Fredeveloped	wiitigate
1		3.4888	0.0675
2	2	2.8717	0.0453
З	3	1.3996	0.0335
4	1	1.3649	0.0123

Duration Flows

The Facility PASSED

Flow(cfs) 0.0580	Predev 13242	Mit 1	Percentage 0	Pass/Fail Pass
0.0792	3908	Ö	Õ	Pass
0.1005	1346	0 0	Õ	Pass
0.1218	204	Ő	Õ	Pass
0.1431	154	0 0	Õ	Pass
0.1644	124	0 0	Õ	Pass
0.1857	109	0	Ö	Pass
0.2070	96	0	Ö	Pass
0.2283	88	0	Ö	Pass
0.2496	77	0	Ö	Pass
0.2709	71	0	0	Pass
0.2921	60	0	0	Pass
0.3134	53	0	0	Pass
0.3347	49	0	Ö	Pass
0.3560	44	0	0	Pass
0.3773	41	0	0	Pass
0.3986	40	0	0	Pass
0.4199	38	0	0	Pass
0.4412	35	0	0	Pass
0.4625	33	0	0	Pass
0.4838	33	0	0	Pass
0.5050	30	0	0	Pass
0.5263	30	0	0	
0.5476	29	0	0	Pass
0.5689	29 28	0	0	Pass
	20 26	0		Pass
0.5902 0.6115	26	0	0	Pass
0.6328			0	Pass
	25 23	0 0	0	Pass
0.6541	23 21		0	Pass
0.6754	21	0	0	Pass
0.6967 0.7179	21	0	0	Pass
	21	0	0	Pass
0.7392	20	0	0	Pass
0.7605		0	0	Pass
0.7818	19 19	0 0	0 0	Pass
0.8031				Pass
0.8244	18	0	0	Pass
0.8457	18 15	0 0	0	Pass
0.8670 0.8883	14	0	0 0	Pass
0.9096	13	0	0	Pass
0.9309	12	0	0	Pass
0.9521	12	0	0	Pass
0.9734	12	0	0	Pass
0.9947	11	0	0	Pass
	11	0		Pass
1.0160		0	0	Pass
1.0373	9		0	Pass
1.0586	9	0	0	Pass
1.0799	9	0	0	Pass
1.1012 1.1225	9 9	0 0	0	Pass
1.1225	9	0	0	Pass
	9		0	Pass
1.1650	Э	0	0	Pass

1.1863 1.2076 1.2289 1.2502 1.2715 1.2928 1.3141 1.3354 1.3567 1.3779 1.3992 1.4205 1.4418 1.4631 1.4844 1.5057 1.5270 1.5483 1.5057 1.5270 1.5483 1.5696 1.5908 1.6121 1.6334 1.6547 1.6760 1.6973 1.7186 1.7399 1.7612 1.7825 1.8038 1.8250 1.8463 1.8250 1.8463 1.9315 1.9528 1.9741 1.9528 1.9741 1.9315 1.9528 1.9741 1.9528 1.9741 1.9528 1.9741 1.9954 2.0379 2.0805 2.1018 2.1231 2.1444	8888888876555554444444444444444444444444	000000000000000000000000000000000000000		Pass Pass Pass Pass Pass Pass Pass Pass
2.1444	3	0	0	Pass
2.1657		0	0	Pass


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #4 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 5

Predeveloped Landuse Totals for POC #5 Total Pervious Area: 1.39 Total Impervious Area: 1.31

Mitigated Landuse Totals for POC #5 Total Pervious Area: 1.15 Total Impervious Area: 1.56

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #5 Return Period Flow(cfs)

	11000(013)
2 year	0.498655
5 year	0.624019
10 year	0.710318
25 year	0.823401
50 year	0.91073
100 year	1.000817

Flow Frequency Return Periods for Mitigated.POC #5Return PeriodFlow(cfs)2 year0.571506

5 year	0.70847
10 year	0.802065
25 year	0.923993
50 year	1.017665
100 year	1.1139

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #5 Year Predeveloped Mitigated

rear	Fredeveloped	wiitigat
1949	0.624	0.723
1950	0.648	0.727
1951	0.437	0.499
1952	0.351	0.414
1953	0.383	0.438
1954	0.417	0.475
1955	0.462	0.543
1956	0.472	0.526
1957	0.495	0.573
1958	0.397	0.455
1959	0.422	0.478

1960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819901991199219931994199519961997199819992000200120022003200420052006	0.411 0.447 0.380 0.449 0.434 0.546 0.368 0.675 0.625 0.486 0.437 0.505 0.648 0.353 0.502 0.549 0.375 0.429 0.520 0.612 0.698 0.496 0.670 0.549 0.384 0.509 0.443 0.509 0.443 0.551 0.981 0.6666 0.375 0.392 0.385 0.441 0.647 0.423 0.551 0.981 0.6666 0.375 0.392 0.385 0.441 0.647 0.423 0.551 0.981 0.6666 0.375 0.392 0.385 0.441 0.647 0.423 0.551 0.981 0.6666 0.375 0.392 0.385 0.441 0.647 0.423 0.551 0.981 0.6666 0.375 0.392 0.385 0.441 0.647 0.423 0.533 0.431 0.421	0.474 0.520 0.444 0.524 0.509 0.616 0.432 0.738 0.722 0.557 0.502 0.593 0.718 0.403 0.567 0.632 0.437 0.485 0.599 0.714 0.786 0.574 0.783 0.646 0.574 0.783 0.646 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.574 0.728 0.575 0.520 1.060 0.763 0.430 0.457 0.447 0.503 0.675 0.565 0.520 1.025 0.549 0.571 0.697 0.605 0.988 0.492 0.468
2004	0.863	0.988
2005	0.431	0.492

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #5 Rank Predeveloped Mitigated

1	0.9894	1.0597
2	0.9812	1.0434
3	0.8995	1.0252
4	0.8626	0.9877

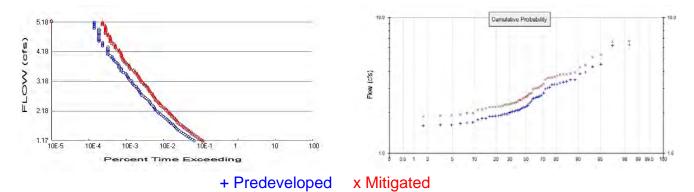
Duration Flows

Flow(cfs) 0.2493 0.2560 0.2627 0.2694 0.2761 0.2827 0.2894 0.2961 0.3028 0.3095 0.3161 0.3228 0.3295 0.3362 0.3429 0.3429 0.3495 0.3562 0.3629 0.3696 0.3763 0.3829 0.3696 0.3763 0.3829 0.3896 0.3963 0.4030 0.4037 0.4163 0.4230 0.4297 0.4364 0.4230 0.4297 0.4364 0.4230 0.4297 0.4364 0.4231 0.4297 0.4364 0.4698 0.4765 0.4832 0.4898 0.4965 0.5032 0.5099	Predev 2267 2066 1900 1727 1579 1458 1340 1205 1110 1029 958 893 824 761 711 664 609 577 541 498 458 428 398 375 351 325 299 283 262 246 227 213 196 191 182 170 160 151 139 132	Mit 3844 3540 3296 3048 2789 2614 2411 2222 2095 1931 1731 1614 1498 1378 1297 1190 1097 1031 966 906 851 803 754 704 657 615 572 544 511 482 454 419 389 364 342 327 311 294 271 251	Percentage 169 171 173 176 176 176 179 184 188 187 180 180 180 181 182 179 180 181 182 179 180 178 178 181 185 187 189 187 189 191 192 195 200 196 195 200 196 198 190 187 192 194 194 194 194 190	Pass/Fail Fail Fail Fail Fail Fail Fail Fail
0.4698	191	364	190	Fail
0.4765	182	342	187	Fail
0.4832	170	327	192	Fail
0.4898	160	311	194	Fail
0.4965	151	294	194	Fail

0.6101 0.6168 0.6235 0.6301 0.6368 0.6435 0.6502 0.6569 0.6635 0.6702 0.6769 0.6836 0.6903 0.6969 0.7036 0.7103 0.7170 0.7237 0.7303 0.7370 0.7437 0.7504 0.7571 0.7504 0.7571 0.7638 0.7704 0.7771 0.7638 0.7704 0.7771 0.7838 0.7905 0.7972 0.8038 0.8172 0.8239 0.8306 0.8372 0.8439 0.8506 0.8573 0.8640 0.8773 0.8840 0.8773 0.8840 0.8974 0.9040 0.9107	61 55 52 47 44 23 7 36 9 24 20 20 18 7 14 12 11 00 10 10 9 8 8 8 8 8 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 113\\ 107\\ 101\\ 96\\ 92\\ 87\\ 84\\ 79\\ 76\\ 74\\ 70\\ 69\\ 66\\ 64\\ 60\\ 59\\ 52\\ 49\\ 43\\ 38\\ 532\\ 30\\ 27\\ 23\\ 221\\ 17\\ 16\\ 14\\ 13\\ 12\\ 12\\ 12\\ 10\\ 10\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	$185 \\ 194 \\ 194 \\ 204 \\ 209 \\ 207 \\ 227 \\ 219 \\ 262 \\ 308 \\ 350 \\ 345 \\ 366 \\ 376 \\ 428 \\ 421 \\ 433 \\ 445 \\ 430 \\ 380 \\ 350 \\ 320 \\ 300 \\ 270 \\ 255 \\ 275 \\ 262 \\ 212 \\ 200 \\ 200 \\ 185 \\ 171 \\ 171 \\ 200 \\ 200 \\ 185 \\ 171 \\ 171 \\ 200 \\ 200 \\ 166 \\ 166 \\ 133 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 200 $	Fail Fail Fail Fail Fail Fail Fail Fail
--	---	---	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #5 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		229.46				0.00			
Total Volume Infiltrated		229.46	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 6

Predeveloped Landuse Totals for POC #6 Total Pervious Area: 10.41 Total Impervious Area: 5.47

Mitigated Landuse Totals for POC #6 Total Pervious Area: 9.4 Total Impervious Area: 6.48

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #6 Return Period Flow(cfs)

2 year	2.349287
5 year	3.13595
10 year	3.71691
25 year	4.52232
50 year	5.176234
100 year	5.878212

Flow Frequency Return Periods for Mitigated.POC #6Return PeriodFlow(cfs)2 year2.7294235 year3.594909

5 year	3.394909
10 year	4.227448
25 year	5.096922
50 year	5.797504
100 year	6.545027

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #6 Year Predeveloped Mitigated

real	Fredeveloped	wiitiyat
1949	2.974	3.485
1950	3.487	3.807
1951	2.180	2.458
1952	1.508	1.785
1953	1.768	2.082
1954	2.007	2.286
1955	2.138	2.514
1956	2.064	2.295
1957	2.224	2.626
1958	1.863	2.196
1959	1.989	2.339

$1960 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 1969 \\ 1970 \\ 1971 \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1976 \\ 1977 \\ 1978 \\ 1979 \\ 1980 \\ 1981 \\ 1982 \\ 1983 \\ 1984 \\ 1985 \\ 1986 \\ 1987 \\ 1988 \\ 1989 \\ 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ 1996 \\ 1997 \\ 1998 \\ 1999 \\ 2000 \\ 2001 \\ 2002 \\ 2003 \\ 2004 \\ 2005 \\ 2006 \\ 2007 \\ 2008 \\ 2008 \\ 2007 \\ 2008 \\ $	2.068 1.894 1.677 2.033 1.932 2.373 1.594 3.474 3.343 2.079 2.091 2.519 3.228 1.613 2.327 2.560 1.873 1.901 2.597 3.297 3.201 2.597 3.201 2.597 3.201 2.597 3.297 3.201 2.597 3.297 3.201 2.597 3.297 3.201 2.597 3.297 3.297 3.297 3.201 2.597 3.297 3.297 1.946 3.029 1.861 2.774 6.208 3.395 2.418 2.550 2.668 2.582 4.331 1.803 1.941 6.317	$\begin{array}{c} 2.334\\ 2.211\\ 1.979\\ 2.368\\ 2.273\\ 2.776\\ 1.867\\ 3.817\\ 3.922\\ 2.456\\ 2.463\\ 2.966\\ 3.595\\ 1.897\\ 2.738\\ 3.023\\ 2.966\\ 3.595\\ 1.897\\ 2.738\\ 3.023\\ 2.242\\ 3.041\\ 3.879\\ 3.732\\ 2.668\\ 3.795\\ 3.116\\ 1.930\\ 2.600\\ 2.300\\ 3.577\\ 2.195\\ 3.240\\ 6.665\\ 4.451\\ 1.907\\ 2.097\\ 1.980\\ 2.304\\ 3.652\\ 2.759\\ 2.542\\ 5.330\\ 2.567\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 4.911\\ 1.907\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 4.911\\ 1.907\\ 3.156\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 4.911\\ 1.907\\ 1.907\\ 1.980\\ 2.542\\ 5.300\\ 2.567\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 4.911\\ 1.907\\ 1.907\\ 1.980\\ 2.542\\ 5.300\\ 2.567\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 4.911\\ 1.907\\ 2.985\\ 1.907\\ 1.907\\ 1.980\\ 2.567\\ 2.997\\ 3.156\\ 2.997\\ 1.907\\ 2.997\\ 3.156\\ 2.997\\ 5.090\\ 2.131\\ 2.208\\ 6.657\\ 1.907\\ 1.$
2007	6.317	6.657
2008	3.846	4.281
2009	3.066	3.598

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #6 Rank Predeveloped Mitigated

6.3171	6.6651
6.2081	6.6570
4.5290	5.3298
4.3308	5.0899
	6.2081 4.5290

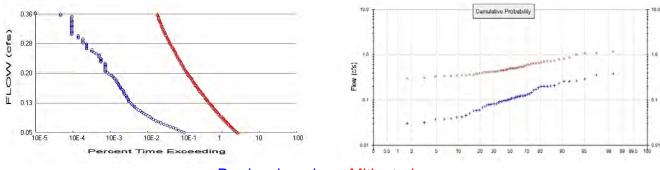
5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 01 12 34 5 6 7 8 9 01 12 34 5 6 7 8 9 01 22 23 42 5 6 7 8 9 03 12 33 45 6 7 8 9 01 12 23 45 6 7 8 9 01 22 22 24 5 6 7 8 9 03 12 33 45 6 7 8 9 01 12 23 45 6 7 8 9 01 22 22 23 45 6 7 8 9 03 12 33 45 6 7 8 9 0 1 22 23 45 6 7 8 9 0 1 22 23 45 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 23 34 5 6 7 8 9 0 1 2 3 34 5 6 7 8 9 0 1 2 3 34 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.9528 3.8459 3.4743 3.3949 3.3428 3.2971 3.2282 3.2147 3.2014 3.0662 3.0286 2.9743 2.7736 2.6678 2.6406 2.5967 2.5824 2.5603 2.5496 2.5187 2.4175 2.3734 2.3270 2.2581 2.2238 2.1969 2.1800 2.1797 2.1551 2.0790 2.0683 2.0642 2.0790 2.0683 2.0642 2.0325 2.0790 2.0683 2.0642 2.0325 2.0280 2.0790 1.9892 1.9459 1.9459 1.9405 1.9320 1.9459 1.9459 1.9459 1.9459 1.9405 1.9320 1.9913 1.8728 1.8632 1.8608 1.8034 1.7678 1.6765 1.6741 1.6741 1.6139	4.4507 4.2806 3.9221 3.8791 3.8168 3.8068 3.7945 3.7315 3.6525 3.5978 3.5978 3.5949 3.5775 3.4848 3.2399 3.1559 3.1163 3.0414 3.0229 2.9971 2.9660 2.7760 2.7586 2.7377 2.6676 2.6256 2.5997 2.5673 2.5419 2.5142 2.4578 2.3335 2.2997 2.2856 2.2732 2.2420 2.2945 2.2997 2.2997 2.2945 2.2997 2.2945 2.2997 2.2997 2.2945 2.2997 2.2945 2.9973 2.0821 1.9796 1.9794 1.9295 1.9070

Duration Flows

Flow(cfs) 1.1746 1.2151 1.2555 1.2959 1.3363 1.3767 1.4172 1.4576 1.4980 1.5384 1.5788 1.6193 1.6597 1.7001 1.7405 1.7809 1.8214 1.8618 1.9022 1.9426 1.9830 2.0235	Predev 1423 1277 1128 1021 913 811 721 654 585 524 491 459 434 394 363 326 304 282 263 238 216 197	Mit 2453 2199 1978 1789 1595 1452 1304 1194 1078 975 898 806 733 670 611 550 510 482 455 430 395 364	Percentage 172 172 175 175 175 174 179 180 182 184 186 182 175 168 170 168 168 167 170 168 167 170 173 180 182 184	Pass/Fail Fail Fail Fail Fail Fail Fail Fail
2.1447 2.1851 2.2256 2.2660 2.3064 2.3468 2.3872 2.4277 2.4681 2.5085 2.5489 2.5893 2.6298 2.6702 2.7510 2.7510 2.7510 2.7914 2.8319 2.8723 2.9127 2.9531 2.9935 3.0340 3.0744 3.1148 3.1552 3.0340 3.0744 3.1956 3.2361 3.2765 3.3169	$\begin{array}{c} 152 \\ 136 \\ 129 \\ 125 \\ 117 \\ 113 \\ 104 \\ 95 \\ 92 \\ 89 \\ 83 \\ 75 \\ 68 \\ 63 \\ 55 \\ 55 \\ 51 \\ 49 \\ 46 \\ 45 \\ 42 \\ 40 \\ 35 \\ 33 \\ 32 \\ 30 \\ 30 \\ 26 \\ 25 \\ 24 \end{array}$	302 279 258 238 216 197 183 170 160 153 136 132 126 118 113 111 102 93 92 87 85 78 73 67 63 58 54 53 51 49	198 205 200 190 184 174 175 178 173 171 163 176 185 187 205 201 200 189 200 193 202 195 208 203 196 193 202 195 208 203 203 204 204	Fail Fail Fail Fail Fail Fail Fail Fail

3.3573 3.3977 3.4382 3.4786 3.5190 3.5594 3.5998 3.6403 3.6807 3.7211 3.7615 3.8020 3.8424 3.8828 3.9232 3.9636 4.0041 4.0445 4.0445 4.0445 4.2870 4.3274 4.3678 4.4083 4.4487 4.3678 4.4083 4.4487 4.3678 4.4083 4.4487 4.3678 4.4083 4.4487 4.5295 4.5699 4.6104 4.6508 4.6912 4.7316 4.7720 4.8529 4.9337 4.9741 5.0550 5.0954 5.1762	23 22 18 16 16 14 14 13 12 11 00 9 8 7 7 7 7 7 7 7 5 5 5 5 4 4 4 4 4 4 4 4 4	46 43 42 38 37 34 29 27 26 26 23 22 0 9 8 7 26 26 23 22 0 9 8 7 7 6 6 6 6 6 6 6 6 5 5 5	$\begin{array}{c} 200 \\ 195 \\ 200 \\ 211 \\ 231 \\ 212 \\ 181 \\ 192 \\ 185 \\ 185 \\ 176 \\ 183 \\ 181 \\ 190 \\ 180 \\ 188 \\ 200 \\ 228 \\ 214 \\ 200 \\ 200 \\ 200 \\ 200 \\ 171 \\ 157 \\ 220 \\ 200 \\ 200 \\ 175 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 166 \\ 166 \\ 166 \end{array}$	Fail Fail Fail Fail Fail Fail Fail Fail
--	--	--	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.


The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #6 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

+ Predeveloped x I

x Mitigated

Predeveloped Landuse Totals for POC #7 Total Pervious Area: 0.86 Total Impervious Area: 0

Mitigated Landuse Totals for POC #7 Total Pervious Area: 1.29 Total Impervious Area: 1.03

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #7

Return Period	FIOW(CIS)
2 year	0.103696
5 year	0.174028
10 year	0.226792
25 year	0.299486
50 year	0.357556
100 year	0.418685

Flow Frequency Return Periods for Mitigated. POC #7 Return Period Flow(cfs)

Neturn Lenon	11000(013)
2 year	0.496902
5 year	0.666664
10 year	0.789999
25 year	0.958747
50 year	1.094141
100 year	1.238102

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #7 Year Predeveloped Mitigated

rear	Predeveloped	wiitigat
1949	0.207	0.725
1950	0.199	0.681
1951	0.107	0.448
1952	0.050	0.306
1953	0.037	0.347
1954	0.082	0.418
1955	0.079	0.448
1956	0.111	0.415
1957	0.123	0.523
1958	0.072	0.387
1959	0.059	0.366

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #7 Rank Predeveloped Mitigated

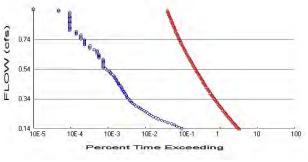
1	0.3814	1.1772
2	0.3533	1.1060
3	0.2937	1.0711
4	0.2650	1.0044

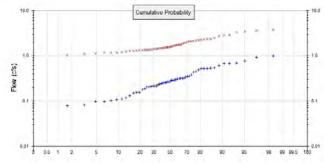
Duration Flows

Flow(cfs) 0.0518 0.0549 0.0580 0.0611 0.0642 0.0673 0.0704 0.0735 0.0766 0.0796 0.0827 0.0858 0.0889 0.0920 0.0951 0.0982 0.1013 0.1043 0.1043 0.1074 0.1105 0.1136 0.1167 0.1136 0.1167 0.11383 0.1229 0.1260 0.1290 0.1290 0.1321 0.1352 0.1383 0.1414 0.1445 0.1476 0.1507 0.1538 0.1568 0.1599 0.1630 0.1661 0.1692 0.1723 0.1754 0.1815 0.1846	Predev 2082 1781 1461 1243 1063 884 725 591 488 417 355 307 279 253 219 194 172 153 141 123 110 100 94 86 81 75 68 67 65 62 59 57 52 51 50 49 44 41 40 39 36 35 33 32	Mit 55953 51782 46820 43355 40254 37409 34907 32490 30265 28212 26244 24490 22886 21432 19611 18375 17222 16084 15145 14230 13387 12583 11884 11169 10519 9755 9225 8735 8258 7824 7407 7001 6605 6235 5903 5576 5202 4941 4712 4453 4239 4025 3820 3634	Percentage 2687 2907 3204 3487 3786 4231 4814 5497 6201 6765 7392 7977 8202 8471 10012 10512 10741 10512 10741 11569 12170 12583 12642 12987 12986 13006 13566 13037 12704 12554 12051 13566 13037 12704 12554 12225 11806 11379 11822 12051 11780 11417 11775 11500 11575 11356	$\begin{array}{l} \textbf{Pass/Fail} \\ \textbf{Fail} \\ Fa$
0.1692	40	4712	11780	Fail
0.1723	39	4453	11417	Fail
0.1754	36	4239	11775	Fail
0.1785	35	4025	11500	Fail
0.1815	33	3820	11575	Fail

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 2111\\ 2016\\ 1927\\ 1854\\ 1772\\ 1691\\ 1628\\ 1560\\ 1503\\ 1447\\ 1386\\ 1331\\ 1282\\ 1233\\ 1186\\ 1141\\ 1083\\ 1041\\ 1005\\ 963\\ 916\\ 879\\ 843\\ 809\\ 781\\ 755\\ 732\\ 709\\ 679\\ 649\\ 632\\ 606\\ 581\\ 560\\ 543\\ 524\\ 513\\ 500\\ 483\\ 472\\ 459\\ 444\\ 430\\ 421\\ 413\\ 399\end{array}$	13193 12600 12043 11587 11075 14091 13566 13000 12525 13154 12600 12100 14244 15412 16942 16300 21660 20820 20100 19260 18320 21975 21075 20225 19525 25166 24400 23633 33950 32450 31600 30300 29050 28000 27150 26200 25650 25000 25650 25000 24150 25000 21500 21500	Fail Fail Fail Fail Fail Fail Fail Fail
--	--	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.


The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #7 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

+ Predeveloped x Mi

x Mitigated

Predeveloped Landuse Totals for POC #8Total Pervious Area:2.25Total Impervious Area:0

Mitigated Landuse Totals for POC #8 Total Pervious Area: 4.33 Total Impervious Area: 3.24

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #8 Return Period Flow(cfs)

Return Period	FIOW(CTS)
2 year	0.271296
5 year	0.455306
10 year	0.593352
25 year	0.783538
50 year	0.935466
100 year	1.095396

Flow Frequency Return Periods for Mitigated. POC #8
Return Period Flow(cfs)
2 year
1 654455

2 year	1.654455
5 year	2.198737
10 year	2.591282
25 year	3.125213
50 year	3.551386
100 year	4.002663

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #8 Year Predeveloped Mitigated

i cui	i i caciopca	mingat
1949	0.542	2.321
1950	0.520	2.217
1951	0.279	1.439
1952	0.131	1.013
1953	0.098	1.174
1954	0.216	1.360
1955	0.206	1.494
1956	0.290	1.479
1957	0.321	1.640
1958	0.189	1.270
1959	0.153	1.269

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #8 **Rank** Predeveloped Mitigated 1 0 9978 3 7423

1	0.9978	3.7423
2	0.9243	3.6005
3	0.7684	3.4857
4	0.6933	3.3452

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.1356	2023	69214	3421	Fail
0.1437	1715	64573	3765	Fail
0.1518	1484	60423	4071	Fail
0.1599	1258	56552	4495	Fail
0.1680	1072	52980	4942	Fail
0.1760	866	49258	5687	Fail
0.1841	714	46264	6479	Fail
0.1922	574	43505	7579	Fail
0.2003	474	40853	8618	Fail
0.2084	407	38414	9438	Fail
0.2164	348	36168	10393	Fail
0.2245	304	34051	11200	Fail
0.2326	277	32105	11590	Fail
0.2407	246	30222	12285	Fail
0.2488	221	28490	12891	Fail
0.2568	197	26950	13680	Fail
0.2649	172	25474	14810	Fail
0.2730	153	24127	15769	Fail
0.2811	138	22629	16397	Fail
0.2891	118	21410	18144	Fail
0.2972	110	20264	18421	Fail
0.3053	98	19167	19558	Fail
0.3134	91	18183	19981	Fail
0.3215	83	17207	20731	Fail
0.3295	80	16326	20407	Fail
0.3376	76	15490	20381	Fail
0.3457	69	14673	21265	Fail
0.3538	67	13960	20835	Fail
0.3619	65	13240	20369	Fail
0.3699	62	12596	20316	Fail
0.3780	59	11914	20193	Fail
0.3861	56	11328	20228	Fail
0.3942	52	10810	20788	Fail
0.4023	51	10318	20231	Fail
0.4103	50	9820	19640	Fail
0.4184	48	9381	19543	Fail
0.4265	44	8941	20320	Fail
0.4346	41	8547	20846	Fail
0.4426	40	8149	20372	Fail
0.4507	39	7762	19902	Fail
0.4588	36	7441	20669	Fail
0.4669	35	7125	20357	Fail
0.4750	33	6842	20733	Fail
0.4830	32	6509	20340	Fail
0.4911	31	6211	20035	Fail
0.4992	28	5940	21214	Fail
0.5073	25	5666	22664	Fail
0.5154	25	5411	21644	Fail
0.5234	23	5197	22595	Fail
0.5315	20	4979	24895	Fail
0.5396	18	4763	26461	Fail
0.5477	16	4581	28631	Fail
0.5558	16	4383	27393	Fail
0.5638	16	4188	26175	Fail

0.5719 0.5800 0.5881 0.5961 0.6042 0.6123 0.6204 0.6285 0.6365 0.6446 0.6527 0.6608 0.6689 0.6769 0.6769 0.6850 0.6931 0.7012 0.7093 0.7173 0.7254 0.7335 0.7416 0.7496 0.7577 0.7658 0.7739 0.7820 0.7900 0.7901 0.7900 0.7981 0.8062 0.8143 0.8224 0.8304 0.8385 0.8466 0.8547 0.8628 0.8708 0.8789 0.8870 0.8951 0.9032 0.9112 0.9193 0.9274 0.9355	16 16 16 16 16 12 12 12 12 11 11 11 9 7 7 7 5 5 5 5 5 5 5 5 4 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2	4023 3878 3696 3544 3392 3247 3106 3020 2898 2774 2656 2560 2460 2376 2291 2209 2128 2043 1978 1911 1851 1776 1707 1651 1589 1544 1492 1440 1402 1358 1317 1285 1245 1213 1155 1245 1213 1155 1124 1094 1005 972 942 911 882 858 828	25143 24237 23100 22150 21200 27058 25883 25166 24150 25218 24145 23272 27333 33942 32728 31557 42560 40860 39560 38220 37020 44400 42675 41275 39725 51466 49733 48000 70100 67900 65850 64250 62250 60650 57750 56200 54700 53050 52050 54700 53050 52050 52050 50250 48600 47100 45550 44100 85800 82800	Fail Fail Fail Fail Fail Fail Fail Fail
--	--	--	--	--

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #8 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

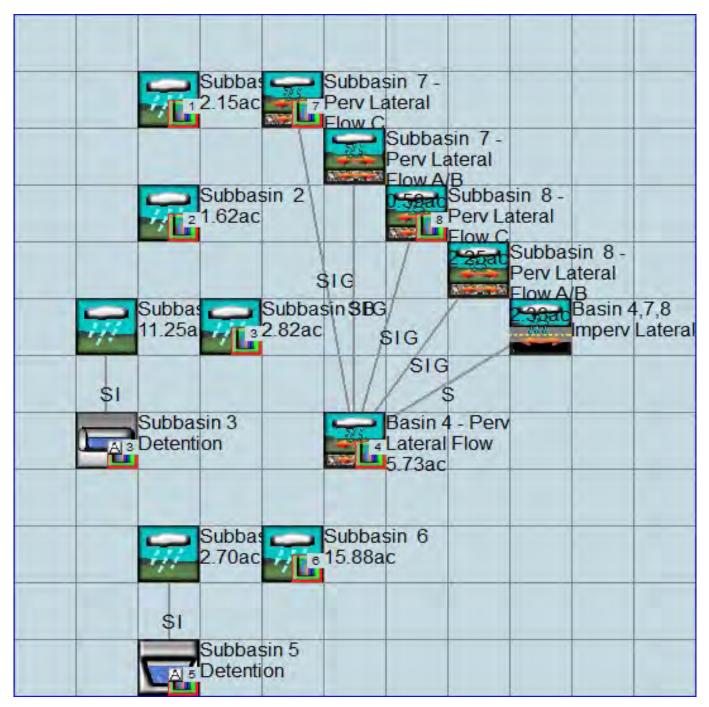
POC #9 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #10 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC #11 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.


PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation START 1948 10 01 END 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL	
<pre>FILES <file> <un#> <file <="" name="" namefile="" pre=""> WDM 26 Tamarack - Durations.wdm MESSU 25 PreTamarack - Durations.MES 27 PreTamarack - Durations.L61 28 PreTamarack - Durations.L62 30 POCTamarack - Durationsl.dat 31 POCTamarack - Durationsl.dat 35 POCTamarack - Durations6.dat 36 POCTamarack - Durations7.dat 37 POCTamarack - Durations8.dat 32 POCTamarack - Durations3.dat 34 POCTamarack - Durations5.dat 33 POCTamarack - Durations4.dat </file></un#></file></pre>	>*** ***
OPN SEQUENCE INGRP INDELT 00:15 PERLND 8 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 PERLND 9 IMPLND 7 IMPLND 16 PERLND 41 PERLND 41 PERLND 42 PERLND 42 PERLND 3 RCHRES 1 RCHRES 1 RCHRES 1 RCHRES 2 PERLND 39 COPY 501 COPY 502 COPY 505 COPY	
<pre># - #<title>***TRAN PIVL DIG1 FIL1 1 Subbasin 1 MAX 2 Subbasin 2 MAX</pre></td><td>PYR DIG2 FIL2 YRND
1 2 36xhibit 29
1 \$\$DP2016-00415
003643</td></tr></tbody></table></title></pre>	

43 3 39 END	0 0 PRINT-INFO	0 0 0	$\begin{array}{ccc} 4 & 0 \\ 4 & 0 \\ 4 & 0 \end{array}$	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 9 1 9 1 9
<pre> <p: # 8 17 9 40 41 42 43 39</p: </pre>					ter value f IFW VIRC V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		WT *** 0 0 0 0 0 0 0 0 0 0 0	
<p: # 8 17 9 40 41 42 43 39</p: 		PWATER REST 0 0 0 0 0 0 0 0 0 0	input inf LZSN 4.5 5 4.5 4.5 4.5 5 5 5	p: Part 2 INFILT 0.8 0.03 0.8 0.03 0.03 0.03 0.8 2 2	*** LSUR 400 400 400 400 400 400 400 400 400	SLSUR 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.1	KVARY 0.3 0.5 0.3 0.3 0.5 0.5 0.3 0.3 0.3	AGWRC 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
<pre> < P: # 8 17 9 40 41 42 43 3 39</pre>	-PARM3 LS > I - # ***PET PWAT-PARM3		input inf PETMIN 0 0 0 0 0 0 0 0 0 0 0 0 0	D: Part 3 INFEXP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*** INFILD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DEEPFR 0 0 0 0 0 0 0 0 0 0 0 0	BASETP 0 0 0 0 0 0 0 0 0 0	AGWETP 0 0 0 0 0 0 0 0 0 0 0
<pre> < P: # 8 17 9 40 41 42 43 3 39</pre>		WATER i EPSC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2	nput info UZSN 0.5 0.5 0.5 0.15 0.15 0.5 0.5 0.5	: Part 4 NSUR 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	INTFW 0 6 0 0 6 6 0 0 0 0	IRC 0.7 0.5 0.7 0.7 0.3 0.3 0.7 0.7 0.7	** LZETP * 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	* * * *
	rar				of simulat (pat 1-11-) IFWS 0 0 0 0 0 0 0 0 0		AGWS 1 1 1 1	GWVS 0 0 Exhibi029 2016-00415 003645

43 3 39 END PWAT	0 0 C-STATE1	0 0 0	0 0 0	0 0 0	3 3 3	1 0 1 0 1 0
END PERLND)					
# - # 2 4 6 3 7 16 END GEN-	<pre><name driveways="" flat="" lat<="" mod="" pre="" roads="" roof="" steee="" steep="" tops=""></name></pre>	Us	in out 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s Engl Metr		
	ATMP SNOW IWAT 0 0 1 0 0 1			* * * * * * * * * * * * *	*****	***
	ATMP SNOW IWAT 0 0 4 0 0 4		WG IQAL 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * *		
	IWATER variable CSNO RTOP VRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e month VNN RT 0 0 0 0 0 0		r value flag	gs ***	
IWAT-PAR <pls> # - # 2 4 6 3 7 16 END IWAT</pls>	• IWATER ing * *** LSUR 5 400 400 400 400 400 400 400 40	out info SLSUR 0.05 0.01 0.05 0.1 0.1 0.05	: Part 2 NSUR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	*** RETSC 0.08 0.1 0.08 0.05 0.05 0.05 0.08		
IWAT-PAR <pls> # - # 2 4</pls>	• IWATER inp	out info TMIN 0 0	: Part 3	***		Exhibit 29 SSDP2016-00415 003646

Page 106

	6 3 7 16 END IWAT-PARM3	0 0 0 0	0 0 0 0					
	IWAT-STATE1 <pls> *** Ini # - # *** RE 2 4 6 3 7 16 END IWAT-STATE1</pls>			of simu	lation	1		
I	END IMPLND							
4	SCHEMATIC <-Source-> <name> # Basin 4,7,8 Imperv</name>		<area/> <-factor->	<-Targe <name></name>		MBLK Tbl#	* * * * * *	
]	IMPLND 16 Subbasin 8 - Perv		0.6911	PERLND	39	50		
I I I	PERLND 40 PERLND 40 PERLND 40		0.4066 0.4066 0.4066	PERLND PERLND PERLND	39 39 39	30 34 38		
I I I	Subbasin 3A*** PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7		5.75 5.75 1.79 2.6 1.11	RCHRES RCHRES RCHRES RCHRES RCHRES	2 2 2 2 2	2 3 5 5 5		
S I I	Subbasin 5*** PERLND 9 PERLND 9 IMPLND 3		1.39 1.39 0.52	RCHRES RCHRES RCHRES	1 1 1	2 3 5		
]	IMPLND 4 IMPLND 7	Lateral FI	0.55 0.24	RCHRES RCHRES	1 1	5 5		
I	PERLND 43 PERLND 43 PERLND 43 Subbasin 7 - Perv	Lateral F	0.103 0.103 0.103 Low C***	PERLND PERLND PERLND	39 39 39	30 34 38		
I I I	PERLND 41 PERLND 41 PERLND 41 Subbasin 8 - Perv		0.1501 0.1501 0.1501	PERLND PERLND PERLND		30 34 38		
I I I	PERLND 42 PERLND 42 PERLND 42 Subbasin 1***		0.3927 0.3927 0.3927	PERLND PERLND PERLND	39	30 34 38		
H H H J J	PERLND 8 PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6		0.39 0.95 0.95 0.35 0.32 0.14	COPY COPY	501 501 501 501 501 501 501	12 13 12 13 15 15 15		
H H H H	Subbasin 2*** PERLND 8 PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4		0.67 0.67 0.41 0.41 0.42 0.08	СОРҮ СОРҮ СОРҮ СОРҮ	502 502 502 502 502 502 502	12 13 12 13 15 15		
Š	IMPLND 6 Subbasin 6*** PERLND 8		0.04 10.37	COPY COPY	502 506	15 12	SSD	F

PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 Basin 4 - Perv Lateral Flow*** PERLND 39 PERLND 39 Subbasin 7 - Perv Lateral Flow PERLND 41 PERLND 41 Subbasin 8 - Perv Lateral Flow PERLND 42 PERLND 42 PERLND 42 Subbasin 3B*** PERLND 3 IMPLND 3 IMPLND 4 IMPLND 7	0.86 0.86	COPY COPY COPY COPY COPY COPY COPY COPY	506 506 506 506 506 504 504 507 507 507 508 508 508 503 503 503 503 503	13 12 13 15 15 15 12 13 12 13 12 13 12 13 12 13 15 15 15		
*****Routing***** RCHRES 1 RCHRES 2 END SCHEMATIC	1 1	СОРҮ СОРҮ	505 503	16 16		
			et vols> # # 2 6 7 8 3 5 4	<-Grp> INPUT INPUT INPUT INPUT INPUT INPUT INPUT	<name> # # ***</name>	
<-Volume-> <-Grp> <-Member-><- <name> # <name> # #<- END NETWORK</name></name>	-Mult>Tran factor->strg	<-Targe <name></name>	et vols> # #	<-Grp>	<-Member-> *** <name> # # ***</name>	
RCHRES GEN-INFO RCHRES Name N # - #<> 1 Subbasin 5 Deten-049 2 Subbasin 3 Deten-052 END GEN-INFO *** Section RCHRES***	<> User T 1 1	-series in out 1 1	Engl Me	etr LKF0		
ACTIVITY <pls> *********** Activ # - # HYFG ADFG CNFG HTFG 1 1 0 0 0 2 1 0 0 0 END ACTIVITY</pls>	SDFG GQFG OX 0 0	XFG NUFG	G PKFG PH) 0		****	
PRINT-INFO <pls> ********************************* # - # HYDR ADCA CONS HEAT 1 4 0 0 0 2 4 0 0 0 END PRINT-INFO HYDR-PARM1</pls>	SED GQL O		R PLNK PH	HCB PIVI		5

RCHRES Flags for # - # VC A1 A2 FG FG FG * * *	A3 ODFVFG FG possib	for each		for each ble exit	FUNCT possib **	
1 0 1 0 2 0 1 0 END HYDR-PARM1		0 0 0 0 0 0	0 C 0 C	0 0 0 0 0 0 0 0	2 2 2 2	2 2 2 2 2 2
HYDR-PARM2 #-#FTABNO	LEN	DELTH	STCOR	KS	DB50	* * *
<><><	0.01		<>< 0.0 0.0		0.0	* * *
2 2 END HYDR-PARM2 HYDR-INIT	0.03	0.0	0.0	0.5	0.0	
RCHRES Initial o # - # *** VOL	Initia for eac	l value h possible	of COLIND e exit	n Initial for each *** <><	possible	exit
1 0 2 0 END HYDR-INIT END RCHRES		0.0 0.0		0.0	0.0 0.0 0.0 0.0	0.0 0.0
SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 91 4 Depth Area	(acre-ft) 0.000000 0.001178 0.002361 0.003549 0.004742 0.005941 0.007144 0.008353 0.009567 0.010786 0.012010 0.013239 0.014474	(cfs) 0.000000 0.267497 0.378297 0.463318 0.534993 0.598140 0.655230 0.707729 0.756594 0.802490 0.845898 0.887186 0.926635		Travel Time (Minutes)		
2.933333 0.015178 3.022222 0.015240 3.11111 0.015301 3.200000 0.015363 3.288889 0.015424 3.377778 0.015486	0.041622 0.042974 0.044332 0.045694 0.047063 0.048437	1.536651 1.559759 1.582531 1.604979 1.627118 1.648959			SSI	Exhibit 29 DP2016-00415 003649

3.466667 3.55556 3.644444 3.733333 3.822222 3.911111 4.000000 4.088889 4.177778 4.266667 4.35556 4.44444 4.533333 4.622222 4.711111 4.800000 4.888889 4.977778 5.066667 5.155556 5.244444 5.33333 5.422222 5.511111 5.600000 5.688889 5.777778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 5.866667 5.955556 6.044444 6.133333 6.222222 6.311111 6.400000 6.488889 6.577778 5.866667 7.55556 6.844444 6.93333 7.022222 7.111111 7.200000 7.288889 7.377778 7.466667 7.555556 6.844444 6.93333 7.022222 7.11111 7.200000 7.288889 7.377778 7.466667 7.555556 7.644444 7.733333 7.822222 7.91111 8.000000 END FTABL FTABLE	0.015548 0.015610 0.015672 0.015735 0.015797 0.015860 0.015923 0.015985 0.016048 0.016111 0.016365 0.016238 0.016301 0.016365 0.016429 0.016492 0.016492 0.016492 0.016556 0.016620 0.016655 0.016749 0.016813 0.016878 0.016943 0.016843 0.016943 0.017077 0.017072 0.017077 0.017072 0.01733 0.017268 0.017333 0.017268 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017596 0.017595 0.017795 0.017795 0.017795 0.017861 0.018128 0.018128 0.018320 0.018465 0.018532 0.018600 0.018608 0.018736 0.018872 E 1 2	0.049816 0.051201 0.052591 0.053987 0.055388 0.056795 0.058208 0.059626 0.061050 0.062479 0.063914 0.065354 0.068253 0.069710 0.071173 0.072642 0.074117 0.075597 0.077083 0.078574 0.080072 0.078574 0.081575 0.083084 0.084598 0.086119 0.084598 0.086119 0.087645 0.089177 0.092259 0.093808 0.095363 0.096925 0.098492 0.100065 0.101643 0.103228 0.104819 0.106415 0.108018 0.104819 0.106426 0.11241 0.11241 0.11241 0.11241 0.1124371 0.126040 0.127714	1.670515 1.691797 1.712814 1.733576 1.754092 1.774371 1.794421 1.814250 1.833864 1.853270 1.872476 1.910307 1.9289476 1.910307 1.9289404 1.965690 1.983807 2.001761 2.019555 2.037193 2.054680 2.072019 2.089215 2.106270 2.123188 2.139972 2.156626 2.173152 2.189553 2.205833 2.221993 2.253966 2.269783 2.269783 2.269783 2.269783 2.285491 2.308660 2.327669 2.363199 2.380329 2.467500 3.198545 5.685745 7.207863 8.785919 10.32063 11.71823 12.90286 13.83219 14.51567 15.03487		
91 4 Depth (ft) 0.000000 0.066667 0.133333 0.200000 0.266667 0.333333 0.400000 0.466667 0.533333 0.600000 0.666667 0.733333 0.800000	Area (acres) 0.000000 0.004938 0.006944 0.008456 0.009708 0.010790 0.011751 0.012616 0.013406 0.014132 0.014804 0.015430 0.016013	Volume (acre-ft) 0.000000 0.000220 0.001135 0.001742 0.002426 0.003178 0.003991 0.004858 0.005777 0.006741 0.007749 0.008798	Outflow1 (cfs) 0.000000 0.070410 0.099574 0.121953 0.140819 0.157441 0.172467 0.186286 0.199148 0.211229 0.222655 0.233522 0.243906	Velocity (ft/sec)	Travel Time*** (Minutes)***

0.866667 0.933333 1.000000 1.066667 1.133333 1.200000 1.266667 1.333333 1.400000 1.466667 1.533333 1.600000 1.666667 1.733333 2.000000 2.066667 2.133333 2.200000 2.266667 2.33333 2.400000 2.466667 2.533333 2.400000 2.66667 2.733333 2.600000 2.66667 2.733333 2.600000 2.666677 2.733333 3.000000 3.066667 3.133333 3.200000 3.266667 3.33333 3.400000 3.666677 3.733333 3.400000 3.666677 3.733333 3.400000 3.666677 3.733333 3.400000 3.666667 3.733333 3.400000 3.666667 3.733333 3.400000 3.666677 3.733333 3.600000 3.6666677 3.733333 3.600000 3.6666677 3.733333 3.600000 3.6666677 3.733333 3.600000 3.6666677 3.733333 3.600000 3.666677 3.733333 3.600000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.733333 3.6000000 3.6666677 3.73577 3.6000000 3.6666677 3.735777 3.757777 3.757777777777777	0.016560 0.017073 0.017556 0.018010 0.018439 0.018843 0.019224 0.019584 0.020245 0.02032 0.021100 0.021351 0.021587 0.022839 0.022015 0.022345 0.022549 0.022701 0.023408 0.023408 0.023408 0.023408 0.023548 0.023554 0.022549 0.02556 0.02557 0.02557 0.02557 0.02557 0.02557 0.02557 0.02	0.009884 0.011005 0.012160 0.013345 0.014560 0.015803 0.017072 0.018366 0.019683 0.021022 0.023761 0.025159 0.026574 0.029452 0.030913 0.032387 0.032387 0.036880 0.038398 0.039925 0.041460 0.043002 0.044550 0.044550 0.044550 0.044550 0.044550 0.044550 0.053927 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.055497 0.057067 0.058637 0.06204 0.061770 0.053322 0.064894 0.067993 0.064894 0.067993 0.0712596 0.0712596 0.071069 0.072596 0.07121 0.078607 0.08081 0.081542 0.082989 0.084420 0.085835 0.087233 0.088612 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.091311 0.092628 0.093922 0.093	0.253865 0.263448 0.272695 0.281638 0.290306 0.298722 0.306908 0.314881 0.322657 0.330250 0.352048 0.352048 0.352048 0.355020 0.365859 0.372572 0.379167 0.385649 0.392024 0.398297 0.404472 0.410555 0.416549 0.422457 0.428285 0.434034 0.439708 0.445309 0.450841 0.456306 0.461706 0.467044 0.472322 0.477541 0.482704 0.482704 0.492867 0.592825 0.507731 0.512589 0.517402 0.522171 0.526897 0.531581 0.554405 0.572010 0.572010 0.5763276 0.567660 0.572010 0.572010 0.572010 0.572010 0.5763276 0.567660 0.572010 0.572010 0.576327 0.58859 0.567660 0.572010 0.572010 0.576327 0.580612 0.584866 0.589089 0.597450

5.533333 0.0120 5.600000 0.011 5.6666667 0.010 5.733333 0.009 5.800000 0.008 5.866667 0.006 5.93333 0.004 6.000000 0.0000 END FTABLE 2 END FTABLES	751 0.1078: 790 0.10850 708 0.1092! 456 0.1098! 944 0.1103' 938 0.1107'	169.1853085810.172285211.030635911.744377412.313827412.76044				
EXT SOURCES <-Volume-> <member <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></member 	# tem strg ENGL : ENGL : ENGL :	<mult>Tran <-factor->strg 1 0.76 0.76</mult>		EXTNL EXTNL EXTNL	<-Member <name> ‡ PREC PREC PETINP PETINP</name>	
END EXT SOURCES						
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 501 OUTPUT COPY 502 OUTPUT COPY 506 OUTPUT COPY 504 OUTPUT COPY 507 OUTPUT COPY 508 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR COPY 505 OUTPUT COPY 503 OUTPUT RCHRES 2 HYDR RCHRES 2 HYDR END EXT TARGETS</name>	<name> # # MEAN 1 1 RO 1 1 STAGE 1 1 MEAN 1 1</name>	<mult>Tran <-factor->strg 48.4 48.4 48.4 48.4 48.4 48.4 1 1 48.4 48.4</mult>		ne> El I El I El I El I El I El I El I El I	sys Tgap tem strg NGL NGL NGL NGL NGL NGL NGL NGL NGL NGL	
<name></name>	<-Member-> <name> # #·</name>		<target> <name></name></target>	<-Grp>	<-Member <name> ‡</name>	
MASS-LINK PERLND PWATER END MASS-LINK	2 SURO 2	0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK PERLND PWATER END MASS-LINK		0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK IMPLND IWATER END MASS-LINK	-	0.083333	RCHRES	INFLOW	IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN	
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	COPY	INPUT	MEAN	
MASS-LINK IMPLND IWATER END MASS-LINK		0.083333	СОРҮ	INPUT	MEAN	
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРҮ	INPUT	MEAN	Exhibit 29
MASS-LINK	30				SSDP	2016-00415 003652
TamaseksDurations		5/18/2	2016 4·14·03 PM			Page

Tamaseck65Durations

PERLND PWATER END MASS-LINK	SURO 30	PERLND	EXTNL	SURLI
MASS-LINK PERLND PWATEF END MASS-LINK	34 IFWO 34	PERLND	EXTNL	IFWLI
MASS-LINK PERLND PWATEF END MASS-LINK	38 AGWO 38	PERLND	EXTNL	AGWLI
MASS-LINK IMPLND IWATEF END MASS-LINK	50 SURO 50	PERLND	EXTNL	SURLI

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation START19481001ENDRUN INTERP OUTPUT LEVEL30 END 2009 09 30 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name----->*** * * * <-ID-> WDM 26 Tamarack - Durations.wdm MESSU 25 MitTamarack - Durations.MES 27 MitTamarack - Durations.L61 MitTamarack - Durations.L62 POCTamarack - Durationsl.dat POCTamarack - Durations2.dat 28 30 31 33 POCTamarack - Durations4.dat POCTamarack - Durations6.dat 35 POCTamarack - Durations7.dat 36 37 POCTamarack - Durations8.dat 32 POCTamarack - Durations3.dat POCTamarack - Durations5.dat 34 END FILES OPN SEQUENCE INDELT 00:15 INGRP PERLND 8 PERLND 17 2 IMPLND 4 IMPLND IMPLND 6 9 PERLND IMPLND 3 7 IMPLND PERLND 2 18 PERLND 1 2 RCHRES RCHRES 501 COPY 502 COPY 504 COPY COPY 506 507 COPY 508 COPY COPY 3 503 COPY COPY 603 5 COPY 505 COPY COPY 605 1 DISPLY DISPLY 4 DISPLY б DISPLY 7 DISPLY DISPLY 8 DISPLY 3 DISPLY 5 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 2 30 1 2 3**Exhibit** 29 1 **SSDP2016-00415** 1 Subbasin 1 MAX Subbasin 2 2 MAX 4 Subbasin 4 MAX 003654

6 Subbasi 7 Subbasi 8 Subbasi 3 Tank 1 5 Trapezo END DISPLY-INFO1 END DISPLY COPY	n 7 n 8	1	MAX MAX MAX MAX MAX	1 1 1 1	2 35 9 2 36 9 2 37 9 2 32 9 2 34 9
TIMESERIES # - NPT NMN 1 1 1 501 1 1 502 1 1 504 1 1 506 1 1 506 1 1 507 1 1 508 1 1 503 1 1 603 1 1 505 1 1 605 1 1					
END PARM END GENER PERLND GEN-INFO <pls><na< td=""><td>_ *** me>N</td><td></td><td>it-systems P</td><td></td><td></td></na<></pls>	_ *** me>N		it-systems P		
<pre># - # 8 A/B, Lawn, 17 C, Lawn, M 9 A/B, Lawn, 2 A/B, Fores 18 C, Lawn, S END GEN-INFO *** Section PWATER</pre>	Nod Steep st, Mod Steep	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 Metr *** 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	
ACTIVITY <pls> ********* # - # ATMP SNOW 8 0 0 17 0 0 9 0 0 2 0 0 18 0 0 END ACTIVITY</pls>	PWAT SED 1 0 1 0 1 0 1 0 1 0 1 0		PQAL MSTL PES 0 0 0 0 0 0 0 0 0 0		
PRINT-INFO <pls> ********* # - # ATMP SNOW 8 0 0 17 0 0 9 0 0 2 0 0 18 0 0 END PRINT-INFO</pls>	PWAT SED 4 0 4 0 4 0 4 0 4 0 4 0 4 0		PQAL MSTL PES 0 0 0 0 0 0 0 0 0 0		
PWAT-PARM1 <pls> PWATER v # - # CSNO RTOP 8 0 0</pls>	UZFG VCS	thly para VUZ VNN 0 0	VIFW VIRC VL	ags *** E INFC HWT 0 0 0	Exhibit 29 **`\$SDP2016-00415 003655

17 9 2 18 END PWAT-	0 0 0 9 PARM1	0 0 0	0 0 0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	
PWAT-PARM <pls> # - # 8 17 9 2 18 END PWAT-</pls>	PW ***FORE		nput in LZSN 5 4.5 5 5 4.5	INF (art 2 FILT 0.8 0.03 0.8 2 0.03		** SUR 400 400 400 400 400	SI (SUR 0.1 0.1).15 0.1).15	KVARY 0.3 0.5 0.3 0.3 0.5	0.996 0.996 0.996 0.996
PWAT-PARM <pls> # - # 8 17 9 2 18 END PWAT- PWAT-PARM</pls>	PW ***PETM PARM3		nput in PETMIN 0 0 0 0 0		art 3 FEXP 2 2 2 2 2 2 2	INF	** 1LD 2 2 2 2 2 2		CPFR 0 0 0 0 0	BASETP 0 0 0 0 0 0	0 0 0 0
PWA1-PARM <pls> # - # 8 17 9 2 18 END PWAT-</pls>	PWA CEF C C C C C C C C C C		uput inf UZSN 0.5 0.25 0.5 0.5 0.15	1 (((rt 4 NSUR 0.25 0.25 0.25 0.25 0.35 0.25	IN	TFW 0 6 0 0 6		IRC 0.7 0.5 0.7 0.7 0.3	LZETP 0.25 0.25 0.25 0.7 0.7	
	*** Ini ran *** CE		onditio 990 to SURS 0 0 0 0 0			(pat			RUN 2 LZS 3 2.5 3 2.5 2.5	1 *** AGWS 1 1 1 1	0 0 0 0
# - # 2 4 6 3	ROADS/M ROOF TC DRIVEWA ROADS/S DRIVEWA NFO	IOD DPS/FLA LYS/MOI LTEEP LYS/STE	AT)		t-ser			letr '			
ACTIVITY <pls></pls>	******* ATMP SN 0 0 0 0 0	****** IOW IWA 0 0 0		Sect: IWG 0 0 0 0 0 0		* * * * * * * *	* * * *	****	****	******* S	Exhibit 29 SDP2016-00415 003656

PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** 1 9 2 0 0 4 0 0 0 4 0 0 4 0 0 0 1 9 0 0 0 4 9 0 0 6 1 0 0 0 0 4 0 1 9 3 7 0 0 4 0 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 6 3 0 0 0 0 0 7 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2 * * * <PLS > # - # *** LSUR SLSUR NSUR RETSC 0.05 2 0.08 400 0.1 400 0.01 0.1 4 0.1 6 400 0.05 0.1 0.08 400 0.1 0.1 0.05 3 7 400 0.1 0.1 0.05 END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN 0 2 0 4 0 0 0 6 0 3 0 0 7 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 2 0 0 4 0 0 0 0 6 3 0 0 7 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK * * * <-Source-> * * * <Name> # <-factor-> <Name> # Tbl# Subbasin 3A*** perlnd 9 5.54 2 RCHRES 1 9 5.54 3 PERLND RCHRES 1 IMPLND 3 1.79 RCHRES 1 5 IMPLND 4 2.74 5 RCHRES 1 7 5 IMPLND 1.18 RCHRES 1 Subbasin 5*** PERLND 9 2 1.15 RCHRES 2 9 PERLND 1.15 RCHRES 2 3 3 4 IMPLND 0.52 RCHRES 2 5 2 IMPLND 0.73 RCHRES 5 7 0.31 RCHRES 2 5 Exhibit 29 IMPLND Subbasin 1*** SSDP2016-00415 0.38 COPY 501 12 PERLND 8 003657

PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 Subbasin 2***	0.38 0.94 0.94 0.35 0.33 0.14	COPY COPY COPY COPY COPY COPY	501 501 501 501 501 501	13 12 13 15 15 15	
PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 Subbasin 4***	0.52 0.52 0.32 0.32 0.42 0.25 0.11	COPY COPY COPY COPY COPY COPY	502 502 502 502 502 502 502	12 13 12 13 15 15 15	
PERLND 2 PERLND 2 Subbasin 6***	5.82 5.82	COPY COPY	504 504	12 13	
PERLND 8 PERLND 8 PERLND 17 PERLND 17 IMPLND 2 IMPLND 4 IMPLND 6 Subbasin 7***	9.379.370.030.031.773.31.41	COPY COPY COPY COPY COPY COPY	506 506 506 506 506 506 506	12 13 12 13 15 15 15	
PERLND 9 PERLND 9 PERLND 18 PERLND 18 IMPLND 4 IMPLND 7 Subbasin 8***	0.52 0.52 0.77 0.77 0.72 0.31	COPY COPY COPY COPY COPY COPY	507 507 507 507 507 507	12 13 12 13 15 15	
PERLND 9 PERLND 9 PERLND 18 PERLND 18 IMPLND 3 IMPLND 4 IMPLND 7	2.2 2.13 2.13 1.78 1.02 0.44	COPY COPY COPY COPY COPY COPY	508 508 508 508 508 508 508 508	12 13 12 13 15 15 15	
Basin 3B*** PERLND 9 PERLND 9 PERLND 9 PERLND 9 IMPLND 3 IMPLND 3 IMPLND 4 IMPLND 4 IMPLND 7 IMPLND 7	1.39 1.39 1.39 1.39 0.45 0.45 0.69 0.69 0.29 0.29	COPY COPY COPY COPY COPY COPY COPY COPY	503 603 503 603 503 603 503 603 503 603	12 12 13 15 15 15 15 15 15	
*****Routing***** PERLND 9 IMPLND 3 IMPLND 4 IMPLND 7 PERLND 9 PERLND 9 IMPLND 3 IMPLND 4 IMPLND 4 IMPLND 7 PERLND 9 RCHRES 1 RCHRES 2 END SCHEMATIC	$5.54 \\ 1.79 \\ 2.74 \\ 1.18 \\ 5.54 \\ 1.15 \\ 0.52 \\ 0.73 \\ 0.31 \\ 1.15 \\ 1 \\ 1 \\ 1$	COPY COPY COPY COPY COPY COPY COPY COPY	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 15 15 13 12 15 15 15 13 16 16	
NETWORK <-Volume-> <-Grp> <-Member->< <name> # <name> # #<-f</name></name>	Mult>Tran actor->strg	<-Targ <name></name>	et vols> # #	<-Grp>	Exhibit 29 <-M 寄啓理2016-ÖÖ 415 <name> # # 003658</name>

COPY501OUTPUTME.COPY502OUTPUTME.COPY504OUTPUTME.COPY506OUTPUTME.COPY507OUTPUTME.COPY508OUTPUTME.COPY503OUTPUTME.COPY505OUTPUTME.	AN 1 1 48.4 AN 1 1 48.4	DISPLY 2 INF DISPLY 4 INF DISPLY 6 INF DISPLY 7 INF DISPLY 8 INF	PUT TIMSER 1 PUT TIMSER 1
	Member-> <mult>Tran ame> # #<-factor->strg</mult>		
# - #<	e Nexits Unit > User T 1 1 1 Pond-056 1 1	-series Engl Metr in out	*** LKFG *** *** 1 1
END GEN-INFO *** Section RCHRES		1 1 20 0	1
	**** Active Sections * CNFG HTFG SDFG GQFG O 0 0 0 0 0 0 0 0		
PRINT-INFO <pls> ********* # - # HYDR ADCA 1 4 0 2 4 0 END PRINT-INFO</pls>	******* Print-flags * CONS HEAT SED GQL O 0 0 0 0 0 0 0 0	**************************************	
# - # VC A1 A2		** ODGTFG for each ** possible exit * * * * *	
	0 4 0 0 0 0	0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
HYDR-PARM2 # - # FTABNO	LEN DELTH	STCOR KS	DB50 ***
	<><><-		
2 2 END HYDR-PARM2	0.01 0.0	0.0 0.5	0.0
	conditions for each HY		***
*** ac-ft	Initial value o for each possible	exit for eac	al value of OUTDGT Th possible exit
<><>	4.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
2 0 END HYDR-INIT END RCHRES	4.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 91 4	Volume Outflow1 V	elocity Travel Tin	Exhibit 29 SSDP2016-00415 ^{ne***} 003659
Tamaseck65Durations	5/18/	/2016 4:14:03 PM	Page

(ft) 0.000000	(acres) 0.000000	(acre-ft) 0.000000	(cfs) 0.000000	(ft/sec)	(Minutes)***
0.066667 0.133333 0.200000 0.266667	0.004938 0.006944 0.008456 0.009708	0.000220 0.000620 0.001135 0.001742	0.070410 0.099574 0.121953 0.140819		
0.200007 0.333333 0.400000 0.466667	0.010790 0.011751 0.012616	0.001742 0.002426 0.003178 0.003991	0.157441 0.172467 0.186286		
0.533333 0.600000 0.666667	0.013406 0.014132 0.014804	0.004858 0.005777 0.006741	0.199148 0.211229 0.222655		
0.733333 0.800000 0.866667	0.015430 0.016013 0.016560	0.007749 0.008798 0.009884	0.233522 0.243906 0.253865		
0.933333 1.000000 1.066667 1.133333	0.017073 0.017556 0.018010 0.018439	0.011005 0.012160 0.013345 0.014560	0.263448 0.272695 0.281638 0.290306		
1.200000 1.266667 1.333333	0.018843 0.019224 0.019584	0.015803 0.017072 0.018366	0.298722 0.306908 0.314881		
1.400000 1.466667 1.533333	0.019924 0.020245 0.020547	0.019683 0.021022 0.022382	0.322657 0.330250 0.337672		
1.600000 1.666667 1.733333 1.800000	0.020832 0.021100 0.021351 0.021587	0.023761 0.025159 0.026574 0.028006	0.344935 0.352048 0.359020 0.365859		
1.866667 1.933333 2.000000	0.021808 0.022015 0.022207	0.029452 0.030913 0.032387	0.372572 0.379167 0.385649		
2.066667 2.133333 2.200000	0.022385 0.022549 0.022701	0.033874 0.035372 0.036880	0.392024 0.398297 0.404472		
2.266667 2.333333 2.400000 2.466667	0.022839 0.022965 0.023078 0.023179	0.038398 0.039925 0.041460 0.043002	0.410555 0.416549 0.422457 0.428285		
2.533333 2.600000 2.666667	0.023267 0.023343 0.023408	0.044550 0.046104 0.047662	0.434034 0.439708 0.445309		
2.733333 2.800000 2.866667	0.023460 0.023501 0.023530	0.049224 0.050790 0.052358	0.450841 0.456306 0.461706		
2.933333 3.000000 3.066667 3.133333	0.023548 0.023554 0.023548 0.023530	0.053927 0.055497 0.057067 0.058637	0.467044 0.472322 0.477541 0.482704		
3.200000 3.266667 3.333333	0.023501 0.023460 0.023408	0.060204 0.061770 0.063332	0.487812 0.492867 0.497871		
3.400000 3.466667 3.533333 3.600000	0.023343 0.023267 0.023179 0.023078	0.064891 0.066444 0.067993 0.069535	0.502825 0.507731 0.512589 0.517402		
3.666667 3.733333 3.800000	0.022965 0.022839 0.022701	0.071069 0.072596 0.074114	0.522171 0.526897 0.531581		
3.866667 3.933333 4.000000	0.022549 0.022385 0.022207	0.075623 0.077121 0.078607	0.536223 0.540826 0.545390		
4.066667 4.133333 4.200000 4.266667	0.022015 0.021808 0.021587 0.021351	0.080081 0.081542 0.082989 0.084420	0.549916 0.554405 0.558859 0.563276		
4.333333 4.400000 4.466667	0.021100 0.020832 0.020547	0.085835 0.087233 0.088612	0.567660 0.572010 0.576327		
4.533333	0.020245	0.089972	0.580612		

4.600000 0.019924 4.666667 0.019584 4.733333 0.019224 4.800000 0.018843 4.866667 0.018433 4.933333 0.018010 5.000000 0.017550 5.066667 0.017073 5.133333 0.016560 5.200000 0.016013 5.266667 0.015430 5.466667 0.015430 5.466667 0.013400 5.53333 0.014800 5.466667 0.013400 5.53333 0.012610 5.666667 0.010790 5.73333 0.002610 5.880000 0.008450 5.866667 0.006940 5.93333 0.004930 6.00000 0.000000 END FTABLE 1 FTABLE 2 91 4	4 0.092628 4 0.093922 8 0.095191 9 0.096434 9 0.097649 5 0.0998835 8 0.099989 9 0.101111 8 0.102196 9 0.103245 4 0.104253 2 0.105218 5 0.106136 5 0.107004 10.107704 0.109252 5 0.109859 4 0.109859 6 0.109774	0.584866 0.589089 0.593281 0.597445 0.601580 0.605686 0.609765 0.978910 1.648713 2.508517 3.508899 4.608973 5.768278 6.945177 8.097647 9.185308 10.17228 11.03063 11.74437 12.31382 12.76044 13.13191		
DepthArea(ft)(acres)0.000000.013220.0888890.013280.1777780.013330.2666670.013390.3555560.013450.4444440.013510.5333330.013660.6222220.013620.711110.013680.800000.013740.888890.013860.9777780.013860.9777780.013861.0666670.013971.2444440.014031.333330.014091.422220.014151.511110.014211.6000000.014271.688890.014331.777780.014391.777780.014391.777780.014392.0444440.014572.133330.014632.222220.014692.311110.014752.4000000.014812.488890.014872.5777780.014932.6666670.014992.755560.015052.8444440.015112.933330.015173.0222220.015243.111110.015363.288890.015423.777780.015483.4666670.015613.6444440.015673.733330.01573	<pre>(acre-ft) 3 0.000000 0 0.01178 3 0.002361 5 0.003549 3 0.004742 0.005941 7 0.005941 7 0.008353 5 0.009567 8 0.010786 1 0.012010 0 0.013239 8 0.014474 7 0.015714 7 0.015714 7 0.015714 7 0.015714 7 0.016959 8 0.014474 7 0.015714 7 0.015714 7 0.016959 8 0.014474 7 0.015714 8 0.020725 8 0.021991 8 0.023263 8 0.024539 0 .023263 8 0.024539 0 .024539 0 .024539 2 0.024539 2 0.031002 2 0.032311 8 0.03625 8 0.034944 4 0.036269 5 0.034944 4 0.036269 5 0.034944 4 0.036269 5 0.034944 4 0.036269 5 0.034944 4 0.036269 5 0.034944 5 0.044332 8 0.044332 8 0.0445694 4 0.047063 0 .048437 8 0.049816 0 .051201 0 .052591</pre>	Outflow1 (cfs) 0.000000 0.267497 0.378297 0.463318 0.598140 0.655230 0.707729 0.756594 0.802490 0.845898 0.887186 0.926635 0.964472 1.000880 1.02916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.102916 1.337483 1.254670 1.282868 1.310460 1.337483 1.363970 1.389953 1.415459 1.440513 1.465139 1.489358 1.513189 1.536651 1.559759 1.582531 1.604979 1.627118 1.648959 1.691797 1.712814 1.733576	Velocity (ft/sec)	Travel Time*** (Minutes)***

<pre> EXT SOURCES <-Volume-> <member> SsysSgap<mult>Tran <-Target vols> <-Grp> <-Member> *** <name> # <name> # tem strg<-factor->strg <name> # # <name> # # *** WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 1 IMPLND 1 999 EXTNL PREC WDM 1 EVAP ENGL 0.76 PERLND 1 999 EXTNL PETINP WDM 1 EVAP ENGL 0.76 IMPLND 1 999 EXTNL PETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><mult>Tran <-Volume-> <member> Tsys Tgap Amd *** <name> # <name> # # <-factor->strg <name> # <name> tem strg strg*** COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL COPY 501 OUTPUT MEAN 1 1 48.4 WDM 901 FLOW ENGL REPL COPY 601 OUTPUT MEAN 1 1 48.4 WDM 702 FLOW ENGL REPL COPY 502 OUTPUT MEAN 1 1 48.4 WDM 802 FLOW ENGL SSDP2076-00415 COPY 602 OUTPUT MEAN 1 1 48.4 WDM 902 FLOW ENGL SSDP2076-00415 REPP003662 </name></name></name></name></member></mult></name></name></name></name></mult></member></pre>	3.91111 0.015860 0.053795 1.774371 4.00000 0.015923 0.058208 1.794421 4.088889 0.015985 0.059626 1.814250 4.17778 0.016048 0.061050 1.833864 4.266667 0.016111 0.062479 1.853270 4.355556 0.016175 0.063914 1.872476 4.444444 0.016238 0.065354 1.891486 4.53333 0.016301 0.066801 1.910307 4.622222 0.016365 0.068253 1.928945 4.71111 0.016429 0.069710 1.947404 4.800000 0.016492 0.07173 1.965690 4.888889 0.016556 0.072642 1.983807 4.977778 0.016620 0.074117 2.001761 5.066667 0.016685 0.075597 2.019555 5.155556 0.016749 0.077083 2.037193 5.244444 0.016813 0.078574 2.054680 5.33333 0.016878 0.080072 2.072019 5.422222 0.016943 0.081575 2.089215 5.51111 0.017007 0.083084 2.106270 5.60000 0.017072 0.084598 2.123188 5.68889 0.017137 0.086119 2.139972 5.777778 0.017203 0.087645 2.156626 5.866667 0.017668 0.089177 2.173152 5.955556 0.01733 0.090715 2.189553 6.044444 0.017399 0.092259 2.205833 6.13333 0.017465 0.093808 2.221993 6.22222 0.017530 0.095363 2.238037 6.31111 0.017070 0.083084 2.21993 6.22222 0.017530 0.095363 2.238037 6.31111 0.017795 0.101643 2.308660 6.666667 0.017661 0.103228 2.327666 6.755556 0.017928 0.104819 2.345699 6.84444 0.017995 0.106415 2.363199 6.93333 0.018061 0.108018 2.380329 7.022222 0.018128 0.109615 2.285491 6.577778 0.018262 0.112861 4.316850 7.288889 0.018307 0.114487 5.685745 7.377778 0.018397 0.11624 3.308660 6.66667 0.017861 0.103218 2.327665 6.755556 0.01928 0.104415 2.363199 6.93333 0.018061 0.108018 2.380329 7.022222 0.018128 0.107518 8.785919 7.55556 0.018327 0.11241 3.198544 7.200000 0.018262 0.112861 4.316850 7.288889 0.018307 0.114487 5.685745 7.377778 0.018397 0.116247 7.0383 7.644444 0.018600 0.121053 11.71823 7.73333 0.018668 0.122709 12.90286 7.64444 0.018804 0.126040 14.51567 8.000000 0.018872 0.127714 15.03487 END FTABLE 2 END FTABLES	
EXT TARGETS <-Volume-> <-Grp> <-Member-> <mult>Tran <-Volume-> <member> Tsys Tgap Amd *** <name> # <name> # #<-factor->strg <name> # <name> # <name> tem strg strg*** COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL COPY 501 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL COPY 601 OUTPUT MEAN 1 1 48.4 WDM 901 FLOW ENGL REPL COPY 2 OUTPUT MEAN 1 1 48.4 WDM 702 FLOW ENGL REPL COPY 502 OUTPUT MEAN 1 1 48.4 WDM 802 FLOW ENGL SSDP2048-00415</name></name></name></name></name></member></mult>	<name> # <name> # tem strg<-factor->strg WDM 2 PREC ENGL 1 WDM 2 PREC ENGL 1 WDM 2 PREC ENGL 1 WDM 1 EVAP ENGL 0.76</name></name>	<pre><name> # # </name></pre> <name> # # *** PERLND 1 999 EXTNL PREC IMPLND 1 999 EXTNL PREC PERLND 1 999 EXTNL PETINP</name>
<pre><-Volume-> <-Grp> <-Member-><mult>Tran <-Volume-> <member> Tsys Tgap Amd *** <name> #</name></member></mult></pre>	END EXT SOURCES	
	<pre><-Volume-> <-Grp> <-Member-><mult>Tran <name> #</name></mult></pre>	<name># <name>tem strg strg***WDM701 FLOWENGLREPLWDM801 FLOWENGLREPLWDM901 FLOWENGLREPLWDM702 FLOWENGLREPLWDM802 FLOWENGLSDP ####################################</name></name>

3.822222 0.015797 0.055388 1.754092

COPY4OUTPUTCOPY504OUTPUTCOPY604OUTPUTCOPY506OUTPUTCOPY507OUTPUTCOPY507OUTPUTCOPY507OUTPUTCOPY607OUTPUTCOPY508OUTPUTCOPY508OUTPUTCOPY503OUTPUTCOPY503OUTPUTCOPY503OUTPUTCOPY503OUTPUTRCHRES1HYDRRCHRES2HYDRRCHRES2HYDRCOPY5OUTPUTCOPY505OUTPUTCOPY505OUTPUTCOPY505OUTPUTCOPY605OUTPUTCOPY605OUTPUTCOPY605OUTPUTCOPY605OUTPUTENDEXTTARGETS	MEAN 1 1 RO 1 1 MEAN 1 1	$\begin{array}{c} 48.4\\$	WDM 704 F WDM 804 F WDM 904 F WDM 706 F WDM 706 F WDM 906 F WDM 907 F WDM 907 F WDM 907 F WDM 908 F WDM 908 F WDM 903 F WDM 903 F WDM 1004 F WDM 1005 S WDM 1006 F WDM 1007 S WDM 1007 S WDM 1007 S WDM 805 F WDM 905 F	FLOW E1 STAG E1 FLOW E1 STAG E1 FLOW E1 FLOW E1 STAG E1 FLOW E1 FLOW E1	NGLREPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<-Member-> <name> # # 2 SURO 2</name>		<target> <name> RCHRES</name></target>	<-Grp>	<-Member->*** <name> # #*** IVOL</name>
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРҮ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX C

COOPERS BEACH - MITIGATION AS BUILT

May 5, 2011

AOA-3985

Kathy Curry City of Sammamish 801 228th Avenue SE Sammamish, WA 98075

REFERENCE: Cooper's Beach – 42x E. Lake Sammamish Shore Lane NE, Sammamish, WA (Corps # NWS-2009-476 Heen/Leseberg)

SUBJECT: Revised Mitigation As-built - Baseline Assessment Report

Dear Kathy:

This report has been prepared to document baseline conditions following installation of the wetland and shoreline mitigation area at the Cooper's Beach project site, and has been revised to address the comments presented in your March 3, 2011 e-mail to Evan Maxim (see Section 1.0 below). Also included in this report are the vegetation sample plots and photo-points that will be reviewed as part of the five year monitoring program.

1.0 PROJECT SUMMARY

Installation of the wetland mitigation area at the Cooper's Beach project site was generally completed in January 2011 according to the *Shoreline Restoration, Wetland Restoration, Clearing and Grading Permit* Plan (revised June 15, 2010), prepared by The Watershed Company. Site visits for the initial baseline assessment were conducted by AOA and occurred on January 13, and February 3, 2011. Following the initial baseline review, the mitigation area was slightly revised to ensure compliance with SMC 21A.50.351(3)(b). Under this code section, no more than 25% of the total lake frontage may be used for shoreline access.

As depicted on the current as-built plan, the mitigation area has been revised such that the existing bulkhead to remain is now 60 feet in total length (i.e., 25% of the total 240 feet of lake frontage). The remaining 180 feet of shoreline has been planted and will remain in a natural condition. In addition, the northern edge of the mitigation area has been revised slightly to ensure a minimum 45-foot buffer (Photos 1 and 2).

Kathy Curry May 5, 2011 Page 2 of 8

Photo 1: Revised maximum 60-foot long bulkhead to remain.

Photo 2: Revised log along northern edge of mitigation area (note darker bark coloration depicting revised location).

Kathy Curry May 5, 2011 Page 3 of 8

The large logs that have been placed along the 45-foot buffer boundary in lieu of fencing have been staked into the ground with re-bar to ensure that they will remain in place (Photo 3). In addition, the required critical areas sign on the 45-foot buffer boundary has also been installed (Photo 4).

Photo 3: Rebar stake through log along buffer boundary.

Photo 4: Installed critical area sign.

Kathy Curry May 5, 2011 Page 4 of 8

It is our understanding that the origin of the one remaining pipe in the northern portion of the site that discharges into the lake is likely from a rockery drain (Comment 1.e). The origin of this pipe will be confirmed during construction of the house and a plan will be designed to divert all water currently carried in this feature into the mitigation area during house construction.

The existing standpipe and drain line located along the northern edge of the mitigation area will be left in place for perpetuity or until such time as the upstream sediment problems are fixed (Comment 1.f). Since sediment from an off-site upstream ditch continues to erode and enter the on-site mitigation area, periodic maintenance may be required. It is our understanding that it is the subject property owner's intention to attempt to rectify this off-site condition. If the erosion is stabilized and the sediment source is eliminated or significantly reduced, then the standpipe and drain line could be removed.

The only plant substitution approved by The Watershed Company was that deer fern was substituted for lady fern. The revised as-built drawing for the site (**Figure 1**) depicts the actual location of the graded ponds and large woody debris placement. Grading was generally conducted per the approved plan, with some minor modifications in the southwest corner of the mitigation area to preserve two existing red alder trees. In addition, at our recommendation several of the conifers located within ponded areas were moved into drier portions of the mitigation site.

This as-built figure also includes the final total plant quantities and the location of the vegetation sample plots and photo-points. Dimensions were added to the as-built figure that reflect the approved mitigation boundaries and minor changes made in the field to ensure code compliance.

2.0 PERFORMANCE MONITORING

This report summarizes the baseline conditions encountered during our January 13, 2011 site review. The data collected during future site visits will be compared to the data collected during the baseline assessment.

Monitoring field reviews followed by preparation and submittal of annual summary reports will continue for a period of at least five years. This report, as well as future reports, will include: a) photo-documentation, b) estimates of percent vegetative cover, plant survival and undesirable species, c) wildlife usage, d) water quality, hydrology, and site stability, and e) an overall qualitative assessment of project success.

2.1 VEGETATION SAMPLE PLOTS AND PHOTO-POINT LOCATIONS

During the baseline assessment, three vegetation sample plots and three photopoint locations were established. These locations will continue to be monitored throughout the five-year performance monitoring period. Within the vegetation sample plot locations, all plant species will be recorded as well as relative percent Exhibit 29 Kathy Curry May 5, 2011 Page 5 of 8

cover of the dominant species within the vegetative strata. Photos will be taken throughout the monitoring period to document the general appearance and progress in plant community establishment. Review of the photos over time will provide a visual representation of success of the planting plan.

Attachment 1 contains photographs from the established photo-point locations.

2.2 VEGETATION DATA FROM SAMPLE PLOTS

VEGETATION SAMPLE PLOT 1 (Wetland Buffer)							
Plant Species	Baseline						
Western red cedar (Thuja plicata)	1						
Douglas fir (Pseudotsuga menziesii)	1						
Red flowering currant (<i>Ribes sanguineum</i>)	9						
Tall Oregongrape (Mahonia aquifolium)	24						
Red-osier dogwood (Cornus sericea)	3						
Deer fern (Blechnum spicant)	5						

SUMMARY OF PLOT 1 CONDITIONS

- Woody areal coverage of installed woody plants~20%
- Survival rate of installed plants: 100%
- No herbaceous vegetation coverage plot entirely mulched.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival (see Section 2.5 below).

VEGETATION SAMPLE PLOT 2 (Southwest Wetland).

Plant Species	Baseline
Western red cedar (Thuja plicata)	1
Sitka willow (Salix sitchensis)	1
Sitka spruce (Picea sitchensis)	1
Nootka rose (Rosa nutkana)	4
Salmonberry (Rubus spectabilis)	5
Small-fruited bulrush (Scirpus microcarpus)	~20%
Watercress (Rorippa nasturtium-aquaticum)	~5%
Velvet grass (Holcus lanatus)	~5%

SUMMARY OF PLOT 2 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%
- Herbaceous coverage is ~30%.
- No significant invasive coverage (no control of velvet grass necessary).
- MAINTENANCE: Continue on-going routine maintenance.

• SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

Plant Species	Baseline							
Nootka rose (Rosa nutkana)	4							
Red-osier dogwood (Cornus sericea)	11							
Deer fern (Blechnum spicant)	4							
Watercress (Rorippa nasturtium-aquaticum)	~25%							
Dagger-leaf rush (Juncus ensifolius)	~25%							
Mannagrass (Glyceria sp.)	~5%							

VEGETATION SAMPLE PLOT 3 (Southeast Wetland)

SUMMARY OF PLOT 3 CONDITIONS

- Woody areal coverage ~15%.
- Survival rate of installed plants: 100%.
- Herbaceous coverage ~55%.
- No invasive coverage.
- MAINTENANCE: Continue on-going routine maintenance.
- SUCCESS CRITERIA: This plot is currently meeting the approved success criteria for woody plant survival.

2.3 WATER QUALITY AND HYDROLOGY

During each monitoring event, an assessment will be made of the water regime within the mitigation area to ensure that hydrological conditions within the wetland and buffer are suitable to support the desired native plant communities. General observations will also be made of the extent and depth of soil saturation or inundation.

Water quality will be assessed qualitatively; unless it is evident there is a serious problem. In such an event, water samples will be taken and analyzed in a laboratory for suspected pollutants. Results will be reported quantitatively. Qualitative assessments of water quality include:

- oil sheen or other surface films,
- abnormal color or odor,
- stressed or dead vegetation or aquatic fauna,
- turbidity.

Observations and evaluations will be made of slope and soil stability in the mitigation area. Any erosion or slumping of soils will be recorded and reported so that corrective measures may be taken.

At the time of the baseline field investigation, soils throughout the created wetland were generally saturated to the surface with shallow ponding observed within the SSDP2016-00415 003673 Kathy Curry May 5, 2011 Page 7 of 8

graded depressions. Water quality appeared good and no significant erosion or other soil stability problems were observed within the mitigation area.

2.4 WILDLIFE

Wildlife species observed in the wetland and buffer areas (either by direct or direct means) will be identified and recorded during the monitoring events. Direct observations include actual sightings, while indirect observations include tracks, scat, nests, burrows, song, or other indicative signs.

Wildlife signs or observations at the Cooper's Beach site during the baseline review included the following: black-tailed deer (browse and scat), mallard, mole (uplift mounds), and American coot.

3.0 SUCCESS CRITERIA & CURRENT STATUS

The approved performance standards for the project as developed by The Watershed Company included:

- 100 percent survival of all planting during the first year of monitoring, 100 percent survival of trees during years 2-5, and an 80 percent survival of shrubs during years 2-5 of monitoring.
- 80 percent survival of groundcover and emergent vegetation in year 2
- 75 cover standard of groundcover and emergent vegetation by year 5

It is assumed based on the approved maintenance requirements that invasive species will be controlled at levels below 15% coverage. At the time of the January 2011 baseline monitoring there was 100% survival of all planted species and invasive species coverage was well below the 15% coverage threshold. Therefore all of success criteria are currently being met.

4.0 SUMMARY & MONITORING SCHEDULE

Overall, the site is performing well and is currently meeting the defined success criteria for the project. With proper on-going maintenance, the site should continue to establish successfully.

Assuming approval by the City, the next long-term monitoring event is scheduled for the late spring of 2011. The next report will then be prepared following the fall 2011 site visit. Monitoring will continue twice yearly, with the submittal of annual reports.

Should you have any questions or would like to schedule a site review, please call Simone Oliver or me at (425) 333-4535.

Kathy Curry May 5, 2011 Page 8 of 8

Sincerely,

ALTMANN OLIVER ASSOCIATES, LLC

John Altmann Ecologist

Attachments

- 1. Photographs
- 2. Figure 1 As-built
- cc: Roger MacPherson

Seb5	to	<u>а</u> п-8 II-8							Ξ	N I	IN∀	די איׂ	AJ SPC	ohe d N	5 H 101.	TA SIN	-16 4 4		1 T_ + 1A2 08P	うこう	8-8 SEA H , W	A :			100 200 200	5701		A State		nuosing: odtospu Paunona Paunona Paunona	ng so ng ng			BIJOSS. 1411 (1514) 20180	0 110	86 V.M. 'Doğu	B-O5-	No Block
			SIZE/SPACING		2 GAL.	5 GAL.		SIZE/SPACING	2 GAL.	I GAL.	2 GAL.	2 GAL.	I GAL.	2 GAL.	I GAL.		I GAL.	I GAL.	I GAL.	I GAL.		SIZE/SPACING	4" POTS	I GAL.	I GAL.	4" POTS		SIZE/SPACING	IO CU. IN POTS @ 18" O.C.		10 CU. IN POTS @ 24" 0.C.			BASE INFORMATION PROVIDED BY MACPHERSON CONSTRUCTION & DESIGN, (425) 391-3333.	SITE PLAN AND ORIGINAL DESIGN PREPARED BY THE MATERSHED COMPANY KIRKI AND MA (425)		DAJED ON AFTROVED DRAWING SHORELINE RESTORATION, WETLAND RESTORATION, CLEARING	AND GRADING PERMIT' DATED 6/15/2010, DRAWINGS 1-7 BY THE WATERSHED COMPANY.
		0.10	PROJECT OTY.	m	0 1	0 4		TOTAL PROJECT OTY.	23	88	D T	35	29	2	40 44	5	0	Ā	₽ :	-	A.2444	PROJECT OTY.	dВ	30	09	8	TOTAL	PROLECT OTY.	000	220	315			MATION PROVI	ND ORIGINAL I		N, WETLAND RI	AND GRADING PERMIT' DATED 6/15/2010, DRAMINGS 1-7 BY THE WATERSHED COMP
			COMMON NAME	PAPER BIRCH	SITKA SPRUCE	VOUGLAS FIR WESTERN RED CEDAR		COMMON NAME	VINE MAPLE	RED-OSIER DOGWOOD	BEAKED HAZELNUT	TALL OREGON GRAPE	NINEBARK	BITTER CHERRY	RED FLOWERING CURRENT	SAI MONREPRY	PACIFIC MILLOW	SITKA WILLOW	RED ELDERBERRY	EVEROREEN HUCKLEBERKY	DCOVER	COMMON NAME	DEER FERN	SALAL	LOW OREGON GRAPE	SWORD FERN		COMMON NAME	SPIKERUSH	SMALL-FRUITED BULRUSH	HARD-STEM BULRUSH	NOTES			2. SITE PLAN A THE WATERS		RESTORATIC	AND GRADIN DRAMINGS I-
	PLANT LIST	TREES	SCIENTIFIC NAME	BETULA PAPYRIFERA	PICEA SITCHESIS	THUJA PLICATA	SHRUBS	SCIENTIFIC NAME	ACER CIRCINATUM	CORNUS SERICEA	CORYLUS CORNUTA	MAHONIA AQUIFOLLIUM	PHYSOCARPUS CAPITATUS	PRUNUS EMARGINATA	RIBES SANGUINEUM		SALIX LASIANDRA	SALIX SITCHENSIS	SAMBUCUS RACEMOSA	VACCINIUM OVAIUM	PERENNIALS/GROUNDCOVER	SCIENTIFIC NAME	BLECHUM SPICANT	GAULTHERIA SHALLON	MAHONIA NERVOSA	POLYSTICHUM MUNITUM	EMERGENTS	SCIENTIFIC NAME	ELEOCHARIS PALUSTRIS	SCIRPUS MICROCARPUS	SCIRPUS LACUSTRIS) Ale			\$	
													M. BS	10.65	S N BI		A BA	× == == == == == == == == == == == == ==		Harris Charles		(((()) ()) ()) () () () ()		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A MAN SO	A	1 t	t.						GRAPHIC SCALE			0 15 30 45 60	SCALE: 1:30
			No. of the second se	- 20	116'	The second se		Jack Lade				BLACK C						19 19 19 19 19 19 19 19 19 19 19 19 19 1				100	51	AD	1	NEW OHIMM, 31.1 - NAVD '88 (28-18		<pre></pre>	METLAND	APPROX. CENTERLINE OF STREAM DIFFED DOMINOADY	ENHANCED STREAM (NET) AND (8,467 SE)	ENHANCED BUFFER (5,103 SF)	EBRIS		EXISTING RED ALDER		APPROX. LOCATION OF VEGETATION	SAMPLING PLOTS CEITICAL AREA SIGN
/				NULKERY	134.85°					EV STANDBIDE AND	DRAIN LINE TO REMAIN		ANCHORED LARGE	LOOS DEMARCATE 45	K	Contraction of the second seco	00000	A A		11-12	11/1/1	11 Ht	- STONE STEPS LOCATED	OUTSIDE BULKHE	LEX. BULKHEAD 60	IUIAL LENGIH	PLAN LEGEND		CREATED WETLAND			ENHANCED	WOODY DEBRIS		29 15		# 1	

Photo-point 1: View looking south.

Photo-point 1: View looking southwest.

Exhibit 29 <u>SSDP2016-00</u>415 Cooper's B@06677

Photo-point 1: View looking west.

Photo-point 2: View looking east.

Exhibit 29 SSDP2016-00415 Cooper's B@006678

Photo-point 2: View looking northeast.

Photo-point 2: View looking north.

Photo-point 3: View looking south.

Photo-point 3: View looking southwest.

Photo-point 3: View looking north.

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:58 AM
То:	'stocklimann67@gmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Michelle,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Michael Mann [mailto:stocklimann67@gmail.com] Sent: Thursday, January 26, 2017 3:59 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Micheal Mann

Michael Mann 1826 FRANKLIN AVE E SEATTLE, WA 98102 2069307501

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 10:58 AMTo:'m_w_r7@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Melissa,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Melissa Lail [mailto:m_w_r7@hotmail.com] Sent: Thursday, January 26, 2017 3:48 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I love riding my bike and this will give me a new place to explore. Also, I'm hoping to get my dad hooked on biking too and having a nice trail close by is key to my master plan. I know when I got into riding a few years ago that riding on a nice, safe trail was what really got me to enjoy getting some exercise. I hadn't ridden much since I was a kid but when I bought a bike and tired riding around my neighborhood it was a pretty disappointing experience. Riding around the neighborhood wasn't very fun when I got started because, I was pretty wobbly and there isn't much flat ground near my house and on top of that I had to worry about cars. When I started riding on bike paths, I was able to relax and enjoy. This allowed me to improve my bike handling and helped me to improve my confidence. I really want my dad to also have that same type of positive experience. I think having this trail completed and so close by will be very helpful.

Sincerely,

Melissa Lail

Melissa Lail 2524 97th PL SE Everett, WA 98208 253-468-6517

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:58 AM
То:	'Shannon Holman Ramirez'
Subject:	RE: Subject: Comments on ELST South Segment B (STA 375 - 380)

Dear Shannon,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Shannon Holman Ramirez [mailto:auntieshannon1@gmail.com]
Sent: Thursday, January 26, 2017 3:25 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Subject: Comments on ELST South Segment B (STA 375 - 380)

To Lindsey Ozbolt and other interested parties,

I am submitting comments on the proposed trail and fish passage changes included in the South Sammamish Segment B 60% plan. As part of researching and producing this commentary and feedback I reviewed the plan documents, discussed the various plan details and concerns with our neighbors, and also visited the City of Sammamish City Hall to discuss some of these issues with King County representatives in person. The neighbors in this discussion have expressed similar concerns and include the 10 homeowners of Whileaway Court who share ownership of the common private driveway that would be effected by this proposal.

I would also like to point out that in addition to living in the area for the past 20 years where the proposed changes would effect, I have also been very active in contributing to research and preservation of Kokanee salmon both in Pine Lake Creek but also in other capacities in the Sammamish water basin. I am also a volunteer member of the Kokanee Work Group lead by David St. John.

Given the quantity of feedback I have gathered I think it best to present the information in bullet form, after which I will comment further on a few of the key points.

New culvert under Whileaway court (reference pages AL39, FP1, and WP9):

- Good for the fish!
- Good for improved water flow, drainage, and creek flooding mitigation
- Property rights concerns
 - Most proposed construction is within private road (519710TRCT) that is not part of the trail ROW. All home owners have a shared ownership in this tract, so owner consent is required.
 - Why does the proposed construction extend into privately owned Gill Trust
 - lots 5197100135 and 5197100130 instead of remaining within the shared driveway 519710TRCT?
- It is very important to preserve the two massive ancient redwood trees at the west exit of the culvert, near 11+00 on the p-line and adjacent to rock walls #1 & #2. Does the "M" designation on the tree removal plan for these two trees reflect concern?
- Earth walls #42 and #43
 - Chain link fencing is not visually acceptable, would need a more aesthetically pleasing and natural fence choice that fits the style of the neighborhood and the beautiful natural surroundings of the creek passing there.
 - Length of "earth walls" is concerning, why are they so long?
 - In particular the south starting point of wall #43. That starting point should be moved at least 5 feet farther north. As it is located now it is likely to be a back-up hazard for cars backing out of the driveway from the 903 residence and turning to back up to the north.
 - Why does wall #42 run so far to the north, seems this could be substantially reduced?
- What is the relationship of culvert replacement plans to trail plans (tied together, different projects, timelines?)
- How does funding work, all paid for by King County?
- How will all the utilities be routed and what will the effect on utilities be during construction?
 - Gas, water, sewer are all underground in the road where culvert resides (as are cable and power in other road areas in the construction zone)
 - Current plan would require removal/replacement of power pole near south edge culvert. Could power on these poles be moved underground as part of this work?
 - FYI: There is a separate proposal for a fire hydrant to be added north of the proposed fish passage culvert work on 519710TRCT. This work should be coordinated.
- How will people have access to their homes during culvert/road construction?
- Road grading and drainage is an important concern. We already have issues with water on the road flowing towards residence driveways, in particular the driveways of 903, 909, or 915, so we would appreciate any grading changes improve upon the drainage conditions.
- Concern about current design reducing parking availability.
- What are landscape plans for this area after culvert replacement?

New trail plan (reference pages AL20 and LA12):

- Is it necessary for the trail around 378+00 to meander into and destroy existing delightful landscaping adjacent to 929?
 - o Plan will destroy numerous large very mature Rhododendrons, Oregon Grape, Aspen, and Fir trees
 - Can the meander be avoided here or moved somewhere else along the trail?
 - o At minimum can the meander be reduced to preserve more of the mature trees and bushes?
 - If infringement on wetlands is a concern, the designation of the area east of the trail here as wetland 23C is questionable. Can this be reevaluated and the plans changed to avoid destruction of the Rhododendron, Oregon Grape, Aspen and Fir trees?
- Where grass area is replaced just south of Driveway #10 access, please ensure only very low growing plants are added to the enhancement area to replace the grass. This is required for good visibility onto trail and parkway from the driveway.

To expand on some of the key points I will first focus on the new culvert plans under Whileaway court. One concern here is it is important to preserve the two large, majestic, redwood trees that are planted here just to the west of the culvert. I am pleased to see that, to my understanding, feedback given to folks planning the culvert changes during an onsite meeting in April of 2016 (Kelly Donahue from King County and several representatives from Parametrix) was incorporated. It appears the plans have offset the new proposed culvert further away from the two redwoods in order to reduce the disturbance to the tree roots during required excavation. The trees wtraplate 29n the 40's and are a keystone of the landscape in our neighborhood, they must be seen in person to be fully appreciate 33D P 2016: b0445 ificed!

003687

We are also very interested in the improved fish passage that the new culvert will provide, and in particular the increased capacity the new culvert will have in allowing storm water to pass through. The old/current culvert there is much smaller and has been a concern of ours for plugging and overflowing.

We have additional concerns about several other details of the proposed plan outlined above, in particular the chain link fencing and earth walls. It's important to us that the new culvert aesthetically look very pleasing and fit into the neighborhood landscaping and natural look and feel. Chain link fencing does not meet that requirement, we would like this to be changed to some other suitable more natural material. It appears the earth walls will be constructed of precast concrete blocks which will mostly be buried down to the road surface level, and only exposed where the cut of the creek bed slopes down. If so, we believe this would be suitable if they did not have chain link fence attached.

My final point for the culvert plans is that I want to emphasize that in this section, unlike the trail ROW, the proposed changes to the culvert occur on private property. There are important property rights and consent that need to be adhered to here.

Secondly I would like to comment further on the trail deviation outlined in AL20. We are dismayed to see that the current plan has the trail diverting to the west such that a significant and very beautiful naturally landscaped area will be destroyed by the trail. The area has been maintained for nearly 20 years in its current state, and contains many native plants and trees including other much older vegetation including mature Rhododendrons, Oregon Grape, Aspen, and Fir trees. We would ask that as much of that landscaping be preserved as is possible. Are there changes that can be made to the trail path in this section that can avoid or minimize that destruction? Can it be moved more towards the existing trail path or shifted in some other way? If the reason for the diversion is due to the designated wetland 23C east of the trail in this section, then we would respectfully request that this designation be reevaluated. It really does not look like a wetland, it is a hill sloping down with a ditch carrying water away north and south. It would also be very illustrative for folks in charge of planning the trail in this section to come down and see the current state and landscaping in person if that hasn't been done already. The landscaped area is well worth preserving and it would be a terrible waste to destroy it.

Overall, we are happy to see the trail plans progress, and we see several benefits to the fish passage culvert work as well. We welcome and encourage a dialog between the county trail planners and our neighborhood to discuss the concerns, adjust the plans, and make some beneficial changes.

Can you please provide more information in your response to this email regarding how the feedback will be processed, how it will be communicated to king county, how we will hear about incorporation of the feedback, and if there is additional opportunity for feedback after any changes are considered and made? Also, sharing the timeline of the entire review process leading up to eventual approval and construction would also be helpful.

Thanks for your attention and consideration, and please let us know if you have any questions. We appreciate your follow-up on this matter.

Shannon and Chris Ramirez

909 E LK Sammamish Sh LN SE

Sammamish, WA

425.836.5384

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 10:57 AMTo:'mark.bike.anderson@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Mark,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Mark Anderson [mailto:mark.bike.anderson@gmail.com] Sent: Thursday, January 26, 2017 3:04 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I've ridden this trail many times and hate the fact that I have to jump to the road in the middle. I support the completion and support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. It will accommodate walkers, runners and bikers.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

This will be a great community amenity when completed. Please complete the trail and keep me off the road.

Sincerely,

Mark Anderson

Mark Anderson 3242 56th Ave. SW Seattle, WA 98116 2069383244

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Friday, January 27, 2017 10:55 AM
То:	'Thomas Leach'
Subject:	RE: 821 E. Lake Sammamish Pkwy NE (Trail #'s 447 - 448)

Dear Thomas,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Thomas Leach [mailto:tom_leach@me.com]
Sent: Thursday, January 26, 2017 2:46 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: 821 E. Lake Sammamish Pkwy NE (Trail #'s 447 - 448)

Hi Lindsey:

I just met with Kelly today and she was a tremendous help in reviewing the trail and construction plan. We came up with the following comments / concerns:

- We have a substantial tree located on our property. The tag number is 8173. We noticed that the tree location differed between the tree preservation plan and the 60% plan. It is unclear as to whether this tree will be removed or not. The tree preservation plan shows removal but it is not located properly on the tree preservation plan.
- Staircase number 68 has a structural landing within the C&G area. I will need to know the following:
 - Will this be cleared out, If so, who is responsible for the reconstruction of the staircase?
 - Will there be access to the staircase during construction as this is the only way into the property.
 - Will there be any permanent security gate made to the staircase when the trail is complete? If there is a gate who is responsible for the cost?
- There is a significant bluff between the trail and my residence. There is currently a line of arborvitae that is approximately 20 feet tall that is right on the CG line. It is not clear if those will be removed or not. I am not clear if they do get removed if a fence will replace them.
- The trail currently bisects my parking area and my house. I have been using the public space between the trail and East Lake Sammamish Parkway for parking. I had the Special Use Permit but I just found out it has expired and I need to reapply. I will reapply within the coming weeks. There is currently no other access or parking available. My questions are the following:
 - Can I expect no net loss of parking available to me during and after construction?
 - o During the construction phase will crews be using the public land for staging equipment and crew vehicles?
 - Will there be a way to build some sort of car port for vehicle protection in the public area wheat the 29 construction phase is complete? SSDP2016-00415

003691

• Alternatively I might be able to construct a garage and access it through the same alley that my neighbor to the south uses (trail number 446-447). I believe the street name is E. Lake Sammamish Shore Lane NE. Thus you would not have any additional access point across the trail to worry about.

Take care,

Tom Leach

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:54 AM 'Michelle Eden' RE: Comments RE: Trail construction

Dear Michelle,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Michelle Eden [mailto:mmeden@hotmail.com]
Sent: Thursday, January 26, 2017 2:47 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments RE: Trail construction

Dear Ms. Ozbolt,

Four neighbors met on Wednesday, January 25, 2017 with Kelly Donahue from King County. Kelly reviewed the trail plans and our specific feedback, and said that our final comments need to be sent to you. Kelly suggested we amend our earlier document to you to address concerns as they are related to the formal county plans. In that regard we are looking for solutions to our issues in area 353 to 355. My specific property is nearest to 353.50. Our concerns are as follows:

1. During construction the CG line for fencing on the west side of these sections will keep us from entering any of our properties. Even assuming we could get past area 355 we could not get past the tree nor could the Roberts family turn into their garage.

2. Post construction the 60% plans, as drawn, will not allow access for emergency vehicles, delivery trucks (FedEx, UPS, DHL etc.) and perhaps larger residential vehicles.

3. Post construction the 60% plans, as drawn, will not allow the Roberts family (area 353) to safely pass parked vehicles parked at our location, the Eden residence (area 353 + 50). It is currently a tight fit as built now.

We are asking that prior to construction the following changes are made to the 60% plans.

1. The CG fence line be adjusted to allow access for emergency, residential and commercial vehicles to our 29 properties. Practically speaking the CG fence should not be further west than the current fence below and now.

003693

2. The trail center line be moved east at least another two to three feet in sections 353 to 355 to allow for access to our properties. In essence move the trail east such that our final fence/bollards are no further west than they are currently on the temporary trail.

3. The north end of the proposed wooden barrier be moved south to its current endpoint (or further south) to allow for safe vehicle access.

The good news is that the county already is proposing to develop the permanent trail east of its current temporary location. We are only asking that it be moved a few feet further east allowing us to have the access as we currently have now. Given the nature of the existing terrain in our areas (353 - 355) and the proposed work in the 60% plan this request would not significantly change the construction details and would allow our neighborhood safe access during and after construction.

I would like to track the progress and process of my requests. Please let me know how I can do that.

Sincerely,

Michelle Eden 1633 E Lk Samm Place SE Sammamish, WA 98075 206-650-6804

From:Lindsey OzboltSent:Friday, January 27, 2017 10:53 AMTo:'ny nuon'Subject:RE: South Sammamish Trail section 2b design, markers 470-473 Comments

Dear Ny,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: ny nuon [mailto:nynuon@hotmail.com]
Sent: Thursday, January 26, 2017 2:44 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: South Sammamish Trail section 2b design, markers 470-473 Comments

Dear Ms. Ozbolt,

Please see attached.

Thank you,

Ny Nuon

To whom it may concern,

The proposed trail plans on East Lake Sammamish Parkway NE, Sammamish, WA 98074 are concerning to me. The area of concern uses trail markers 470-473. There is a pickle ball court that I have been playing on for the last 10 years. We have played multiple tournaments there and it has been a source of great fun for my friends and I. I have even coached some of my friends there on how to be a better tennis and pickle ball player. The proposed new plans, destroys the pickle ball court. It makes the space unusable for pickle ball. I would really like it if you changed the plans.

Thank you,

Ny Nuon, 4583 N Ainsley Way Prescott Valley, AZ 86314

nynuon@hotmail.com

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:39 AM 'charlesdavidwilliams@gmail.com' RE: Approval needed for Segment 2B of the ELST

Dear Charles,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Charles Williams [mailto:charlesdavidwilliams@gmail.com] Sent: Thursday, January 26, 2017 2:20 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Approval needed for Segment 2B of the ELST

Dear

Dear city of Sammamish,

The form part so you know what this is about:

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

The part that I'm writing with a story:

The East Lake Sammamish trial is in a pretty great location. It is a great commuting pathway and wonderful for summertime recreation along the lake. However, the weak point is that the narrow sections and dirt sections make the trail harder to access for all ages and abilities. I rode it several times with less experienced cyclists this summer and saw two of them crash despite exercising caution. They didn't get more than a scrape or two but we know that every crash carries with it a risk of a more substantial injury. We can prevent these by completing the proposed trail improvements.

Please approve the permit, as submitted.

Sincerely,

Charles Williams 2203 MINOR AVE E SEATTLE, WA 98102 2067925827

From:Lindsey OzboltSent:Friday, January 27, 2017 10:38 AMTo:'smith.madison.m@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Maddie,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Madison Smith [mailto:smith.madison.m@gmail.com] Sent: Thursday, January 26, 2017 2:20 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

As a daily bike commuter in the area, I have experienced first hand how important trails are for commuting. With trails that are safe and accessible, many more feel comfortable commuting by bike or foot.

Please approve the permit, as proposed, with expediency.

Sincerely, Maddie Smith

Madison Smith 7501 Greenwood Ave N #101 Seattle, WA 98103 3609270263

From:Lindsey OzboltSent:Friday, January 27, 2017 10:38 AMTo:'sita24@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sita,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Sita Bhaskaran [mailto:sita24@gmail.com] Sent: Thursday, January 26, 2017 2:11 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I am 67 years old and have recently moved to Washington state to be closer to my daughter. I love to ride the Burke Gilman to Sammamish river trail to Marymoor park. Would be great if I could ride on a paved East Lake Sammamish trail onto Sammamish and Issaquah.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely, Sita Bhaskaran sita24@gmail.com 18501 69th Lane NE, Apt 109 Kenmore, WA 98028

Sita Bhaskaran 18501 69th Lane NE, Apt 109 Kenmore, WA 98028 2486471984

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:38 AM 'frankmckulka@comcast.net' RE: Notes regarding the trail

Dear Frank,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: frankmckulka@comcast.net [mailto:frankmckulka@comcast.net]
Sent: Thursday, January 26, 2017 2:10 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: rissberger, william <williamrissberger@comcast.net>; roberts, steve <steve@roberts.org>; Jerry
<jerryj27@msn.com>
Subject: Fwd: Notes regarding the trail

Dear Lindsey,

We met on Wednesday with Kelly Donahue from King County. Kelly reviewed the plans and our comments and said that comments need to be sent to you for sending on to King County. My name is Frank McKulka and our home is in section 354 with our group of four neighbors in sections 353 to 355. The neighbors are myself, William Rissberger, Michelle Eden and Steve Roberts. The properties are shown in exhibit 1.

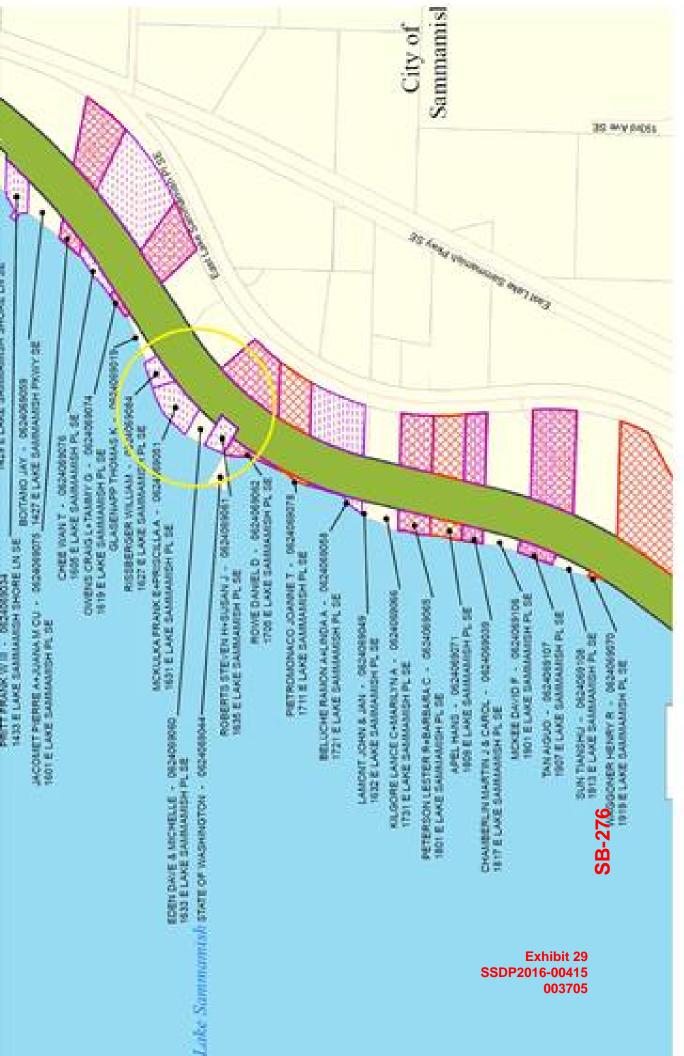
Our concerns are as follows:

-1. During construction the CG line for fencing on the west side of these sections will keep us from entering our properties. Refer to attachment re.

property accessibility. Realizing that this is a 60% plan one would expect some errors, this is one of them. We also noted with Kelly that the culvert in this section does not run continuously as would be expected.

-2. Post construction the 60% plans as drawn will not allow access for emergency equipment, trucks (FedEx, UPS, DHL etc.) and perhaps larger residential vehicles. Photos that show this issue and are also included in Bill Rissberger's letter.

We are asking that during construction the following changes are made to the 60% plans.


-1. The CG fence line be adjusted to allow access for emergency, residential and commercial vehicles to our properties.

-2. The trail center line be moved east approximately two+ feet in sections 353 to 355 to allow for access to our properties.

-3. The wooden barrier be moved south to its current endpoint to allow for vehicle access.

In addition we would like to know how this review will work and when our concerns will be addressed with a response to us. We would also like to know how reasonable requests like these have been dealt with in Segment A.

Thank you for your efforts to construct a trail that is workable for all, Frank and Pam McKulka, 425 557 0725

Proposed Wood Barrier 003706

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 10:37 AM 'Ted Davis' RE: Comments on the Shoreline Substantial Development Plan

Dear Ted,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

From: Ted Davis [mailto:ted.Davis@comcast.net]
Sent: Thursday, January 26, 2017 2:04 PM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Subject: Comments on the Shoreline Substantial Development Plan

Date: January 26, 2017

Lindsey Osbolt <u>lozbolt@sammamish.us</u> Associate Planner City of Sammamish 801 228th Avenue SE Sammamish, Washington 98075

Request to Rescind the "Permit Application Complete" for the Shoreline Substantial Development Trail Segment 2B-SSDP2016-00415 of the Lake Sammamish Trail is based on comments to the Sammamish City Council and our review of the 60% plans.

Ted and Elaine Davis <u>Ted.Davis@Comcast.net</u> 3137 East Lake Sammamish Shore Lane SE Sammamish, WA98075 See LANDSCAPE PLAN LA3 296+50

Our Property is located on PLAN AND PROFILE AL3 adjoining marker number 296.50 and on EXISTING CONDITIONS AND PLANS EX3. We have questions regarding the open and unresolved land ownership issue and the 60% REVIEW SUBMITTAL recently published and ask the Shoreline Substantial Development Permit no. 2016-00415 be rescinded until these questions are addressed and answered.

Comments to the Sammamish City Council Meeting on January 10, 2017

In the process of coming to decisions, on issues before you, much of the research and investigation is not performed by you individually, but by staff, consultants and other types of contractors working for the city.

That is why I believe, regarding the decision on December 13 that deemed the Sammamish "<u>Trail Application Complete</u>" you may not have all the information needed/required to make that decision regarding Corridor Parcel 292506-9007 of the East Lake Sammamish Trail Segment 2B.

If you have lived in your home for over 18 years the same structure prior owners lived in since 1968 and you recently discovered your house had a ROW line drawn, on the proposed 60% trail parcel maps, through the front entry of your home, through the upstairs bedroom walk in

closet and through most your carport.... **you would be concerned**, and I believe you would want to resolve the issue. **(See Images # 1 and # 2)**

This is especially important to us when the City Attorney's letter dated 14 December, 2016, references comments such as: "That real property included within the legal description of for the Corridor Parcel is under King County Control and use," "Free and clear of all claims by the Plaintiffs." This opinion also indicates that King County "is entitled to the exclusive use and possession of the area on, above, and below the surface for railroad purposes and incidental uses permitted under Washington law".

I believe you would agree, if you were us, you would want clarification as prescribed under SMC 20.05.040 Application Requirements (1) (r) Verification of that property is in the exclusive ownership of the applicant.

I mentioned earlier you may not have had all the information needed to make your decision. The information you are missing *is* Several Lake Sammamish home owners have ongoing litigation with King County, challenging the original ownership of portions of the ROW and the width of the easement used by the railroad. That was not mentioned, perhaps his office did not know, in the letter from the City Attorney to the City Council. The case is 15-2-20483-1 SEA

We are not part of the Pechman case or that litigation. Our purpose before you today is to request the Sammamish City Council rescind the Permit Application Complete until the litigation at the state court level, regarding who has clear title to the land in the "Corridor" has been resolved or we meet with representatives of King County to solve the land ownership and easement issues for the good of all.

Comments regarding questions to be answered in the 60% plans

We have reviewed the 60% plans and see in several areas close to us, the needs of the trail have been balanced while trying to minimizing the impact on the adjoining property owners.

1 Will the Concrete block wall remain after the trail construction has been completed?

As we review the CG (Clearing and Grading) we cannot determine if the concrete block wall plans simply have not been addressed, if there was an omission of the plans or what is the planned future for the wall. The concrete block wall is between 12 and 14 feet from the trail center line. The CG touches and splits a portion of the concrete block wall, but not the entire wall. The single vehicle lane where our house is located, is inside the ROW and has one way in and the same way out. The lane provides very limited parking for residents, delivery trucks, maintenance personnel and guests. Daily, our neighbors and our family use the area between the asphalt lane in front of our houses and the concrete block wall for parking. Most importantly, this area provides a wide spot on the lane for emergency vehicles and regularly

aids other vehicles in turning around instead of having to back all the way up the lane. (See image # 3 Wall)

2 Will the CG (Clearing and Grading) remove the cedar fence and the plants that are currently between the concrete wall and the gravel trail during construction and what type of fence will replace the current fence?

Currently, as indicated on the 60% plans a permitted 6-foot tall cedar fence separates the gravel trail from the top of the wall. What is not noted on the plans is the 4-foot height from the top of the wall to the gravel parking area below. **(See image # 3 Wall)**

3 Will parking, continue along the concrete block wall, by marker 296.50 during construction?

Parking spaces along our lane are scarce under normal conditions. Any reduction in available parking will be burden on the home owners and or anyone wanting to park in along the lane. How does the King County plan to accommodate parking along East Lake Sammamish Shore Lane SE during the construction?

5. Stairs/steps (#5 at marker 296.60?) to the trail are shown, on the 60% plans as existing. How will the county accommodate a gate to the trail, currently accessed by stairs (#5 at marker 296.60)? Part of the stairs (#5) are outside of the ROW how will they be incorporated into the final plan? (See Image #4 Steps)

6. We do not see there are no plans for replacement steps on the east side of the trail close to marker 295.20 that lead to East Lake Sammamish Parkway SE. Was this an omission or simply the plans for steps have not been completed?

The current steps are used daily by residents on the entire lane homeowners to access their mailboxes and areas along the East Lake Sammamish SE Parkway for parking. If the steps are not replaced individuals must walk approximately ½ mile round trip on East Lake Sammamish Shore Lane SE and along a dangerous curved section of the Parkway to access their mail and overflow parking. At least 4 home owners are retired and the absence of a stairway for access to their mailboxes and parking will be burden to them. What can the county do to address this issue and accommodate these concerns? **(See image # 5)**

7 During construction how does the county plan to replace our access to the mailboxes and the parking areas, currently accessed by the stairs, along East Lake Sammamish Parkway SE?

Until these concerns, along with the land ownership issues, are addressed the City of Sammamish will not have enough information on which to determine if the application is complete and should not move forward with their final decision on the permit.

Images referenced above on next page

Image #1 Photo of homes with ROW imposed;

Image #2 Davis home (3137) with ROW marker next to north side of home.

Image # 3 Concrete Block Wall with 6 ft. Cedar Fence

Image # 4 Steps to Trail

Image # 5 Steps from Trail to East Lake Sammamish Parkway SE

End of Images/End of Comments

Respectfully submitted,

Ted & Elaine Davis

RE: Trail concerns

Lindsey Ozbolt

Mon 1/23/2017 8:45 AM

To:adam anderson <emailadama@yahoo.com>;

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt

Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: adam anderson [mailto:emailadama@yahoo.com] Sent: Sunday, January 22, 2017 11:22 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Trail concerns

Hello Ms. Ozbolt,

Please find the attached letter, which I'm also mailing, requesting the City's comment on three ares of concern I have with respect to the trail improvement project.

Please feel free to contact me at this email, via my address in the letter, or by phone at 206-225-4570. Regards,

Adam J. Anderson

Exhibit 29

SSDP2016-00415

January 22, 2017

Adam J. Anderson 19108 SE 26th St. Sammamish, WA 98075

Lindsey Ozbolt, Assoc. Planner Sammamish City Hall 801 228th Ave SE Sammamish, WA 98075

Dear Ms. Ozbolt and Sammamish City Council Trail Leaders,

Thank you for inviting feedback on the trail development plans. I have three main concerns about the plans for the construction portion (Segment 2B) that is adjacent to our lot on SE 26^{th} St. (Lot # 0724069119).

- Construction and/or design of the trail work causing increased risk of erosion on our property. The current West bank on our property is a slope that leads to the trail site. I'd like to understand the geological/engineering analysis that was done to ensure that there is no significant risk of slide or property erosion as a result of the trail construction. Please send me a copy of report that shows the necessary due diligence was undertaken.
- 2. Please confirm that no construction vehicles will be using Se 26th St., which is a private road, to access the job site. I am concerned about damage to the road and property.
- 3. I am concerned about a significant increase of trespassers on our street attracted by the improved trail. Currently, we get a decent volume on trespassers who use our private road to access the trail, and based on reports from neighbors in parts of the trail that have already been completed, the volume of trespassers has increased significantly. Currently there is signage at the top of the street indicating "No trail access" and that this is a private road, but trespassing happens regularly nonetheless. What will the city do to further dissuade trespassers in light of the expected increased trespassing volume?

Thank you for your consideration. I look forward to your response.

Regards,

Adam J. Anderson

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 10:25 AM
То:	'astrbear@comcast.net'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Astrid,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Astrid Bear [mailto:astrbear@comcast.net] Sent: Tuesday, January 24, 2017 5:01 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Exhibit 29 SSDP2016-00415 003716

SB-279

As a bicyclist who has ridden the Lake Sammamish Trail, I want it to be a safe and usable space for all users.

Astrid Bear 506 Lakeview Road LYNNWOOD, WA 98087 425-238-4045

From:Lindsey OzboltSent:Friday, January 27, 2017 10:28 AMTo:'adam.k.carlton@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Adam Carlton [mailto:adam.k.carlton@gmail.com] Sent: Thursday, January 26, 2017 11:47 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Adam Carlton 4040 NE 204 ST Lake Forest Park, WA 98155 2067698584

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:02 AM

To:anne-gigi.chan@outlook.com <anne-gigi.chan@outlook.com>;

Dear Anne-Gigi Chan,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Anne-Gigi Chan [mailto:anne-gigi.chan@outlook.com] Sent: Saturday, January 21, 2017 8:25 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing as a resident of the City of Sammamish to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail and make my city an even a better place to live in **Exhibit 29 SDP2016-00415**

https://mail.sammamish.us/owa/#viewmodel=ReadMessageItem&ItemI...uKY3twkOpC5YzL9hvVgAAAtHGAAAA&IsPrintView=1&wid=87&ispopout=1 Page 1 of 2

Sincerely,

Anne-Gigi Chan 2904 222nd Pl SE Sammamish, WA 98075 425-281-2663

SB-281

From:Lindsey OzboltSent:Wednesday, January 25, 2017 10:29 AMTo:'apquach@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Anh,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Anh Quach Crandall [mailto:apquach@gmail.com] Sent: Tuesday, January 24, 2017 6:27 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the East Lake Sammamish Trail and approving permit SSDP2016-00415.

I live in the English Cove Condominiums just off Redmond Way, and I use the ELST frequently. For the past 3 years I've trained for a half marathon and a couple of triathlons on this trail. I recently gave birth to my first baby, and I was looking forward to taking her on family bike rides on the trail once she was old enough to ride in a bike trailer.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12 ft trail with 2 ft shoulders will create a safe trail with space for the various uses of the trail - from running to cycling to new mothers walking together with their strollers. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue given how many children use the trail. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Thanks,

Anh Quach Crandall

Anh Quach Crandall 18622 NE 57th Way Redmond, WA 98052 520-979-0187

From:Lindsey OzboltSent:Friday, January 27, 2017 9:09 AMTo:'purplepumpkins@hotmail.com'Subject:RE: Please approve the East Lake Sammamish Trail permit

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Adam Dodge [mailto:purplepumpkins@hotmail.com] Sent: Wednesday, January 25, 2017 2:01 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please approve the East Lake Sammamish Trail permit

Dear

To the relevant authorities,

Please approve the permit for an East Lake Sammamish Trail that is built to proper standards and that will be safe and comfortable for people of all ages and abilities to ride on.

My whole family would like a safe and comfortable route to bike on, and building the trail to the proper specifications and with safety the utmost concern is absolutely needed for the trail.

Thanks!

Adam Dodge 3001 S Genesee St Seattle, WA 98108 5555555555

From:Lindsey OzboltSent:Friday, January 27, 2017 9:22 AMTo:'adrian.down@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Adrian,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Adrian Down [mailto:adrian.down@gmail.com] Sent: Wednesday, January 25, 2017 4:03 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

I bike on the regional trail system in King County every day to commute to work. Every day, my safety is put at risk because King County did not complete the "missing link" of the Burke-Gillman trail in Seattle. Instead, a shortsighted, selfish group of local businesses fought the development of the trail and won. As a result, the safety of hundreds of people like me who bike on the trail has been unnecessarily at risk every day for nearly two decades. Do not repeat the same mistakes with the the East Lake Sammamish Trail. Please do not sacrifice the opportunity to create a fantastic regional amenity. Please do not sacrifice the benefits for all the people who will use this trail for years to come.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. I can't wait to bike on the continuous system between Sammamish and Seattle with my family. Without a continuous paved trail thas some from the continuous 003725 ages and abilities, we will not be able to. The trail will make Sammamish a more attractive place to visit and could bring money to local businesses. Please, please complete the trail and do not repeat the mistakes of the past. Thank you for your consideration.

Sincerely, Adrian Down

Adrian Down 2041 NW 57th St Seattle, WA 98107 9192653997

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 3:53 PM
То:	'drewdwight@msn.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Andrew,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Andrew Dwight [mailto:drewdwight@msn.com] Sent: Wednesday, January 25, 2017 12:48 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I ride the trail with my daughter for recreation, and to commute to work between Redmond and Issaquah. The missing section requires me to ride on the road, and while the shoulder is OK, it's not nearly as safe and isolated from car traffic as the trail.

Thousands of people use the trail, and even more will when the missing segment is completed.

And while I understand the perspective of the property owners to a degree, as far as I know, the railway way easement has been there for years and TRAINS used to run. A nice asphalt trail will IMPROVE the property values of the homeowners. I think the fears they have are unfounded.

This is a huge capital investment into the fitness, health and enjoyment of the City of Sammamish, and entire Seattle area. The trail will be used extensively, and will inject many dollars into the community by having visiting cyclists spend at local business.

It's a win for the whole community.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Andrew Dwight 9200 Redmond Woodinville Rd NE, C208 Redmond, WA 98052 4255916296

From:Lindsey OzboltSent:Wednesday, January 25, 2017 9:50 AMTo:'anne_gwynnerobson@hotmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Anne,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----

From: Anne Gwynne-Robson [mailto:anne_gwynnerobson@hotmail.com] Sent: Tuesday, January 24, 2017 8:11 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as proposed, with expediency.

The ELST was my favorite bike ride when I lived in Redmond. Even though it was close to a suburban area, it had a wild feel with wonderful views of the lake and mountains. I don't think there's an MUT in King County that can top the ELST for beauty, and I'd love to see it completed so that everyone can safely enjoy it.

Sincerely, Anne Gwynne-Robson

Anne Gwynne-Robson 25th Ave E Seattle, WA 98112 2063495809

From:Lindsey OzboltSent:Friday, January 27, 2017 9:17 AMTo:'ariahkidder@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Ariah,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Ariah Kidder [mailto:ariahkidder@gmail.com] Sent: Wednesday, January 25, 2017 3:09 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Ariah Kidder 2203 Minor Ave E Seattle, WA 98102 (206) 792-5839

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:05 AM

To:Andy.loats@gmail.com <Andy.loats@gmail.com>;

Dear Andrew,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Andrew Loats [<u>mailto:Andy.loats@gmail.com</u>] Sent: Saturday, January 21, 2017 6:23 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

This trail provides a crucial link between Redmond and issaquah creating the backbone for our growing community. There's nothing else like it.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail, from upping to riding a

https://mail.sammamish.us/owa/#viewmodel=ReadMessageItem&ItemI...uKY3twkOpC5YzL9hvVgAAAtHUAAAA&IsPrintView=1&wid=25&ispopout=1 Page 1 of 2

bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Andrew Loats 1008 244th Court SE Sammamish, WA 98075 4252815845

SB-288

Re: 3143 E Lk Samm Comments

Bill and Annette <mcnabbvan@msn.com>

Tue 1/17/2017 11:32 AM

To:Lindsey Ozbolt <LOzbolt@sammamish.us>;

Thank you!

```
> On Jan 17, 2017, at 10:38 AM, Lindsey Ozbolt <LOzbolt@sammamish.us> wrote:
```

- > Dear Bill and Annette,
- >

>

> Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

>

> Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

- >
- > Regards,
- >
- > Lindsey Ozbolt
- > Associate Planner | City of Sammamish | Department of Community Development
- > 425.295.0527
- >
- >

> -----Original Message-----

- > From: Bill and Annette [mailto:mcnabbvan@msn.com]
- > Sent: Monday, January 16, 2017 5:37 PM
- > To: Lindsey Ozbolt <LOzbolt@sammamish.us>
- > Subject: 3143 E Lk Samm Comments
- >

> Please find attached the comments requesting that the KC permit for development of section 2b not be granted and our comments regarding the 60% plan.

>

January 14, 2016

Lindsey Osbolt Associate Planner City of Sammamish 801 228th Avenue SE Sammamish, Washington 98075

Dear Ms. Lindsey Osbolt:

My husband and I live at 3143 E Lake Sammamish Shore Lane SE. This piece of property has been in our family since the early 1930s. A two-room cottage was originally built on the property (great grandmother) and registered with King County (KC) in 1932. In 1944 it was added onto to create the footprint that we live in today. We are writing a letter to you to comment about our concerns regarding a Shoreline Development permit allowing King County to move forward with the development of the King County Trail Section 2B.

We request that the City of Sammamish rescind any permit that may have been granted to proceed until KC can provide clear title to the property._As it stands, we do not believe King County met the criteria establishing clear ownership required by SMC 20.05.040. KC did not present a title report but submitted four exhibits (Kenyon Disend, December 14, 2016) instead of a title report:

- 1. The 1997 deed from Burlington Northern Santa Fe RR Co. to the Land Conservancy of Seattle and KC
- 2. The 1998 deed from the Seattle Land Conservancy and KC to KC
- 3. Summary judgment by Judge Pechman (appealed to 9th Circuit Court)
- 4. Judgment quieting title to KC based on Judge Pechman's ruling (appealed to 9th Circuit Court)

These exhibits do not meet the burden of proof that KC owns the property they claim to own and wish to develop. We are currently in litigation due to KC's claim to "own" some sections of our property. The 1997 and 1998 deeds are not proof that KC has ownership. We are involved in a federal lawsuit that has not been settled yet. The Pechman ruling also does not establish clear title to a 100 ROW through our particular parcel. The Pechman decision only involved four parcels, all of which are dissimilar to ours. We are part of a current lawsuit with the state in order to establish ownership. Additionally, the Pechman case has been appealed to the ninth Circuit Court and does not follow an earlier ruling by Judge Horn, another federal judge. Until these cases are settled and ownership of the rail corridor is clearly established, development of section 2B should not proceed. I will try to briefly convey our concern regarding ownership of our land. King County claims to have **fee title** to 50 feet on either side of the centerline of the corridor running through our property at 3143. This 100 foot ROW **runs through the middle of our house!** (photo attached)

- Our deed (attached) indicates that we own to the county road (E Lake Sammamish Parkway) with the exception of the Burlington Northern Santa Fe ROW and an 8-foot access road for transportation on the southerly side of the RR ROW. Our deed does not indicate how wide the RR ROW is. Although there are a number of quit -claim deeds from private property owners on record for different parcels along the corridor for varying widths, there is none on record for our parcel. The railroad only used 12-feet of the corridor during the entire time it operated from the late 1800s until it relinquished its run in 1997; yet, KC is claiming to "own" 100 feet of land including the land underneath half of our house.
- The deed we have indicates that the access road is on the **southerly** edge of the RR ROW; yet the access road is on the **northerly** side of our house. It runs between our house and the proposed trail. The access road has been located where it is since the late 1920s. An attorney advised my family many years ago that the access road clearly overruled any claim that the railway may make for additional property beyond it to the south. The 100-foot ROW claimed by KC should be ruled null and void based on the access road that has been used by us and all our neighbors for over 80 years.
- King County claims they have been paying taxes on this section of our property since they acquired the rights to the corridor through the Rails to Trails legislation and that we did not object within seven years. Well this is just not true. We have consistently been taxed on a 1,150 square foot house since the 1940s. Since we are paying those taxes, it would be hard for KC to claim that they are paying them also. And we did object to KC's claim to own the ROW when we filed a lawsuit with the federal government in 1998.
- There are easements on top of easements! There is the road easement on top of the ROW easement and then several easements run through the 8-foot access road, one for electricity and another for gas. Alice Fuller, property owner in the 1920s, granted the easement for electricity. The property owners on the lane granted the easement for gas in 1996. Now KC is claiming they "own" this road; yet BNSE was never involved in signing either of these easements because they didn't own the property.

We would be delighted to have the trail so close to us if KC wasn't claiming half our house in the process. While we are pro trail and want what is best for the community, giving up clear title to our house and property without just compensation is too much of a sacrifice. We were hoping to sit down with King County to work out a mutually **agreeable exchange of property** so that they could have what they need for the trail and we could get clear title to the property where our house sits, but they have been unwilling to talk to us about it. We were told they "own the property and that we could fill out a special use permit to have our house encroach on their ownership." We are unwilling to do this. Our belief is that BNSF RR did not have fee title but rather a prescriptive easement to operate a railroad through our property (there is no deed saying otherwise) and that KC's right to build a trail is also based on a prescriptive easement that they acquired through Rails to Trails legislation. KC claims they cannot change boundary lines within the easement according to Rails to Trails laws; however, KC has changed property lines with others on the corridor in numerous cases since 1998 (Bucks and Pickerings are two close neighbors who did so). We don't understand why KC is not willing to meet with us in what seems to us to be a win-win case.

The second purpose of this letter is to make comments about the 60% plan for the trail. As indicated earlier, we support a trail and have few concerns regarding KC's desire to build a nice trail through our property as long as they don't claim to "own" the land under our house. We met with KC on January 11, 2016 to review the plan for our property. However, the 60% plan included very little useful information, as the drawings were woefully incomplete. What comments could a reasonable person make when the drawing does not show accurate design detail for which a person could constructively comment? The drawings had old and inaccurate existing conditions. The proposed plan lacked any detail for the south side of the trail that would give us anything to comment about. For example, there was no fence and no finished grade lines. Our current rockery and our dogwood tree were not represented on the plan, so the representatives could not tell us what would happen to these features. A great deal more detail is needed in order for us to make any kind of constructive comments. However, I want to say that we don't expect to have any major issues with the trail development as long as we can get our ownership issues resolved before it is allowed to proceed.

If you wish additional information or clarification, please do not hesitate to contact us.

Sincerely,

Annette McNabb, 425-503-3861 Bill Van De Bogert, 425-495-5312 mcnabbvan@msn.com

VOL 1642 PASE 582	2860720		don Hills
SI-WARRA' IY DEED, (Statutory Ferm)		Miller & Sutherlen Printing Co., Bellingham, Wash.	
		•	
The Grantor Alice	M.Fuller,a wii	014,	
for and in consideration of			
		Dollars in hand paid, conveysand	
warrants in ARLIS COSte	110	and	
		The granteethe following described real estate:	
		Lot 3, section 7, township 24,	
<pre>information of the set of the set of the set of the feat the set of the</pre>	Thermsection ac thermsection ac the sector of the the sector of the sector and county real to a point whi rue place of be a true place of a signing ly cent the right	Torious: Inner bewtean sactions?.ani 8. (section line south IO minutes nd 5I minutes test 367.I.feet 79 iegrees ani 5I minutes wes- minutes east 120 feet, more or ; thence southensterly mlong sa oh is north IO iegrees ani 35 ginning; thence south IC iegree teginning; together with mir u ing between the lines of sail	to t min- s plan trao
right of way, reserved for	rosi purposes,	ap or the south tile of sail r subject to taxes.	ailw
CLAC NO FORINCUSE SNALL D	B DUILL OF OLAF	ator or abil everaphe and	
any part thereof be renta	i to any rerson	to any colored, property, for shall to any colored, person, for shall to v isy or night, for shall any conservial purposes),	
any part thereof be renta	i to any rerson	to any colored person, nor sha	
Lt of any fart thereof be rente thy part thereof be rente thereof be used for ohick	scii…or.rentei l to any ferson en housing-for	tc.ary.colored.person.noroha i ov day or night,nor shall any connersial purgeses)	
Ley part Lereof be rents thereof be used for chick	soil.or.rantei i to any person en housing for (ing	.tc.ary.colored.person.noroha i ov day or night,nor shall any connersial purgeses)	
Lt of any fart thereof be rente thy part thereof be rente thereof be used for ohick	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
Ley part Lereof be rents thereof be used for chick	<pre>soli_or.rentei t to any person n housing for (ing</pre>	.tc.ary.colored.person.noroha i ov day or night,nor shall any connersial purgeses)	ll par
situated in the County of	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
situated in the County of	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
situated in the County of	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
situated in the County of	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
situated in the County of	<pre>soli_or.rentei t to any person n housing for (ing</pre>	L.C. MLY. COLOREL PERSON, NOT. Sha CV May or right, nor shall any COUNCROISL PUTFORES),	ll par
situated in the County of		Ltc. hty colored person, for sha to hav or right, nor shall any countrolal purposes), 	11 [par []]
situated in the County of	al on this I5th	ay of Murch . A. D. 19 35	11 par al)
situated in the County of	soli or. rented to any person en housing for (ing . A. D. 19.35.) , , , , , , , , , , , , ,	ay of Murch A. D. 19 35	11 par al)
situated in the County of the rents thereof be used for chick situated in the County of	soli or. rented to any person en housing for (ing . A. D. 19 35.) ss. at on this 15th duribut. and sworm personally. co	ay of Murch A. D. 19 35 a Notary Public in and for the	11 par \$1)
situated in the County of	soli or. rented to any person en housing for (ing . A. D. 19. 35.) ss. at on this 15th duribut. and soorn personally, co	ay of Murch A. D. 19.35 a Notary Public in and for the ame Alice 2.Fuller	11 par \$1)
situated in the County of	soli or. rented to any person en nousing for (ing . A. D. 19. 35.	ay of Murch A. D. 19 35	11 par () () () () () () () () () () () () ()
situated in the County of	soli or. rente i to any person en housing for (ing . A. D. 19.35.) s. at on this 15th luribut l and sworn personally, co scribed in and who executed the same as her	L.C. M.Y. COLOREL, PERSON, N.C. Sha N. State of Washington. State of Washington. A.D. 19 35 a Notary Public in and for the ame Alice Z.Fuller Med the within instrument, and acknowledged to me free and voluntary act and deed for the uses and	11 par () () () () () () () () () () () () ()
situated in the County of	solitor. rented to any person en nousing for (ing A. D. 19.35. at on this I5th luribut. land sworn personally. co scribed in and who executed the same as. her seal the day and year in 10	ay of Murch A. D. 19 35 a Notary Public in and for the ame Alice Z.Fuller	11 par al)

From:Lindsey OzboltSent:Wednesday, January 25, 2017 11:00 AMTo:'Alisa.oliver36@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Alisa,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alisa Oliver [mailto:Alisa.oliver36@gmail.com] Sent: Wednesday, January 25, 2017 5:28 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. As we continue to look for alternative means for commuting and continuing to introduce biking to our younger generation, it's important to have a safe place for both commuters and families. Please complete the trail so we have more safe cycling and walking options.

Sincerely,

Alisa Oliver 9719 49th Ave NE Seattle, WA 98115 2063842812

From:Lindsey OzboltSent:Friday, January 27, 2017 10:21 AMTo:'apailthorp@msn.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Aaron,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Aaron Pailthorp [mailto:apailthorp@msn.com] Sent: Thursday, January 26, 2017 9:45 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Trails like this provide a welcome recreational outlet as well as an inexpensive transportation alternative. I like to leave the city to ride in the hills and spend money along the way.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Exhibit 29 I'm looking forward to coming to the area to use the trail and leaving my spending money behist DP2016-00415 003743 Sincerely,

Aaron Pailthorp 1806 30th Ave S Seattle, WA 98144 206-310-6113

RE: SSDP Comment for 109 East Lake Sammamish Pkwy SE, Peck Residence

Lindsey Ozbolt

Mon 1/23/2017 11:33 AM

To:April Zangl Peck <aprilzangl@hotmail.com>; Steve Peck <stevejpeck@live.com>;

Good morning April,

That is a correct summary, the City will review and consider all comments.

Best,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: April Zangl Peck [mailto:aprilzangl@hotmail.com] Sent: Monday, January 23, 2017 9:52 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us>; Steve Peck <stevejpeck@live.com> Subject: Re: SSDP Comment for 109 East Lake Sammamish Pkwy SE, Peck Residence

Hi Lindsey,

Thank you for your prompt response. Besides compiling our comments, what else is the City of Sammamish doing with these comments? My understanding was the City of Sammamish was also reviewing and taking the comments into consideration when approving the plans. Am I misunderstanding what the comments are being used for?

April (Zangl) Peck 425.829.4917

From: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>> Sent: Monday, January 23, 2017 8:40 AM To: April Zangl Peck Subject: RE: SSDP Comment for 109 East Lake Sammamish Pkwy SE, Peck Residence

Dear Peck Family,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415). Exhibit 29 SSDP2016-00415 Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: April Zangl Peck [mailto:aprilzangl@hotmail.com]
Sent: Sunday, January 22, 2017 6:19 PM
To: Lindsey Ozbolt <<u>LOzbolt@sammamish.us</u>>
Cc: Steve Peck <<u>stevejpeck@live.com</u>>
Subject: SSDP Comment for 109 East Lake Sammamish Pkwy SE, Peck Residence

Liz Ozbolt and To Whom Else It May Concern:

My husband, Steve Peck, my children and I are writing with serious concerns, fear and disappointment with King County's plans (and the unknown plans) to expand the development of the East Lake Sammamish Trail. In early 2015, through exhaustive dedication to our labors, we finally realized our dream to own a home on Lake Sammamish. We felt excited and extremely fortunate to finally own something we worked so hard for and excited to find something with so many opportunities. My husband loved the lake, outbuildings and shop, my children loved the 27 – 75-year-old blueberry bushes and I loved the space which gave my children more room to roam and learn the value of work. After King County's plans, we are overwhelmed with feelings of disappointment and sadness. Further, we are uneasy knowing there is still plans we are unaware of. What other plans does King County have for our land? The City of Sammamish has no legal authority to approve the Shoreline Substantial Development Permit until issues like ours, along with countless others, are addressed and the public has had a chance to review the complete (90%) plans to assess the county's response. We urge the City of Sammamish for help in modifying King County's plans for the East Lake Sammamish trail. We love the trail and believe it is a community asset but we believe the expansion is severely encroaching on our property and must be modified.

Through a detailed Ownership Research Report conducted by Graddon Consulting and Research (findings affirmed by the Federal Court of Claims through Judge Horne's extensive ruling) who has studied the historic ownership and title of our land, we have confidence that the Right of Way Deed of May 6, 1887 does not chain to either the Land Conservancy of Seattle and King County nor King County because the legal description of the Quit Claim Deeds under which King County claims it alleged fee simple ownership purports to convey only the right of way as now located and constructed. Therefore, King County not only does not own fee simple absolute title to the land upon which it purports to desire to expand the East Lake Sammamish Trail, it factually has no chain of title claims whatsoever to our land. There is strong factual evidence both from the language of the Right of Way Deed of May 6, 1887 and the historical time, place and manner context of the use of conveyance document executed by Bill Sbedzue and Lucinda Sbedzue that the parties infitture Right of SSDP2016-00415

Way Deed of May 6, 1887 intended only the conveyance of a mere easement for the sole purpose of locating, constructing and operating a railroad and never intended to convey a fee simple absolute interest in the property described by the Right of Way Deed of May 6, 1887. In addition, at the time of the purported acquisition of the property by way of Quit Claim Deed from the Land Conservancy of Seattle and King County to King County, the title insurance company had significant concerns about what interests, if any King County actually obtained from the Quit Claim Deed. First American Title Insurance Company has further corroborated Graddon Consulting's analyses and conclusions indicating that the property claimed now by King County was owned feed simple absolute to the property we've obtained Quit Claim Deed for fee simple ownership of the Right of Way. We are not arguing against having a public trail, we are asking for a trail allowing for Right of Way Deed for a surface easement with a similar size to the current trail. The proposed trail is far overreaching to what currently exists and compared to what other Rails to Trails development exists.

The proposed development plans give us cause for serious concern. Especially since they are only 60% of what is to come. Here is a list of our specific concerns:

- The proposed 60% plans show three lines that significantly impact our property beyond where the current trail resides and are costly, unnecessary and invasive. The Clearing and Grubbing, Fill and Dispersion lines (AL27-AL28/LA16) significantly impact our property, going beyond the proposed expanded 18' trail and adding an additional 10-12' (see CS2) more to the west side of the trail for clearing, development, etc. This proposed plan would remove much of the features, appeal and sentiment our property has for us. In this area lies 27 75-year-old blueberry bushes and once botanical gardens historically known on the Eastside before roads even existed. I cannot begin to understand why this would be okay for someone to remove from our property. Plant retention is significant to all trail residence. In our short period of time owning our property, it has become an opportunity for my children to learn the value of work and provide service to those around us. In addition to the blueberry bushes being removed, a long-since (over 30 years old) pre-established workshop structures and chain-link fence providing security look as if they are to be removed and not replaced. The structures, fence and the blueberry bushes have existed for several decades and in no way impede the current trail nor the planned initial 18' trail expansion. The 60% proposed plans have added Clearing and Grubbing areas that are excessive and unnecessary that remove our preexisting structures and plants. This area of land is flat, has several plants that absorb moisture and has not historically been known for an area needing run off. With the expansion of a trail with a nonpermeable surface, other less invasive (and less costly) drain off options exist that we'd be willing to explore and help develop with King County, such as a French drain, dry well, or swale (in addition to the plant life that already exists). A fence also must be replaced to provide security to my family. From the trail, our home does not provide a view to the lake, only directly to the window and access points of our home. Replacing the existing security fence for my young children's safety is absolutely and irrevocably necessary. Finally, the plans which only indicate 60% being shown and yet are requesting your approval, do not show what plants they wish to replace our plants, structure and fence with. I've never heard of plans being approved with only 60% communication. Developing other drainage options other than the proposed C&G and dispersion plans would allow our structures, plants and fence to exist with an 18' trail as already developed in other areas of the trail.
- The county's existing plans (EX16) are not accurately displaying our property which borders the eastside of the trail. The county correctly notes a compost bin but does net clisplay a fence SSDP2016-00415

along the trail line enclosing a garden and wrapping around by East Lake Sammamish Pkwy SE with tall bordering pine trees. The existing irrigation which currently runs under the trail for the gardens is shown but does not look to be replaced in the proposed plans. Measuring from the centerline of the trail for a width of 18' (9' each side of center line), the gardens do not impose on the county's plan and are consistent to the fruitful beauty of the area. We would also like the plans to show our irrigation being maintained running to the eastside of the trail. We disagree that the county would remove this from our property since it does not conflict with an 18' trail as developed in other areas of the trail.

On a separate Tree Preservation Plan (TP16), we've noticed that the county plans to save a tree on our property beyond the Clearing and Grubbing line and boarding the R/W line that is currently growing into a powerline. Frankly, it is makes no sense that the County would be clearing much of the benefits and appeal of our property yet deeming a tree that is potentially hazardous to remain.

We thank you for your time in seriously considering and acknowledging our comments and concerns. In my profession, I've been fortunate to travel and learn about many other areas around the world. I'm always thankful and happy to return home. I feel blessed to live in America, live in a democracy with the constitution and knowledge that I live in a land of opportunity. I've personally been blessed to experience how hard work can transform someone's life. I feel shocked that the intent of a Right of Way Deed easement and ownership of many properties on Lake Sammamish including my own have been convoluted and transformed into something which it is not. We urge the City of Sammamish for help in modifying King County's plans for the East Lake Sammamish trail. King County is being unfair in their pursuit to develop the trail. They claim they are trying to work with the homeowners to be fair but their actions do not match their accommodating words. The City of Sammamish has no legal authority to approve the Shoreline Substantial Development Permit until issues like ours, along with countless others, are addressed and the public has had a chance to review the complete (90%) plans to assess the county's response. I hope these issues can be resolved and the community can enjoy the benefits the East Lake Sammamish Trail has to offer. My husband and I would greatly appreciate the opportunity to speak with someone further about alternative drainage and development options to maintain both our interests and the interests of the trail. Please feel free to contact us with the details below.

Sincerely,

The Peck Family

April Peck | <u>AprilZangl@Hotmail.com</u> | 425.829.4917 Steve Peck | <u>SteveJPeck@Live.com</u> | 425.829.0838

From:Lindsey OzboltSent:Friday, January 27, 2017 9:43 AMTo:'rak@giro.org'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Adam Rakunas [mailto:rak@giro.org] Sent: Wednesday, January 25, 2017 7:33 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I am the co-leader of a Girl Scout troop in Seattle. As the Scouts grow older, they want to go on bicycle trips. By approving approving this trail permit, as submitted, the Scouts will have more trails to explore. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, thus making the Scouts' parents feel more secure about their children riding afar.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

Please complete the trail. The Girl Scouts can't wait to ride to your city.

Sincerely,

Adam Rakunas 1431 26th Ave

Seattle, WA 98122 310.907.6141

From:Lindsey OzboltSent:Friday, January 27, 2017 10:27 AMTo:'aschearer@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Alex,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alex Schearer [mailto:aschearer@gmail.com] Sent: Thursday, January 26, 2017 11:11 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing in support of completing the ELST and approving permit SSDP2016-00415.

I'm an avid cyclist in the area and have been looking forward to riding on the completed trial for some time. Once complete, this trial will be a jewel in the area for people who want to enjoy the lake and surrounding area.

Thanks, Alex

Alex Schearer 902 18th ave Seattle, WA 98122 2069925737

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 8:39 AM

To:andy.steinmetz@comcast.net <andy.steinmetz@comcast.net>;

Dear Andy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Andy Steinmetz [<u>mailto:andy.steinmetz@comcast.net</u>] Sent: Sunday, January 22, 2017 6:42 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

My family of four is using the trail for bike rides and even for commuting in the summer. The completion of the trail to meet standards would greatly improve our experience and safety.

Please approve the permit, as proposed, with expediency.

Sincerely,

Andy Steinmetzz

Exhibit 29 SSDP2016-00415 003752

Page 1 of 2

Andy Steinmetz 2239 224th Place NE Sammamish, WA 98074 425-898-8652

SB-295

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 10:24 AM
То:	'artak.sukhudyan@gmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Artak,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Artak Sukhudyan [mailto:artak.sukhudyan@gmail.com] Sent: Tuesday, January 24, 2017 4:58 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Artak Sukhudyan 18026 40TH DR SE Bothell, WA 98012 4252236006

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 10:59 AM
То:	'Lexie.tigre@gmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Alexa,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alexa Tigre [mailto:Lexie.tigre@gmail.com] Sent: Wednesday, January 25, 2017 1:08 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Thank you!

Alexa Tigre 16028 NE 28th St Bellevue, WA 98008 425-861-8290

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 11:02 AM
То:	'andreva@outlook.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Andre,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Andre Vachon [mailto:andreva@outlook.com] Sent: Wednesday, January 25, 2017 7:54 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

My daughter just turned 3 years old and loves her strider bike. I hope this summer we get her onto a pedal bike and by the following year to have an avid rider. I've been riding around lake sam for 2 decades now. Where the trail is completed, it's been wonderful. I hope we can complete all of it. I look forward to riding the trail with my daughter.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail. Exhibit 29

SSDP2016-00415 003758 Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Andre Vachon 133rd ave ne BELLEVUE, WA 98005 425-444-9183

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:00 AM

To:Alexa.volwiler@gmail.com <Alexa.volwiler@gmail.com>;

Dear Alexa,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alexa Volwiler [<u>mailto:Alexa.volwiler@gmail.com</u>] Sent: Saturday, January 21, 2017 9:56 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and prive ways cross the

path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Alexa Volwiler 11434 176th PL NE Redmond, WA 98052 3603030526

SB-299

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:06 AM

To:Anne_a_ward@yahoo.com <Anne_a_ward@yahoo.com>;

Dear Anne,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Anne Ward [<u>mailto:Anne_a_ward@yahoo.com</u>] Sent: Saturday, January 21, 2017 5:56 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted. The East Lake Sammamish Trail is a huge public benefit promoting healthy outdooor recreation for our community and also providing a safe pathway for those interested in commuting by bicycle, thus easing traffic on our over used roadways. It adds huge enjoyment for those of us who are not wealthy enough to live on the lake by allowing us to walk or bike along the beautiful waterfront and access the new waterfront park.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people

riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Anne Ward SE 64th Issaquah, WA 98027 9086254508

SB-300

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 10:33 AM
То:	'adam.warfield@ymail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Adam,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: adam warfield [mailto:adam.warfield@ymail.com] Sent: Tuesday, January 24, 2017 8:36 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

I frequently use the area for multiple activities. Running, walking (with my elderly mom) and a significant amount of cycling (about three days a week) Having access to the trail vs. the road for cycling would be awesome, and much much safer. Even though there is a significant shoulder/bike lane, drivers are absent minded and text while driving. Ive had multiple "near misses" and "close calls" Which is crazy, because I am well visible with reflective clothing and blinking lights.

Please approve the permit, as proposed, with expediency.

Sincerely,

adam warfield po box 394 maple valley, WA 98038 4257666986

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:04 AM

To:stevenglasgow@yahoo.com <stevenglasgow@yahoo.com>;

Dear Steven,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Steven Glasgow [mailto:stevenglasgow@yahoo.com] Sent: Saturday, January 21, 2017 7:21 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm a Sammamish resident and am writing to express my support for completing the ELST and approving permit SSDP2016-00415. We need a safe, paved trail along East Lake Sammamish and completion of the trail is the only way to fully realize the investment we've made North and South on the same trail. This is our missing link. Please look out for the interests of the community at large and approve the permit, as submitted, with the proposed trail widths. We've been waiting for years!

Sincerely,

Steven Glasgow 4433 229th Place SE Sammamish, WA 98075

Steven Glasgow

4433 229th Place SE Sammamish, WA 98075 4253699203

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 10:34 AM
То:	'bikelicker@gmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Alexander,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Alexander Wilson [mailto:bikelicker@gmail.com] Sent: Tuesday, January 24, 2017 9:03 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to convey my strong support for completion of the East Lake Sammamish multi-use Trail, and approving permit SSDP2016-00415.

Enabling alternative transportation consistently boosts property values, the local economy and quality of life. Creating a recreational trail will not serve to increase crime, property damage, or block up residents parking, as all previous regional trail infrastructure has shown. As a regular user of the trail, I can testify first hand that this trail provides the opportunity for users to experience magnificent scenery, exercise, and experiencing the outdoors in a convenient manner, and away from the dangers of automotive traffic.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail. Exhibit 29 SSDP2016-00415 003768 When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Thank you for your time.

-Alexander J Wilson

Alexander Wilson 7532 11TH AVE NW SEATTLE, WA 98117 2067692091

Lindsey Ozbolt

From:Lindsey OzboltSent:Friday, January 27, 2017 9:10 AMTo:'bk_benson@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Brian,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brian Benson [mailto:bk_benson@yahoo.com] Sent: Wednesday, January 25, 2017 2:11 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish.

I've ridden sections of the trail, and look forward to riding the new part (and bringing business to nearby businesses!). Please complete the trail.

Sincerely,

Brian Benson 8307 Dibble Ave. N.W. Seattle, WA 98117 2065551212

Re: E. lake Sammamish Trail improvement

Lindsey Ozbolt

Thu 1/19/2017 8:10 AM

To:Brad Del Matto <braddmt@hotmail.com>;

Cc:'Lorelle Del Matto' <lorelledm@outlook.com>;

Dear Brad,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Brad Del Matto <braddmt@hotmail.com> Sent: Tuesday, January 17, 2017 7:42 PM To: Lindsey Ozbolt Cc: 'Lorelle Del Matto' Subject: E. lake Sammamish Trail improvement

Dear Lindsey,

We understand that residents along the lake are to provide comments to you regarding the recent trail improvement plans for section 2B (the 60% improvement plans/maps) released by King County.

The address of our residence is 161 E. Lake Sammamish Shore Lane NE. the trail is between our residence and E. Lake Sammamish parkway. Our comments are as follows:

First, the County intends to extend its current trail border (i.e., the fence along the trail Exhibit 29 SSDP2016-00415 separating our property from the trail) into an area that we use for parking and storage. The county indicates that it will use this extended area for drainage. It seems that the county could easily drain the trail to the east where it currently drains and where there are wetlands. Further, it is uncertain how drainage to the west will affect our property in terms of increasing saturation nearer to our residence. I am concerned it could cause flooding problems.

Second, the plans fail to indicate how the County intends to improve this drainage area in terms of materials and vegetation. It seems the county should provide specifics so that we have sufficient information to comment about impact before the plans are approved.

Third, the county wants to install a chain link fence along the extended border. The problem is we have deer (often with fawns in the spring) and other wildlife accessing the lake through the trail. This would disrupt wildlife and would likely cause some of them to be trapped if they make it to the lake. Trapped deer are dangerous and being trapped could impact their health. The county should at least provide many gaps in the fence to allow animals to pass more freely.

Fourth, according to the Tree Preservation Plans, 16 trees are to be removed (sheet TP16 of the plans) that are outside the planned trail footprint. It appears this is intended only to allow construction of the dispersion area. Trees absorb moisture and contribute significantly to dispersion of runoff. These trees should not be removed.

Thanks for considering our comments.

Brad & Lorelle Del Matto 161 E. Lake Sammamish Shore Lane NE Sammamish, WA 98074

Lindsey Ozbolt

From:	Lindsey Ozbolt
Sent:	Wednesday, January 25, 2017 11:15 AM
То:	'bdillaway@hotmail.com'
Subject:	RE: Please Approve the Permit for Segment 2B of the ELST

Dear Blair,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Blair Dillaway [mailto:bdillaway@hotmail.com] Sent: Wednesday, January 25, 2017 11:12 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. It will also provide a critical north-south corridor connecting with existing east-west trails along I-90 and Hwy 520. This is important to commuters and recreational users such as myself.

The trail, as proposed in the permit, will provide a safe, multi-use, route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO). Please also ensure that trail users are given priority when to the trail crosses roads and driveways. This is an important safety issue.

Please approve the permit, as proposed, with expediency.

Blair Dillaway 2635 90th Ave NE

Clyde Hill, WA 98004 4257363599

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 9:03 AM

To:bill@fhaus5.net <bill@fhaus5.net>;

Dear Bill,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Bill Fuerstenberg [<u>mailto:bill@fhaus5.net</u>] Sent: Saturday, January 21, 2017 7:45 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415. Please support the proposed trail widths, which reflect industry standards (AASHTO).

I have lived in Sammamish since 1995 with my wife raising our 3 kids. I wish this would have been finished sooner but better late than never! I bike commute to work full time to Microsoft using the trail and run the trail on weekends.

Please approve the permit, as submitted. The completed portions are the safest and most enjoyable trails I've ever ridden on -- and I've ridden almost every possibly trail around here including Sammamish River and Burke Gilman (since UW days).

I believe the home owners on the trail are being selfish and the fact is this is a Right of Way. That was clear in any property documents. Homeowners claim concerns of environmental impact or disturbing their RoW encroaching/non-permitted modifications; these do not seem genuine to me seeing first hand the lawns and chemicals, all the trees out for the

https://mail.sammamish.us/owa/#viewmodel=ReadMessageItem&ItemI...uKY3twkOpC5YzL9hvVgAAAtHMAAAA&IsPrintView=1&wid=42&ispopout=1 Page 1 of 2

buildings, firepits, docks, etc. This will only IMPROVE the situation in every way.

In my opinion, this would be an EPIC FAIL of any urban planning or government planning to compromise on this little section of trail for a few special interests. This is a LONG TERM investment for everyone to enjoy for generations to come.

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Bill Fuerstenberg Sammamish Resident since '95 and Trail User since it opened - Let's get this done so everyone can enjoy safely! bill@fhaus5.net

Bill Fuerstenberg 1819 203rd Ave SE Sammamish, WA 98075 4255031358

SB-307

Lindsey Ozbolt

From: Sent: To: Subject: Lindsey Ozbolt Friday, January 27, 2017 9:15 AM 'gobie.bill@gmail.com' RE: Please Approve the Permit for Segment 2B of the ELST

Dear Bill,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Bill Gobie [mailto:gobie.bill@gmail.com] Sent: Wednesday, January 25, 2017 2:43 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

The completed segments are excellent. Finish the trail!

Sincerely,

Bill Gobie 4836 38th Avenue SW Seattle, WA 98126 2069352689

Greve - Gottschalk - East Lake Sammamish Trail Segment 2B Comments to the City Council

b.greve@comcast.net

Sat 1/28/2017 1:39 PM

To:City Council < citycouncil@sammamish.us>;

Cc:Jeffrey Thomas <JThomas@sammamish.us>; Lyman Howard <Ihoward@sammamish.us>; Jessi Bon <JBon@sammamish.us>; David Pyle <DPyle@sammamish.us>; Kim Adams Pratt <kim@kenyondisend.com>; Lindsey Ozbolt <LOzbolt@sammamish.us>; Christie Malchow <CMalchow@sammamish.us>; Tom Hornish <THornish@sammamish.us>; Ramiro Valderrama-Aramayo <RValderrama-Aramayo@sammamish.us>; Gus Gottschalk <ggottschalk@lydig.com>;

0 1 attachment

Letter to City (1-27-17).pdf;

Good morning City Council Members -

In a dialog (shown below) with council member Christie Malchow earlier this month seeking guidance on how best to ensure the city council had the opportunity to understand "each individual homeowner's impacts and concerns", and to help the council when the council meeting or "study session" takes place in reference to the East Lake Sammamish Trail - Segment 2B, we were told to forward comments to the city council as well as Ms. Ozbolt.

Our neighbors (William (Gus) and Debra Gottschalk) and us (William and Kathryn Greve) worked jointly with our attorney to develop our comments as we share a private drive leading into our properties. Our properties are part the Waterside Home Owners Association.

Please find our joint comments and associated exhibits attached in pdf form.

Note that together and with Gus' 35 years of commercial construction experience as President of Lydig Construction, we have identified clear and specific alternatives to each of our concerns relating to the 60% design plan. Our proposals do NOT impact the design intent of the trail, but instead creates a far safer, more cost effective, and rational design. In fact, our proposal works to acknowledge and adhere to two specific design objectives outlined in King County's communications which are being unmistakably averted with the current 60% plan. The two objectives referenced include:

(1) "[m]inimizing costs where possible without impacting trail standards," and(2) "[m]inimizing impacts to adjacent homeowners."

We view many of the design elements in the 60% plan as unnecessarily impactful; especially in light Exhibit 29 SSDP2016-00415

SSDP2016-00415

Page 2 of 5

of the alternatives. They also significantly elevate the risk to trail users as it relates to the sight lines associated with the trail crossing both exiting and entering our properties. It's for these reasons that we worked so diligently to not just object to the impactful elements of the plan but to instead use common sense and best practice design considerations to create and share clear and specific alternatives that satisfy each concern and work to what we feel can be a mutually agreeable solution.

Ultimately we want to see this project succeed and become the wonderful shared resource that it can be, but not at the cost or with the unnecessary impact designed into the current 60% plan.

Please inquire should you have any questions, need any additional information, or best case if you would like to set time for us to discuss, demonstrate, and/or explain not just our concerns, but our rationale.

With Best Regards and Intentions,

William (Bill) and Kathryn (Katy)Greve William (Gus) and Debra (Debbie) Gottschalk

From: "Christie Malchow" <CMalchow@sammamish.us>
To: "Jeffrey Thomas" <JThomas@sammamish.us>, "b greve" <b.greve@comcast.net>, "City Council" <citycouncil@sammamish.us>
Cc: "Lyman Howard" <lhoward@sammamish.us>, "Jessi Bon" <JBon@sammamish.us>, "David Pyle" <DPyle@sammamish.us>, "Kim Adams Pratt" <kim@kenyondisend.com>, "Lindsey Ozbolt" <LOzbolt@sammamish.us>
Sent: Monday, January 16, 2017 9:40:46 PM
Subject: RE: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Thank you, Jeff, for clarifying.

Christie Malchow Sammamish City Council <u>cmalchow@sammamish.us</u> (425-301-6667 | <u>www.Sammamish.us</u> 801 228th Ave SE | Sammamish, WA 98075

From: Jeffrey Thomas Sent: Monday, January 16, 2017 6:46 PM To: Christie Malchow <CMalchow@sammamish.us>; b.greve@comcast.net; City Council <citycouncil@sammamish.us> Cc: Lyman Howard <lhoward@sammamish.us>; Jessi Bon <JBon@sammamish.us>; David Pyle Exhibit 29 <DPyle@sammamish.us>; Kim Adams Pratt <kim@kenyondisend.com>; Lindsey Ozbolt <LOzbolt@sammamish.us> **Subject:** Re: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Hi Christie,

One clarification and one correction from your email earlier today to Mr. & Mrs. Greve:

1. Clarification - City staff is reviewing and compiling public comments as they are submitted through next week. The public comments will help City staff complete its comprehensive first review of the shoreline permit application. In addition to requesting the County to respond to the public comments, the City will also determine requested revisions and send to the County concurrently.

2. Correction - As currently set up, the shoreline permit application is being processed as a Type II permit - the Community Development Director issued the decision on behalf of the City. As we learned from the State Shorelines Hearings Board with south segment 2a, the Hearing Examiner does not have jurisdiction to hold an administrative appeal hearing on a shoreline permit decision issued by the Director. Therefore the appeal of a shoreline permit decision will go directly to the State Shorelines Hearings Board.

Thanks, Jeff

From: Christie Malchow
Sent: Monday, January 16, 2017 1:18 PM
To: <u>b.greve@comcast.net;</u> City Council
Cc: Lyman Howard; Jessi Bon; Jeffrey Thomas
Subject: RE: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Mr. & Mrs. Greve,

I've cc'd a few staff members here to elaborate or correct any misinformation/omitted information in my response below (in red). My answers below are based on the best of my knowledge and are process based to help you on the questions you've asked below.

Christie Malchow Sammamish City Council <u>cmalchow@sammamish.us</u> (425-301-6667 | <u>www.Sammamish.us</u> 801 228th Ave SE I Sammamish, WA 98075

Exhibit 29 SSDP2016-00415 003782

Page 3 of 5

From: b.greve@comcast.net [mailto:b.greve@comcast.net]
Sent: Monday, January 16, 2017 9:55 AM
To: City Council <<u>citycouncil@sammamish.us</u>>
Subject: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Good morning

This e-mail is specifically created to ask for clarification and direction about the city's role and the processes in reference to the on-going and vitally important issues involving the East Lake Sammamish Trail - Segment 2B project.

We (Bill and Katy Greve) residing at 2417 E Lake Sammamish PL SE respectfully request information and answers to each of the following questions outlined below.

- Correspondence coming from both the City of Sammamish and King County provided direction for property owners to submit comments to the staff project planner (Lindsey Ozbolt). Upon doing that an automated response was received stating "Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response". This response seems to elude to the fact that the City of Sammamish is merely a "pass through" for the process by simply collecting the comments and sending them off to King County without working to understand, building a case, offering opinion, or advocating for its citizens..
 - Will the City Council actively review the comments provided, seek to understand them in detail, and ultimately advocate for the citizens of Sammamish? We certainly can read them, but they are not given to Council specifically. You can email your comments to the Council at <u>citycouncil@sammamish.us</u>, this will help us to better understand each individual homeowner's impacts and concerns. This will then help us when we have the County in for a Council meeting or study session.
 - Will the City Council actively participate and help to mediate discussions between King County and the citizens of Sammamish to resolve issues to citizen satisfaction? We are certainly advocating for a study session or the like where King County is present, to answer our questions & citizens alike, so yes, we will be actively participating in discussions between the County, citizens, and City staff processing the applications.
 - Who specifically makes the decision to issue both the shoreline substantial development permit and the clearing and grading permit; and what influence does the city council have in that process? City of Sammamish's staff. The Council does not have influence in reality there, aside from encourage legal & staff to scrutinize the application for meeting our City's codes and regulations.
 - Does the City Council have the ability to prevent either permit (SSDP and Clearing & Grading) from being issued? No, not to my knowledge.
 - What specifically is the procedure to surface issues and seek adjustment to the proposed 60% plan; aside from simply submitting comments? Submitting your comments is the primary means, and certainly engaging Council in those comments (via public comment or simply by emailing them to us). The more we know, the better we can advocate for alterations to the design plan that allows the trail to proceed, but also takes into account affected trail-side owners' issues.
 - · Will the City Council actively be involved in and support citizens in discussions involving

SSDP2016-00415

proposed adjustments to the 60% plan? I think the entire Council has an interest in the trail. I certainly do. As far as alterations to the plan, staff will ultimately make those decisions. The Council is certainly going to weigh in on the trail, and as of last Tuesday has asked for a joint meeting that would have King County officials in for a meeting that would likely be a study session. There was an urgency on this request, & I know our City Manager has already reached out to the County on this meeting, I would anticipate that meeting sooner than later.

 In the event that King County does not work to address the proposed adjustments to citizen satisfaction, what is the specific process to appeal, mediate, and mitigate the situation too ensure satisfactory results, and what role with the City play in this process? The appeal can be done if the City approves the plans (after the final submission based on 100% design plan is reached). At that point any group or individual may appeal the decision to the Hearing Examiner.

Citizens have spent literally hundreds of hours trying to understand how to be heard and how to ensure the slightest bit of comment sense and rational thought is applied to the issues being forced upon us or suggested changes. We've worked to submit comments in multiple forms and forums as directed, but no impacted party feels good about how the process has unfolded thus far. Most feel completely unsupported by the city and certainly stonewalled by the county.

I understand your frustrations. My responses above are intended to shed a bit of light on process for you. However, if you feel you have more questions, please don't hesitate to email Council or call me. My cell phone number is listed below in my email signature.

Satisfactory and complete answers to the above questions will at minimum help to ensure we know what to do and how to do it.

Please advise.

Sincerely,

Bill Greve

Exhibit 29 SSDP2016-00415

Page 1 of 5

Re: Seeking Guidance - East Lake Sammamish Trail Segment 2B

b.greve@comcast.net

Tue 1/17/2017 10:01 AM

To:Jeffrey Thomas <JThomas@sammamish.us>;

Cc:Christie Malchow <CMalchow@sammamish.us>; City Council <citycouncil@sammamish.us>; Lyman Howard <Ihoward@sammamish.us>; Jessi Bon <JBon@sammamish.us>; David Pyle <DPyle@sammamish.us>; Kim Adams Pratt <kim@kenyondisend.com>; Lindsey Ozbolt <LOzbolt@sammamish.us>;

Christie, Jeff -

Because we've never done anything close to what we're embarking on in relation to trying to have our concerns related to the trail design considered and adjustments made, I'd like to summarize the information you provided to ensure complete understanding. Please advise should I have misinterpreted any part of our correspondence.

Thank you!

Bill Greve

Summary:

- The City is actively working to arrange a "study session" or "council meeting" to include representatives from King County, City Staff, and Sammamish Citizens with the intent to ensure comments, concerns, proposals are heard, understood, and decisions can be made in order to ensure satisfactory solutions to concerns with the 60% plan occur.
- Although citizen comments will not be given to the City Council specifically, there is a desire by Council Members to better understand each individual homeowners impacts and concerns in order to prepare for the above mentioned meeting(s) with King County. Comments can be sent to <u>citycouncil@sammamish.us</u> for this purpose.
- The City council intends to actively participate in discussions between King County, Sammamish Citizens, and City Staff responsible for processing the necessary applications.
- City Staff is both compiling and reviewing public comments provided by Citizens. The intent is to help city staff complete its comprehensive first review of the shoreline permit application. In addition to requesting the county's response to comments, the City will also "determine requested revisions" which will be sent to the county concurrently.

Question - Will the revisions requested by the City include requests for revisions to both the 60% plan and the permit application; or just the application?

Exhibit 29 SSDP2016-00415

Page 2 of 5

- Both Permits (SSDP and Clearing & Grading) are approved and issued by the City of Sammamish Staff. The City council does NOT have influence, aside from encouraging legal and staff to scrutinize the application in relation to city codes and regulations. The City council does NOT have the ability to prevent either permit from being issued.
 - The procedure to seek adjustments to the current 60% plan is as follows:
 - Citizens to submit official comments to be included as part of the project file
 - Engaging City Council in relation to the comments (public comment or email)
 - Participate in the above mentioned study and/or council session with King County
 - Alterations to the 60% plan will be decided upon and requested by City Staff
 - The City council intends to weigh in on and advocate for requested adjustments to the trail design
- Any appeal of a Shoreline Permit Decision must go through to the State Shoreline Hearings Board

Note: Per my previous e-mail please provide insight into the protocol related to raising appeals to the State Shoreline Hearings Board

From: "Jeffrey Thomas" <JThomas@sammamish.us>

To: "Christie Malchow" <CMalchow@sammamish.us>, "b greve" <b.greve@comcast.net>, "City Council" <citycouncil@sammamish.us>

Cc: "Lyman Howard" <lhoward@sammamish.us>, "Jessi Bon" <JBon@sammamish.us>, "David Pyle" <DPyle@sammamish.us>, "Kim Adams Pratt" <kim@kenyondisend.com>, "Lindsey Ozbolt" <LOzbolt@sammamish.us>

Sent: Monday, January 16, 2017 6:45:53 PM

Subject: Re: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Hi Christie,

One clarification and one correction from your email earlier today to Mr. & Mrs. Greve:

1. Clarification - City staff is reviewing and compiling public comments as they are submitted through next week. The public comments will help City staff complete its comprehensive first review of the shoreline permit application. In addition to requesting the County to respond to the public comments, the City will also determine requested revisions and send to the County concurrently.

2. Correction - As currently set up, the shoreline permit application is being processed as a Type II permit - the Community Development Director issued the decision on behalf of the City. As we learned from the State Shorelines Hearings Board with south segment 2a, the Hearing Examiner does not have jurisdiction to hold an administrative appeal hearing on a shoreline permit decision issued by the Director. Therefore the appeal of a shoreline permit decision will go directly to the State Shorelines Hearings Board.

Thanks, Jeff

From: Christie Malchow Sent: Monday, January 16, 2017 1:18 PM To: b.greve@comcast.net; City Council Cc: Lyman Howard; Jessi Bon; Jeffrey Thomas Subject: RE: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Mr. & Mrs. Greve,

I've cc'd a few staff members here to elaborate or correct any misinformation/omitted information in my response below (in red). My answers below are based on the best of my knowledge and are process based to help you on the questions you've asked below.

Christie Malchow Sammamish City Council cmalchow@sammamish.us<mailto:cmalchow@sammamish.us> • 425-301-6667 | www.Sammamish.us<http://www.sammamish.us/> 801 228th Ave SE | Sammamish, WA 98075

[sammamish logo]

From: b.greve@comcast.net [mailto:b.greve@comcast.net] Sent: Monday, January 16, 2017 9:55 AM To: City Council <citycouncil@sammamish.us> Subject: Seeking Guidance - East Lake Sammamish Trail Segment 2B

Good morning

This e-mail is specifically created to ask for clarification and direction about the city's role and the processes in reference to the on-going and vitally important issues involving the East Lake Sammamish Trail - Segment 2B project.

We (Bill and Katy Greve) residing at 2417 E Lake Sammamish PL SE respectfully request information and answers to each of the following questions outlined below.

* Correspondence coming from both the City of Sammamish and King County provided direction for property owners to submit comments to the staff project planner (Lindsey Ozbolt). Upon doing that an automated response was received stating "Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response". This response seems to elude to the fact that the City of Sammamish is merely a "pass through" for the process by simply collecting the company and

SSDP2016-00415

sending them off to King County without working to understand, building a case, offering opinion, or advocating for its citizens..

* Will the City Council actively review the comments provided, seek to understand them in detail, and ultimately advocate for the citizens of Sammamish? We certainly can read them, but they are not given to Council specifically. You can email your comments to the Council at

citycouncil@sammamish.us<mailto:citycouncil@sammamish.us>, this will help us to better understand each individual homeowner's impacts and concerns. This will then help us when we have the County in for a Council meeting or study session.

* Will the City Council actively participate and help to mediate discussions between King County and the citizens of Sammamish to resolve issues to citizen satisfaction? We are certainly advocating for a study session or the like where King County is present, to answer our questions & citizens alike, so yes, we will be actively participating in discussions between the County, citizens, and City staff processing the applications.

* Who specifically makes the decision to issue both the shoreline substantial development permit and the clearing and grading permit; and what influence does the city council have in that process? City of Sammamish's staff. The Council does not have influence in reality there, aside from encourage legal & staff to scrutinize the application for meeting our City's codes and regulations.

* Does the City Council have the ability to prevent either permit (SSDP and Clearing & Grading) from being issued? No, not to my knowledge.

* What specifically is the procedure to surface issues and seek adjustment to the proposed 60% plan; aside from simply submitting comments? Submitting your comments is the primary means, and certainly engaging Council in those comments (via public comment or simply by emailing them to us). The more we know, the better we can advocate for alterations to the design plan that allows the trail to proceed, but also takes into account affected trail-side owners' issues.

* Will the City Council actively be involved in and support citizens in discussions involving proposed adjustments to the 60% plan? I think the entire Council has an interest in the trail. I certainly do. As far as alterations to the plan, staff will ultimately make those decisions. The Council is certainly going to weigh in on the trail, and as of last Tuesday has asked for a joint meeting that would have King County officials in for a meeting that would likely be a study session. There was an urgency on this request, & I know our City Manager has already reached out to the County on this meeting, I would anticipate that meeting sooner than later.

* In the event that King County does not work to address the proposed adjustments to citizen satisfaction, what is the specific process to appeal, mediate, and mitigate the situation too ensure satisfactory results, and what role with the City play in this process? The appeal can be done if the City approves the plans (after the final submission based on 100% design plan is reached). At that point any group or individual may appeal the decision to the Hearing Examiner.

Citizens have spent literally hundreds of hours trying to understand how to be heard and how to ensure the slightest bit of comment sense and rational thought is applied to the issues being forced upon us or suggested changes. We've worked to submit comments in multiple forms and forums as directed, but no impacted party feels good about how the process has unfolded thus far. Most feel completely unsupported by the city and certainly stonewalled by the county.

I understand your frustrations. My responses above are intended to shed a bit of light on process for you. However, if you feel you have more questions, please don't hesitate to email Council or call me. My cell phone number is listed below in my email signature.

Satisfactory and complete answers to the above questions will at minimum help to epsure we know SSDP2016-00415 what to do and how to do it.

Please advise.

Sincerely,

Bill Greve

SAMUEL A. RODABOUGH Attorney at Law 11820 Northup Way, Ste. E200 Bellevue, WA 98004 (425) 440-2593 (425) 284-3051 (fax)

January 27, 2017

Via Email & U.S. Mail

City of Sammamish Department of Community Development *Attn:* Lindsey Ozbolt, Associate Planner 801 228th Ave. SE Sammamish WA, 98075 lozbolt@sammamish.us King County Department of Natural Resources and Parks *Attn:* Gina Auld, Capital Project Manager IV 201 S. Jackson St., Ste. 700 Seattle, WA 98104-3855 gina.auld@kingcounty.gov

Re: Shoreline Substantial Development Permit 2016-00415 East Lake Sammamish Trail, South Sammamish B Segment

Dear Ms. Ozbolt and Ms. Auld:

This Firm represents William & Debra Gottschalk (collectively "Gottschalk") and William & Kathryn Greve (collectively "Greve"), the owners of residential properties located within the City of Sammamish ("City"). My clients' properties will be adversely affected by the proposed modifications to the East Lake Sammamish Trail, South Sammamish B Segment ("Trail") that have been proposed by King County ("County") in the above shoreline substantial development permit ("SSDP"). My clients are in receipt of the City's Notice of Application for the above SSDP and they have reviewed the 60% design plans for the Trail, dated on or about September 2016 ("Preliminary Plans"). Please accept the following as (1) a response on behalf of my clients to the SSDP application, including the Preliminary Plans, and (2) a request for my clients to be included as parties of record for this SSDP and to receive future notifications and status updates regarding the SSDP application.

A. The Properties

Gottschalk owns and resides in the residence located at 2419 E. Lk. Sammamish Pl. SE, Sammamish, WA 98075, also known as King County Tax Parcel No. 0724069055 ("Gottschalk Property"). Greve owns and resides in the adjoining residence located at 2417 E. Lk. Sammamish Pl. SE, Sammamish, WA 98075, also known as King County Tax Parcel No. 0724069059 ("Greve Property"). The Greve Property is located immediately north of the Gottschalk Property. As with many waterfront properties in this area, the Gottschalk Property and the Greve Property are physically constrained by Lake Sammamish to the west and the Trail to the east. Although these properties enjoy significant waterfront amenities, they are also characterized by significant access constraints and privacy concerns stemming from their proximity to the Trail.

City of Sammamish January 27, 2017 Page 2 of 7

By way of background, and for purposes of this letter, with the limited time available for public comment, my clients have been unable to undertake a comprehensive review of the titles to their respective properties to determine the origin of the County's right-of-way for the Trail. However, per maps available through the County's Department of Natural Resources and Parks, it appears that the origin of the right-of-way in this section of the Trail is the "Tibbetts Deed."¹ The map does not explain if the County believes it owns a fee simple interest in this section of the Trail, or a mere easement. In this limited time available for public comment, however, my clients have been unable to verify if the property interest conveyed by the Tibbetts Deed has previously been adjudicated by any state or federal court. Nonetheless, until demonstrated otherwise, similar to other sections of the Trail, my clients' necessarily take the position that the County's interest constitutes an easement and that my clients own the underlying fee simple interest.

B. Deficiencies in Preliminary Plans

As indicated, my clients have reviewed the Preliminary Plans for the Trail. In this regard, it is worth noting that Mr. Gottschalk has over 35 years of complex construction experience. He is currently the President of Lydig Construction, Inc., a regional commercial construction company whose project portfolios include federal, state, and local government buildings (*e.g.*, secondary and higher education buildings, courthouses, administration buildings, correction centers, civic halls, etc.) and private commercial buildings (*e.g.*, offices, hospitals, hotels, casinos, etc.). In short, Mr. Gottschalk is well-versed and highly qualified in reviewing construction drawings. Accordingly, my clients offer the following comments regarding the Preliminary Plans:

1. Unnecessary Waterward Realignment of Trail Centerline

Per the Preliminary Plans, it appears that the County is unnecessarily realigning the centerline of the Trail waterward (*i.e.*, closer to my clients' residences).² Notably, the County has previously published the criteria that it employs to determine if the existing centerline of the Trail should be realigned, which include the following: (1) "[m]inimizing costs where possible without impacting trail standards," and (2) "[m]inimizing impacts to adjacent homeowners."³ As explained in greater detail below, it does not appear that the County's proposed realignment complies with either of these criteria.

¹ See East Lake Sammamish Trail Railroad Right of Way Historical Acquisitions, King County Department of Natural Resources and Parks, Parks Division (July 29, 2014), at pg. 15.

² *Compare* Preliminary Plans, Existing Conditions Plan, at pg. EX6 (attached hereto as Exhibit 2) *with* Plan and Profile, at pg. AL10 (attached hereto as Exhibit 1).

³ East Lake Sammamish Trail Project, King County Parks (Spring 2014), at pg. 5.

City of Sammamish January 27, 2017 Page 3 of 7

Specifically, the proposed realignment occurs between stations 327+31.99 and 326+71.62.⁴ The realignment results in the following significant, adverse impacts, among others:

- **Reduced Utility of Shared and Separate Driveways** The realignment shortens the approach to the shared portion of my clients' driveway and severely limits vehicle maneuverability and ingress and egress from the easternmost portions of their separate driveways. In particular, the turning radius of their driveways are significantly compromised and may require the owners to trespass onto each other's property for future, rudimentary driveway navigation.
- **Reduced Safety/Visibility** The proposed Trail realignment creates an increased safety hazard for both vehicles and Trail users at this crossing. Specifically, the rather abrupt realignment near the north property line of the Greve Property appears to reduce sight distance for vehicles exiting the shared portion of my clients' driveway, which decreases safety for both my clients and Trail users.
- **Proximity, Loss of Privacy and Safety** The proposed Trail realignment will undoubtedly negatively affect the values of my clients' residences, both of which are multi-million dollar residences. The proposed Trail realignment and accompanying widening will require the loss of most, if not all, of the existing privacy screening for these residences, including mature arborvitae hedges. In short, Trail users will not only be much closer to these residences, but will be staring through windows into their homes. Additionally, the increased proximity of the Trail to my clients' residences may encourage Trail users to engage in unauthorized use of the highly visible boat launch located on the Greve Property.

2. Inadequate Drainage Infrastructure

The existing elevated Trail corridor currently acts as a berm that collects surface water behind it during extreme weather conditions. This problem is exacerbated by excess hydraulic water pressure from Jurisdictional Ditch #11B and runoff from nearby impervious surfaces, including the existing semi-permeable gravel Trail.⁵ Although the Preliminary Plans depict the existence of four, 6-inch culverts located near the north end of Jurisdictional Ditch #11B,⁶ these culverts do not currently provide an outlet for the ponding water. Instead, because the ponding water currently has no outlet, it builds hydraulic pressure that adversely affects the foundations and sewer systems of both the Gottschalk and Greve residences. This hydraulic pressure has led to water infiltration through the foundations and into their respective residences.

⁴ See Preliminary Plans, Plan and Profile, at pg. AL10 (attached hereto as Exhibit 1).

⁵ See Preliminary Plans, Existing Conditions Plan, at pg. EX6 (attached hereto as Exhibit 2) with Plan and Profile, pg. AL10 (attached hereto as Exhibit 3).

⁶ See Preliminary Plans, Existing Conditions Plan, at pg. EX6 (attached hereto as Exhibit 29 SSDP2016-00415 003792

City of Sammamish January 27, 2017 Page 4 of 7

The following photos depicts the water that ponds behind the Trail corridor in front of my clients' residences and the damage to these residences as a result of this ponding and associated hydraulic pressure:

*Note – The above photo was taken at approximately 3:00 p.m. on January 18, 2017. The ditch collects and retains water during extreme weather conditions. The ditch was water free 18 hours prior to the time that this photo was taken. As explained in greater detail herein, adopting my clients' recommended drainage improvements, will resolve the existing drainage issues and better protect any Trail improvements from unnecessary erosion and damage.

*Note – The above photo depicts the source of water forced up through the foundation of the residence as a result of hydraulic pressure.

*Note – The above photo depicts the pathway by which water, forced up through the foundation from hydraulic pressure, runs along the interior walls of the residence.

The proposed drainage improvements in the Preliminary Plans do not appear to adequately address these drainage concerns. In particular, changing the Trail from a semi-permeable gravel surface to an impervious paved surface, while simultaneously widening the Trail, will increase surface water runoff. Moreover, the Preliminary Plans do not depict any underdrain in the vicinity of my clients' properties that will allow for surface water collecting on the east side of the Trail to drain to the west side and ultimately be discharged into the Lake. In other words, it is likely that the existing ponding conditions will continue unless and until the Preliminary Plans are revised with respect to drainage.

3. Design

My clients, including Mr. Gottschalk with his extensive design and construction experience, believe that the Proposed Plans depict a Trail with poor design and a general lack of consideration to architectural exterior design. Specifically, the Preliminary Plans include a masonry retaining wall with a coated chain link for only a portion of affected property, and leaving the remainder with no protection at all. This total lack of architectural perspective by the County fails to follow any reasonable architectural standards for the proposed improvements. The County should have designed something more consistent with the existing improvements that takes into consideration that the two residents share one common entrance and the architectural barrier should be consistent along the affected property.

B. Proposed Resolutions for Deficiencies in Preliminary Plans

My clients believe that there are simple and cost-effective design solutions that would largely alleviate the above concerns that are both (1) consistent with the County's design objectives for the Trail, and (2) avoid negative impacts to adjacent property owners. These solutions are as follows:

1. Shift Proposed Realignment of Trail Centerline to the South

My clients propose that the abrupt transition for the Trail centerline realignment currently depicted as occurring between stations 327+31.99 and 326+71.62 be shifted to the south between stations 324+50 and 324+00.⁷ It does not appear that shifting the transition to that location would impact any adjacent properties, as that location does not involve constraints that are similar to those in the immediate vicinity of my clients' property. For example, unlike the County's proposed location, my clients' proposed location is not in the vicinity of a Trail crossing, such as a driveway. Moreover, my client's proposed location for the transition would alleviate concerns regarding impaired sight lines at my clients' Trail crossing, as the Trail alignment could be straightened in the absence of the proposed transition. My clients' proposal would also accommodate the following:

- **Retaining Wall #10** My clients' preferred alignment would allow for Retaining Wall #10 to be moved east, closer to the alignment of the Trail, which could then be reengineered to be either a smaller retaining wall, or be eliminated altogether as a result of existing elevations. This common sense change would result in considerable savings to taxpayers.⁸
- Clearing and Grubbing Limits My clients also propose that the clearing and grubbing lines be modified to correspond to my clients' preferred Trail realignment. My clients' proposed modifications are depicted on the attached Exhibit 3. Further, the clearing limits should be adjusted to follow the course of the Trail in order to prevent and/or limit, any adverse impacts to my clients' existing stamped concrete driveway, irrigation, drainage, and landscape lighting.
- **Drainage Revisions** My clients also request that certain changes be made to the Preliminary Design with respect to drainage, as depicted in the attached Exhibit 4. These proposed changes are summarized as follows:

⁷ See Preliminary Plans, Existing Conditions Plan, pg. EX6 (attached hereto as Exhibit 2).

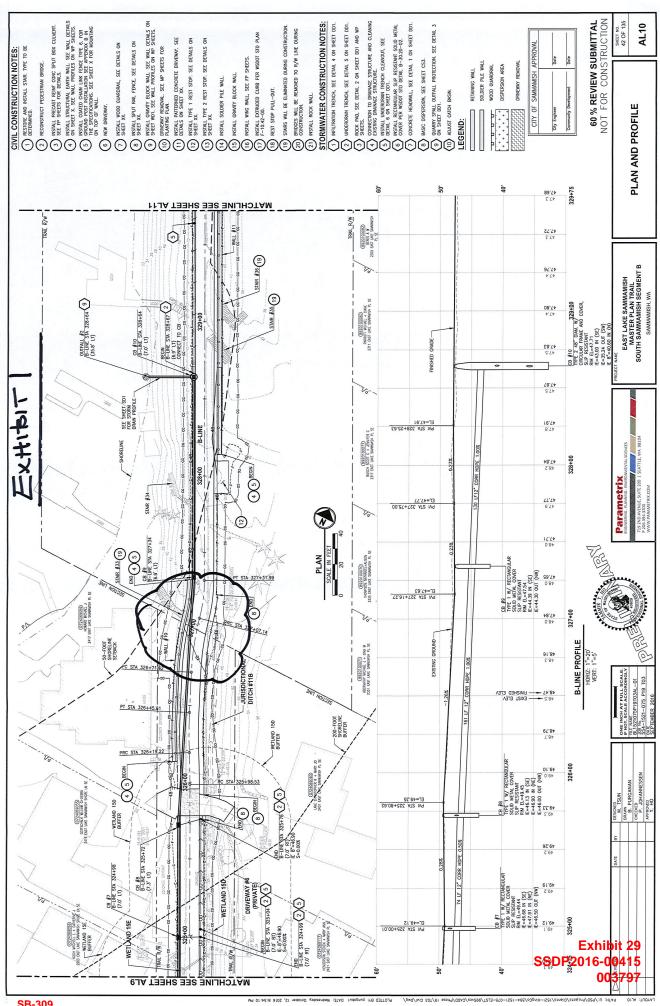
⁸ See Preliminary Plans, Existing Conditions Plan, Plan and Profile, pg. AL10 (attached hereto as Exhibit 3).

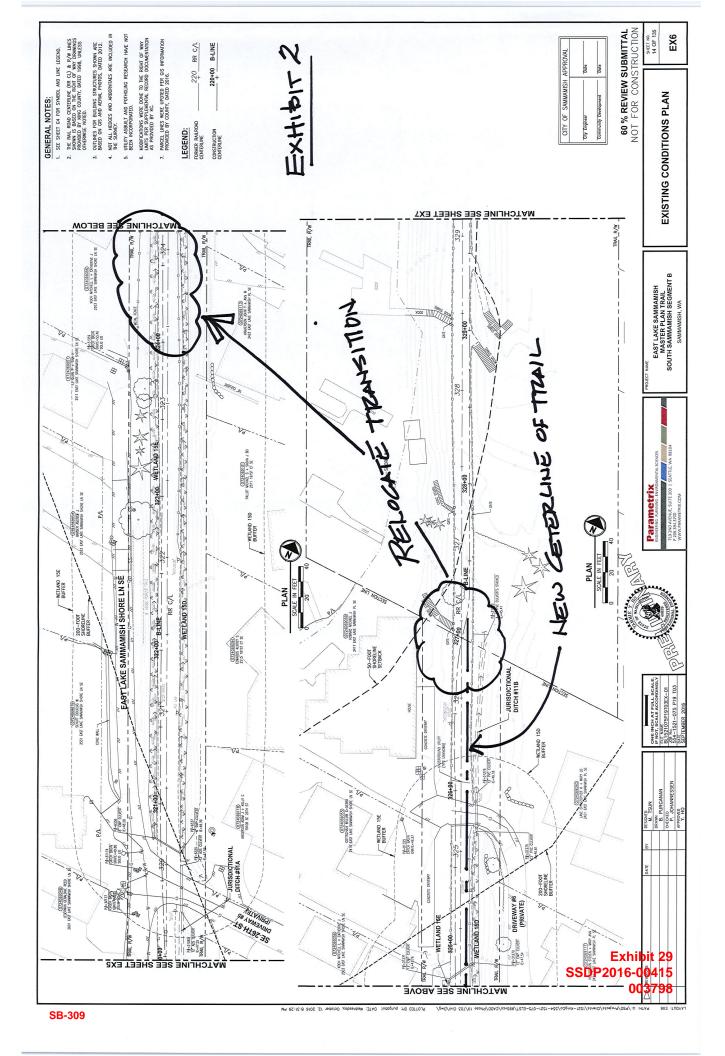
(1) Continue the underdrain depicted for installation south of station 326+00 on the east side of the Trail through to station 327+31.99. Tie the underdrain to Catch Basin #9 located at station 327+34.

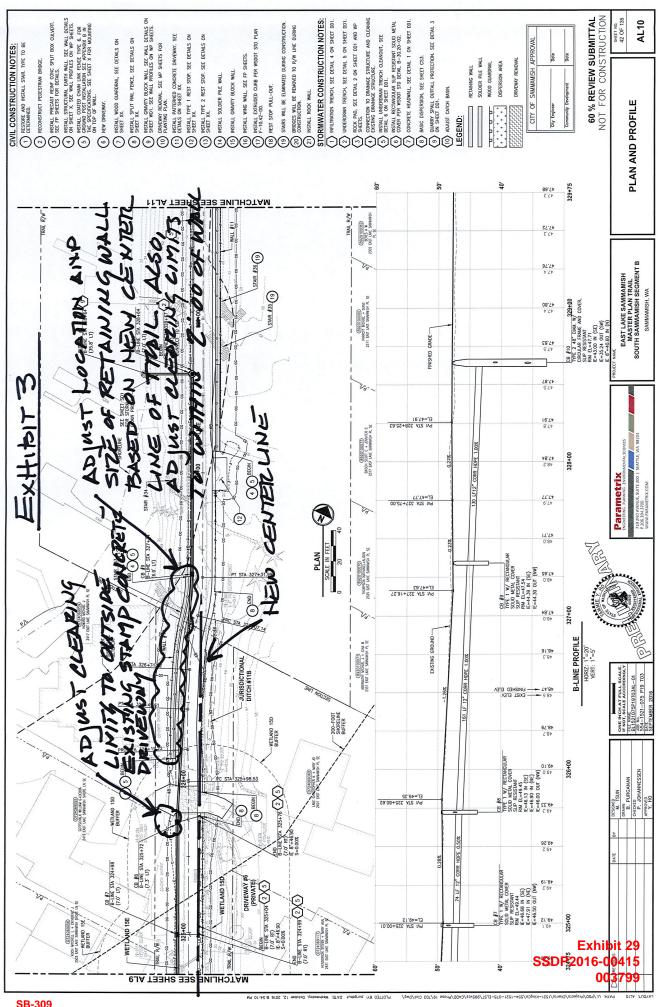
(2) To address the additional ponding that will be expected from increasing the impervious surface from the Trail due to widening, my clients request the installation of a CMP slotted trench drain in the existing driveway, such as the product available from Contech Engineering Solutions depicted in Exhibit 6.

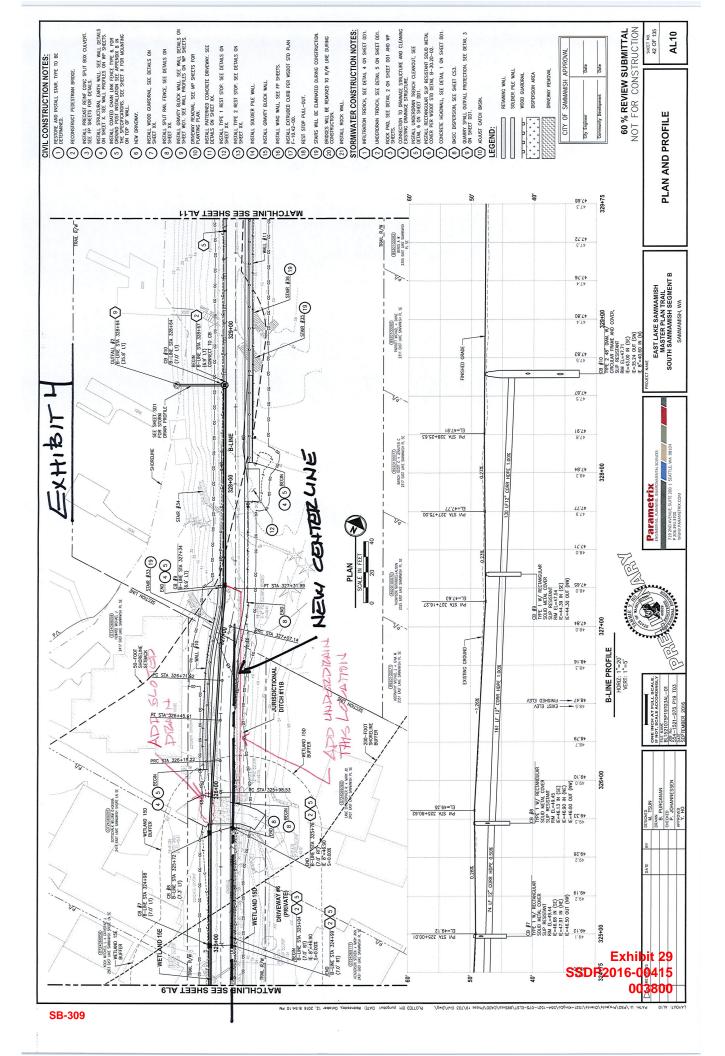
• Fencing – My clients also request that they be allowed to maintain the existing level of safety and security that exists for their properties, which will be significantly compromised by the removal of their vegetative privacy screening, existing fence, and electric gate. Maintaining the same level of security will also eliminate the potential for unauthorized use of the highly visible boat launch located on the Greve Property. My clients recommend realigning the chain link fence depicted in the Proposed Plans consistent with their preferred Trail realignment and extending said fence across both properties as depicted in Exhibit 5. Further, they request permission to install an electric rolling security gate similar to existing one serving the properties. Doing so will also maintain a reasonable resemblance of the exterior architecture of these multi-million dollar homes.

CONCLUSION


The Trail constitutes a regional asset that is beneficial to the greater public. As such, my clients do not oppose improvements to the Trail and sincerely desire that the project will be successful and completed in a timely manner. However, my clients justifiably believe that the proposed Trail improvements should consider the adverse impacts to adjoining properties (as expressly set forth in the County's own criteria), including the Gottschalk Property and Greve Property. My clients respectively request that the County give their proposed improvements serious and thoughtful consideration, as the adoption of those proposals would remedy their concerns.


Sincerely,


LAW OFFICE OF SAMUEL A. RODABOUGH PLLC


Samuel A. Rodabough sam@rodaboughlaw.com

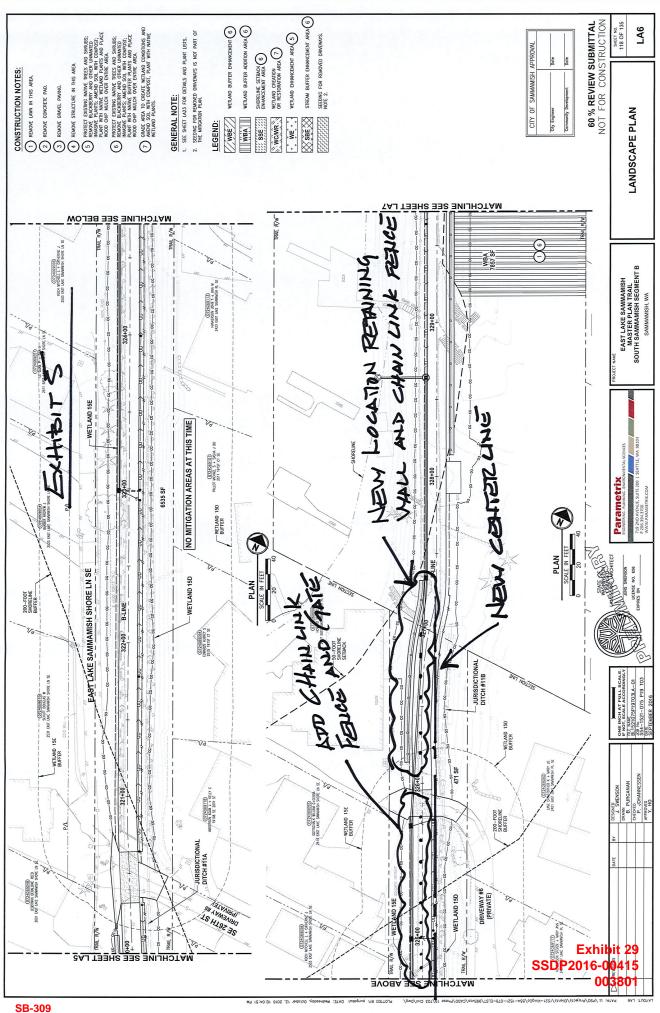

cc: Barbara Flemming, Senior Deputy Prosecuting Attorney

Exhibit 6

PRODUCTS	MARKETS	START A PROJECT	KNOWLEDGE CENTER	COMPANY
Products > Pipe >	Corrugated Metal (CMP)	Slotted Drain		

Slotted Drain[™]

Slotted Drain pipe removes sheet flow from streets, highways, and parking lots without multiple grades or water channeling devices. The result is an aesthetically pleasing inlet that is safer and easier to install and maintain.

From:Lindsey OzboltSent:Wednesday, January 25, 2017 10:52 AMTo:'benwhughey@gmail.com'Subject:RE: Please Approve the Permit: Segment 2B of the ELST

Dear Ben,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Ben Hughey [mailto:benwhughey@gmail.com] Sent: Tuesday, January 24, 2017 10:48 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit: Segment 2B of the ELST

Dear

Dear city of Sammamish,

I would like to register my support for completing the ELST and approving permit SSDP2016-00415.

King County has the skeleton of an amazing regional trail system, but many missing gaps hold us back. If we can pave the East Lake Sammamish Trail, we can create a safe transportation corridor for people to move around our region. This would also aid the future Emerald Necklace Trail that could make Sammamish a destination for all kinds of trail users.

Please don't let a few selfish neighbors stand in the way of a greater and long-term benefit to the community, please approve this submitted permit.

Sincerely,

Ben Hughey 1713 Dexter Ave N, Apt 201 Seattle, WA 98109 9077381252

RE: Comments on Section 2B 60% Design Plans

Lindsey Ozbolt

Tue 1/17/2017 10:21 AM

To:John and Barbara <drjnbarb@comcast.net>;

Dear Ms. Johnson,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: John and Barbara [mailto:drjnbarb@comcast.net] Sent: Saturday, January 14, 2017 12:50 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Comments on Section 2B 60% Design Plans

Linsey-Attached are my comments. Thank you for giving them serious consideration and response.

Barbara Johnson

Exhibit 29

SSDP2016-00415

<u>Comments regarding Section 2B of</u> <u>East Lake Sammamish Trail Design</u>

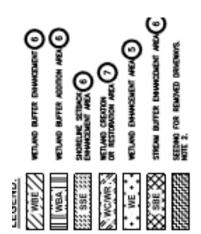
Thank you in advance for giving serious consideration and responding to our input.

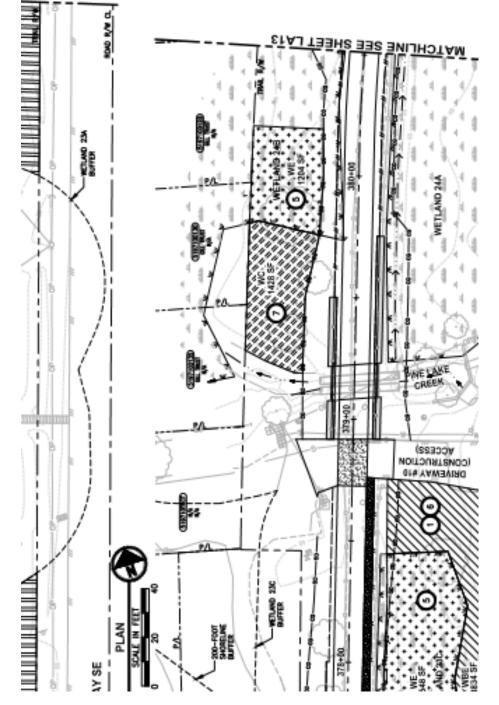
The comments are regarding the Pine Lake Creek area, named on pages 20, 52, 71, and 124; or as Wetland 23C, 24A, 24B, LA12 or Station 380 (see snip of page 124 at end).

- 1. On page 71 of the plan documents there appears to be a proposed earth wall and 4' high cyclone fence to be placed on PRIVATE PROPERTY. The subject property is called Whileaway Court (519710TRCT), and is "jointly owned" by the adjacent property owners. The wall and fencing is being proposed for about 40' over the creek on the west side of Whileaway Court; and a ~15' portion of of the wall and fencing on the east side appear to be in the Whileaway Court tract. Since this is private property, **any construction activity requires the consent of all owners.** This fact was made evident to the City during the recent construction / development activity on the Gill Trust Lots (5197100135, 5197100130, 597100120), resulting in a relocation of drainage onto his property and off of Whileaway Court. And as one of the parties owning Whileaway, we insist you comply with getting written permission from all owners.
- 2. As residents near Pine Lake Creek for 22 years, we have witnessed wetland conditions, excess standing water, and soggy & muddy soil much of the year in Wetlands 24A, 24B, AND to the south of Wetland 24B area designation, extending to Pine Lake Creek. It confounds us that the area between 24B and Pine Lake Creek is not displayed as wetland presently because it absolutely IS.
- 3. Furthermore, on page 124 of the plans a Wetland buffer is notated for WE23C, but no buffer is noted for Wetland 24B or WC 1428 SF. We request that it be shown on the plans.
- 4. The general area north of Pine Lake Creek is classified as wetlands and is also habitat of deer, raccoons, water fowl, beavers, otters, and the occasion bobcat. The concern we have is that the westerly edge of the new trail will extend about 15' west of its current location into wetland regions. Furthermore, the Clearing and Grubbing line appears to extend between 10' 20' beyond the current trail west edge. The plan depicts a loss of matureal habitat / wetland preservation, which we request be left untouched.

Please make a smaller Clearing and Grubbing strip, and expand the Wetland area larger than the WC 1428 SF designation. This will help to maintain wetland and wildlife habitat conditions, without interruption or wildlife displacement.

- 5. A couple years ago the 3 Lots owned by the Gill Trust (5197100135, 5197100130, 597100120) were cleared, graded and prepared for development. We understand the permitting process required a "no touch" zone on the eastern portion of the subject lots ranging from 50' 75' of setback buffer from the east property line of the Gill lots. It seems from the site design that the County / City are not being held to the same standard with respect to the development of the trail as the Clearing and Grubbing line indicates only about 30' "no touch" zone setback from the trail Corridor's westerly property line. Why the inconsistent application of "no touch" setbacks in wetland zones?
- 6. In the present Trail Corridor, to the west of the existing trail (Wetland 24B and adjacent WC to the south), is a mixture of large aged and rotten deciduous trees, plus younger evergreen trees. There have been consistent problems with the older trees cottonwoods, willows as whole trees have fallen or large portions have broken off due to wind, rain, and soft wetland conditions, often blocking the trail. We request that for safety and ease of maintenance, the construction preparation activity remove the large ailing deciduous trees, while preserving the younger evergreen trees, even if they have established themselves in the Clearing and Grubbing area.


In addition to our comments, we have a question to the City regarding trail maintenance. Here are our observations and resulting question.


As mentioned above, there have been trees and large portions of trees, primarily deciduous, that have fallen over the trail in the vicinity of Pine Lake Creek. In the past the trees / trunks / large limbs were bucked up into bolts or lengths, and just left in an unsightly pile along the trail. What is the City's maintenance plan and criteria for leaving all the fallen tree debris alongside the trail vs. hauling away the larger portions for better trail appearance and aesthetics? **The courtesy of a reply would be appreciated.**

Respectfully submitted,

Barbara Schulg Thuson

Barbara S Johnson

From:Lindsey OzboltSent:Friday, January 27, 2017 10:32 AMTo:'paperjam@serv.net'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Sue,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: B.Sue Johnson [mailto:paperjam@serv.net] Sent: Thursday, January 26, 2017 12:39 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I have lived on Bainbridge Island since 1985, but grew up in the region and have been a recreational and commuting cyclist for over 45 years. I cannot adequately express my appreciation for the regional trail systems that have developed in those decades, not just for the increased safety they provide for non-motorized transportation, but also the sheer pleasure of connectivity without auto traffic that they provide me. One of my favorite training rides is what I call my "Lakes and Trails Loop", using the Myrtle Edwards, Interbay, South Canal, Burke-Gilman, Sammamish, 520, Mercer Slough, and I-90 trails. When I'm feeling ambitious, I expand this loop to include the East Lake Sammamish, and I have used the Issaquah-Preston and Snoqualmie Valley trails as well. Because the system has such great connectivity now, missing links really stand out as barriers to safe cycling.

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

B.Sue Johnson Bainbridge Island, WA

B.Sue Johnson 5419 Lynwood Center Rd NE Bainbridge Island, WA 98110 2068428242

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 8:51 AM

To:Betsymacinnes@comcast.net <Betsymacinnes@comcast.net>;

Dear Betsy,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Betsy MacInnes [<u>mailto:Betsymacinnes@comcast.net</u>] Sent: Saturday, January 21, 2017 6:21 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I rode the trail (from Issaquah to Bothell) several times this fall. It is a beautiful asset for our community and should be completed as quickly as possible. As it becomes more known, I believe this trail can bring \$\$ to our communities. I look forward to the day I can make safe loops around our Seattle and eastside area on my bike. It is time to stop all the delays and complete the trail.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support Exhibit 29 the proposed trail widths, which reflect industry standards (AASHTO).
SSDP2016-00415

https://mail.sammamish.us/owa/#viewmodel=ReadMessageItem&ItemI...FuKY3twkOpC5YzL9hvVgAAAtGIAAAA&IsPrintView=1&wid=99&ispopout=1 Page 1 of 2

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, with expediency.

Betsy MacInnes 4220 - 243rd Place SE Issaquah, WA 98029 4253912363

From:Lindsey OzboltSent:Friday, January 27, 2017 10:09 AMTo:'Bmaryman@gmail.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Brice,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brice Maryman [mailto:Bmaryman@gmail.com] Sent: Wednesday, January 25, 2017 10:44 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Brice Maryman 6705 35th PI S Seattle, WA 98118 2063107254

From:Brad Moore <bgmoore77@gmail.com>Sent:Thursday, January 26, 2017 9:12 AMTo:Lindsey OzboltSubject:Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

I work in Bellevue; my family and I all bike both for recreation and transportation/commuting. Completing this trail makes both of these activities better.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity than in it's interim state, and will provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Sincerely,

Brad Moore 1408 - 140th Place NE, Suite 150 Bellevue, WA 98007 2069206247

RE: East Lake Sammamish Trail Segment 2B

Lindsey Ozbolt

Tue 1/17/2017 9:03 AM

To:Bruce Morehead <brucemorehead@gmail.com>;

Cc:Gordon Torrey <gordontorrey@hotmail.com>; edward mcrae <diaex06@hotmail.com>;

Dear Mr. Morehead,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner I City of Sammamish I Department of Community Development 425.295.0527

From: Bruce Morehead [mailto:brucemorehead@gmail.com]
Sent: Friday, January 13, 2017 9:09 AM
To: Lindsey Ozbolt <LOzbolt@sammamish.us>
Cc: Gordon Torrey <gordontorrey@hotmail.com>; edward mcrae <diaex06@hotmail.com>
Subject: East Lake Sammamish Trail Segment 2B

Hello Lindsey,

I am the president of the HOA for the Ashton Woods development on SE 8th Street in Sammamish. There are approximately 70 homes in this immediate area which include Ashton Woods, Pulte Lake Vista and about 12 other homes located in this area off SE 8th Street. We would like to propose the following:

• The work effort for the 3.5 mile improvement of the East Lake Sammamish Trail, extending from SE 33rd Street to Inglewood Hill Road be split into two phases; one from SE 33rd Street to SE 8th Street and the other from Inglewood Hill Road to SE 8th Street.

This would allow for use of the trail during the improvements. SE 8th is also used as a parking area for people walking or biking the trail. Closing the entire 3.5 mile stretch would essential prohibit any use of this corridor by the people in our neighborhood as well as the many others who use SE 8th Street to access the trail.

SSDP2016-00415

Please take this under consideration and let me know if there are any other information we can provide.

Thank you,

Bruce

--Bruce Morehead President - Ashton Woods Homeowners Association 425.681.5114 brucemorehead@gmail.com

From:Lindsey OzboltSent:Wednesday, January 25, 2017 11:01 AMTo:'mbnyland@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Bill,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Bill Nyland [mailto:mbnyland@yahoo.com] Sent: Wednesday, January 25, 2017 5:50 AM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I don't live in the area but I will ride my bike on the trail as soon as the paving is complete. It is an excellent location for a trail and is a great segment in our growing network. I rode it once last summer but the gravel was too loose for my tires.

It needs to be wide enough so we don't have issues between walkers and bikers

Bill Nyland

Bill Nyland 298th pl Auburn, WA 98001 253-315-4393

From:Lindsey OzboltSent:Friday, January 27, 2017 9:22 AMTo:'Benpeterson21@yahoo.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Ben,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Ben Peterson [mailto:Benpeterson21@yahoo.com] Sent: Wednesday, January 25, 2017 4:19 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear folks who administer permits at the city of Sammamish,

I'm writing to voice my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted. A lot of thought and planning has gone into the proposed project. A paved trail 12' wide with 2' shoulders is the safest and most useful design for everyone. I have ridden on narrower trails and it is not as safe.

Please approve the permit, as proposed, with expediency.

Ben Peterson 8722 14th Ave NW Seattle, WA 98117 206-197-0754

From:Lindsey OzboltSent:Wednesday, January 25, 2017 10:09 AMTo:'billybob713@msn.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Bill,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Bill Prescott [mailto:billybob713@msn.com] Sent: Tuesday, January 24, 2017 12:28 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear City of Sammamish,

I want to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

I have been a trail user for the past 16 years, and have endured the constant stonewalling of some lakefront residents. Essentially, they regard any land between East Lake Sammamish road and the actual lake as their divine property. There are those who have put up every objection in order to hoard this valuable resource for themselves, even going so far as to cite "environmental concerns" as a reason why the trail should not be built. Please. It's all about preserving their private access and position and neglecting the rest of the population.

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed ASAP.

Completion of this corridor will provide an extremely valuable commuting route as compared to the dangerous route along ELS Drive, with cars going 50mph on one side of you, and a jersey barrier on the other. Exhibit 29

SSDP2016-00415 003820 Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail.

Please approve the permit, as proposed, immediately.

Thanks, Bp

Bill Prescott 19651 SE 29th St Sammamish, WA 98075 425-830-0592

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 8:50 AM

To:brianreed528@gmail.com <brianreed528@gmail.com>;

Dear Brian,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: BRIAN REED [<u>mailto:brianreed528@gmail.com</u>] Sent: Saturday, January 21, 2017 7:15 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

As for the dissenters along the former railway, how about instead of a trail for families and other non-threatening fitness enthusiasts, we get the former freight trains running again. Show some perspective and get over yourselves, promote community and not selfishness. Lake Sammamish and its perimeter is not owned by you, you only own the land to the end of your driveway.

Sincerely, Brian from Redmond.

BRIAN REED 5501 161ST PL NE REDMOND, WA 98052

Exhibit 29 SSDP2016-00415 003822

Page 1 of 2

https://mail.sammamish.us/owa/#viewmodel=ReadMessageItem&ItemI...uKY3twkOpC5YzL9hvVgAAAtGhAAAA&IsPrintView=1&wid=38&ispopout=1

4258833134

RE: Please Approve the Permit for Segment 2B of the ELST

Lindsey Ozbolt

Mon 1/23/2017 8:43 AM

To:Britinizer@comcast.net <Britinizer@comcast.net>;

Dear Brita,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brita Rood [mailto:Britinizer@comcast.net] Sent: Sunday, January 22, 2017 3:14 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the trail permit, as submitted, so that users of all ages and abilities can safely use the trail. A trail built to national standards (AASHTO), that is 12 ft, plus 2 ft gravel shoulders, will allow for safe use by a variety of different users, including people who walk and bike.

As proposed in the permit, priority at trail crossings should be given to the trail and trail users. Consistent crossing priority is intuitive and safe for users of both the trail and the driveways and roads that cross the trail.

When complete, the trail will be an even greater community amenity, and provide a safe option for people who bike to travel to and through Sammamish. Please complete the trail.

Page 1 of 2

This is a wonderful trail for riding. It would be so nice to have the option of using this trail all the way around the lake. I have used parts of the trail for s few years riding with the cascade bicycle club. It would be an added benefit for folks that live in the area as well.

Sincerely,

Brita Rood 18209 se 246th st Covington, WA 98042 2067197309

SB-321

From:Lindsey OzboltSent:Wednesday, January 25, 2017 10:40 AMTo:'bsteiner@efn.org'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Brad,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brad Steiner [mailto:bsteiner@efn.org] Sent: Tuesday, January 24, 2017 9:31 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

As an avid cyclist and regular trail user I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses of the trail... from running to riding a bike. Please approve the permit with the trail widths as proposed.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users, whether in a vehicle, on foot, or on a bike. The trail alignment, as proposed in the permit, provides sight lines for good approach visibility for people on the trail and people crossing the trail and people crossing the trail.

SSDP2016-00415 003826 Please approve the permit, as proposed, with expediency.

Brad Steiner 12th Ave NE Seattle, WA 98115 2069859520

From:Lindsey OzboltSent:Friday, January 27, 2017 9:37 AMTo:'brian@tosch.com'Subject:RE: Please Approve the Permit for Segment 2B of the ELST

Dear Brian,

Thank you for contacting the City of Sammamish regarding the current Shoreline Substantial Development Permit Application for East Lake Sammamish Trail Segment 2B (SSDP2016-00415).

Your comments have been received and will be included in the project record. At the close of the comment period, all comments will be compiled and provided to King County for review and response. You will be included in future notices the City issues for this proposal.

Regards,

Lindsey Ozbolt Associate Planner | City of Sammamish | Department of Community Development 425.295.0527

-----Original Message-----From: Brian Tosch [mailto:brian@tosch.com] Sent: Wednesday, January 25, 2017 6:38 PM To: Lindsey Ozbolt <LOzbolt@sammamish.us> Subject: Please Approve the Permit for Segment 2B of the ELST

Dear

Dear city of Sammamish,

I'm writing to express my support for completing the ELST and approving permit SSDP2016-00415.

I am so excited to finally see this project finished. This is a hugely important piece of the trail system I use several days a week as a neighbor to Marymoor Park.

Please approve the permit, as submitted.

Approval of the permit will advance completion of the 44 mile regional trail system between Seattle and the foothills of the Cascades. The trail, as proposed in the permit, will provide a safe walking and biking route through Sammamish. Please support the proposed trail widths, which reflect industry standards (AASHTO).

A 12ft trail with 2ft shoulders will create a safe trail with space for the various different uses... from people running to people riding a bike. Please approve the permit, including the proposed width of the trail.

Ensuring crossing priority for the trail is an important safety issue. Giving priority to the trail when roads and driveways cross the path will be intuitive for all users. The trail alignment, as proposed in the permit, provides sight lines for good visibility for people on the trail and people crossing the trail at trail intersections.

Please approve the permit, as proposed, with expediency.

Sincerely,

Brian Tosch 16253 NE 51st St. Redmond, WA 98052 206-683-6788